

## Migrating from Grid to Cloud: Case Study from GEO Grid

National Institute of Advanced Industrial Science and Technology Yoshio Tanaka



## What is the GEO Grid ?

 The GEO (Global Earth Observation) Grid is aiming at providing a <u>Cyber</u> <u>Infrastructure</u> for worldwide Earth Sciences communities to accelerate GEO sciences based on the concept that relevant data and computation are <u>virtually integrated</u> with a certain access control and ease-of-use interface those are enabled by a set of Grid and Web service technologies.



独立行政法人 產業技術総合研究所



# **Example: Flood simulation**





## Why Grid? - federation of distributed resources -





### GEO Grid Security: GSI + VOMS







#### Demo Environments in 2007 - SIMS (ASTER+MODIS+Formsat2)







独立行政法人產業技術総合研究所



## **GEO Grid Service Examples**

- Satellite data archive and processing
  - ASTER, PALSAR, MODIS, etc.
- Satellite data application
  - Application of Satellite-Field data Integrator (SFI) for aerosol monitoring Description <u>http://fon.geogrid.org/aerosol/</u>
  - SDCP (Science Degree Confluence Project) –Community validation tool for global land-cover & digital elevation models <u>http://eco.geogrid.org/sdcp/</u>
- Hazard information
  - QuiQuake (Quick Estimation System for Earthquake Maps Triggered by Observation Records) <u>http://qq.ghz.geogrid.org/QuakeMap/index.en.html</u>
  - Volcanic Gravity Flow Simulations on Volcanic Area <u>http://volcano.geogrid.org/applications/EnergyCone/</u>
- Geoscience data
  - Geological maps, Active fault data, etc.



## **Migration from Grid to Cloud**



## Motivation for migrating to Cloud

- Deployment of applications is not easy
  - Procedures for including new resources (deployments of applications) are troublesome.
    - Need easy-to-use.
    - Write once, run everywhere!
- Do we need Grid protocols?
  - Do we need Grid Security?
    - Delegation is necessary for third-party file transfer.
    - But key management is burden for end users.
    - Installation/configuration of VOMS is not easy.
  - Do we need Grid protocol (e.g. GRAM)?
    - GEO Grid applications use not Grid middleware/protocol but the other standards (e.g. OGC).
- Need to adapt the direction for wider use
  - GEO Grid system is stably in operation, but not extendable (elastic).
    - Data server and computing server are tightly coupled.
    - It's hard to use resources outside organization.
  - Is GEO Grid Design appropriate for use by business partners?
  - Japanese government has a plan of promoting use of satellite data for wide use.



## Goals of and approaches by PRAGMA

 Enable Specialized Applications to run easily on distributed resources

– Build once, run everywhere!!

- Investigate Virtualization as a practical mechanism
  - Supporting Multiple VM Infrastructures (Xen, KVM, OpenNebula, Rocks, WebOS, EC2)
- Share VM images in PRAGMA VM repository so that we can boot our application VMs at any site by any PRAGMA colleagues.
  - Discussed in PRAGMA 20 workshop @ HK, March 3<sup>rd</sup> and 4<sup>th</sup>, 2011, 1 week before the big earthquake in Japan...



# 2011 Tohoku Earthquake changed our R&D environments





## Satellite Data Flow and Services Prior to Marchard



- ASTER data: NASA $\rightarrow$ ERSDAC $\rightarrow$ AIST
- PALSAR data: JAXA→ERSDAC→AIST

(processing, WMS, portal site, and data providing by AIST)



## Data Flow and Services from March 11 till Aprela Astronomical States and Services from March 11 till Aprela Astronomical Services from March 11 till Astronomical



- ASTER data: NASA $\rightarrow$ ERSDAC $\rightarrow$ (AIST) $\rightarrow$
- PALSAR data: JAXA $\rightarrow$ ERSDAC $\rightarrow$ (AIST) $\rightarrow$

(processing and WMS by Orkney, portal site by Google)





- ASTER data: NASA $\rightarrow$ ERSDAC $\rightarrow$ (AIST) $\rightarrow$
- PALSAR data: JAXA→ERSDAC→(AIST)→ (processing by NCHC, SDSC, and OCCI, WMS by NCHC, portal site by Google)



## Insights

• Fortunately, we already had VM images for satellite data processing.

– We have prepared for using cloud.

- Need to make it routine use!
- PRAGMA members had disasters/accidents.
  - Japan earthquake
  - Thailand flooding
  - California power outage
- PRAGMA members has common interests/needs to build a sustainable infrastructure which could be used to support each other in case of emergency.
  - We accelerated the development/deployment of PRAGMA Cloud.





### Deploy Three Different Software Stacks on the PRAGMA Cloud

- QuiQuake
  - Simulator of ground motion map when earthquake occurs
  - Invoked when big earthquake occurs
- HotSpot
  - Find high temperature area from Satellite
  - Run daily basis (when ASTER data arrives from NASA)
- WMS server
  - Provides satellite images via WMS protocol
  - Run daily basis, but the number of requests is not stable.

#### All these applications run as Condor workers







## **Essential Steps**

- 1. AIST/GEO Grid creates their VM image
- 2. Image made available in "centralized" storage (currently Gfarm is used)
- 3. PRAGMA sites copy GEO Grid images to local clouds
  - 1. Assign IP addresses
  - 2. What happens if image is in KVM and site is Xen?
- 4. Modified images are booted
- 5. GEO Grid infrastructure now ready to use

Slide by courtesy of P. Papadopoulos, UCSD

# Cloud Sites Integrated in GEO Grid Execution Pool





# New Security Model (in progress)





## Summary

- We learned a lot through Grid experiments.
- Migrating from Grid to Cloud
  - Virtualization technologies is useful for making distributed infrastructure easy to use.
  - Better for business use.
- Still have many research issues.
  - Data
  - Network virtualization
  - Resource managements
  - Security
  - Making it routine-use

AICT





# Thank you very much for your attention !

# Global Earth Observation Grid

http://www.geogrid.org/