
Dependable Cloud Computing:
Virtualization-Based Management
for Servers, Clients and Network

Kazuhiko Kato
University of Tsukuba

Japan

NSC-JST Workshop
Nov. 27, 2012

2

Project Members
University of Tsukuba
　　Kazuhiko Kato, Akiyoshi Sugiki, Koji Hasebe
　　Yasushi Shinjyo
University of Tokyo
　　Takahiro Shinaga（Previously, University of Tsukuba)

University of Electro-Communications
　　Yoshihiro Oyama
Fujisoft Inc.
　　Yoshiaki Ishii, Kyohei Yano, Seiji Hirooka

　

Overview of Dependable Cloud computing
Developing infrastructural software for cloud computing with
servers, client, and network.

3

Dependability：
Reliability, Availability, Response, Throughput, Security, Privacy

Failure
Guest OS

BitVisor

Hardware

Servers
(in several data centers) Network Clients

Internet

4

(I) Dependable Server Management

Failure
Guest OS

BitVisor

Hardware

Servers
(in several data centers) Network Clients

Internet

Kumoi（雲居）:
Middleware for Cloud Server Management
• Riding on the Scala programming language

✓ OO & functional
✓ "Scalable" coding (Java-to-Ruby level) with static type

system
• Object/Resource mapping for data centers

✓ Real/virtual machines and network are mapped to HW/SW
objs. (Cf. O/R mapping in db software)

• Incorporated distributed algorithms such as gossip
algorithms and Paxos.

• Available as open source software.

5

Kumoi Overview

6

Data center
Manager/operator

Method
call

Result

Interactive/batch

Kumoi shell

Scala

Kumoi kernel

Real
machine Network

VMM VNet

VM Disk

34K lines of Scala source code

Kumoi Scripting
(Cf. Unix scripting)

7

scala> pms.fliter(_.cpuRatio > 0.9).map(_.name)

pms: List of available physical machines
_: Formal arguments for higher-order function

Kumoi System Programming:
VM-Compaction

8

def compact(pms: List[VM]) {
 def firstFit(v: VM, rest: List[VM]) {
 rest match {
 case h :: rs if (h.cpuAvailable > v.cpuRatio) => v.migrateTo(h)
 case h :: rs => firstFit(v, rs)
 case List() =>
 }
 }
 def compacti(pms: List[VM]) {
 pms match {
 case h :: rest =>
 h.vms.foreach(v => firstFit(v, rest.reverse))
 compacti(rest)
 case List() =>
 }
 }
 compacti(pms.reverse)
}

9

(II) Dependable Client Management

Failure
Guest OS

BitVisor

Hardware

Servers
(in several data centers) Network Clients

Internet

Virtual Machine Monitor

10

仮想マシン
（VM: Virtual Machine）

仮想マシン
（VM: Virtual Machine）

Hardware

Virtual Machine

Virtual Machine Monitor

Guest OS

Hardware

Physical Machine

OS

BitVisor: Secure VMM
• Storage management
✓ Encrypting HDD, USB memory

• Network management
✓ VPN (IPsec)

• ID Management
✓ Key management/authentication

with IC card

• VMM Core
✓ Virtualization of CPU and memory

11

)((�

����#����

�!�� ����

�� #������� �� ��������� � ������ �

	�$���� �
�! ��� ��� ����

�������$� ����

�

������

��&��"����"�� !��%� ���'�������� ���

Utilization of BitVisor
• System file protection of guest OS

• Malware detection
✓ IDS within VMM

• Transparent VPN switching (described in the
next topic)

12

System File Protection of Guest OS

•Integrity (code cannot be modified undetectably)
✓Kernel image
✓Device driver
✓etc.

Implementation of System File Protection

• BitVisor monitors every storage
access.
✓Detects system file

modification.
• Mapping between files and

sectors are managed.

Guest&OS

Device

Device&driver

Extended&function

ATA NIC USB

Device&mediator

ATA NIC USB
VM

VMM

Hardware

Protection&policy

Malware detection
IDS within VMM

��#��" !�
�
�
�
�

�
�
�
�
�
�

"����#$!��
�$# ��# ��

�
�
�

�
�
�

("����#$!��
�

&�������������'�
&��
��			���'�

&	������������'�
����

"����#$!��
�$# ��# ��
����!�#� ��
� �$���

��#������
� �$���

�$�"#����
�
�

����"��

��%�����!�%�!�

Runatthe$boot$
+meofBitVisor�

data$block$

data$block$

BitVisor as Research Platform
• HyperSafe [Wang et al., IEEE S&P ‘10]

✓ Integrity of hypervisor itself, i.e., modification
disabled.

• “Return-less” VMM [Li et al., EuroSys ‘10]
✓ Against ROR (Return-Oriented Rootkit)

• TCVisor [Rezaei et al., ICITST ‘10]
✓ Limited storage area can be seen by each user.

16

17

18

(III) Dependable Network

Failure
Guest OS

BitVisor

Hardware

Servers
(in several data centers) Network Clients

Internet

Failure Detection in VMM

��

���������������������

����

������

�������
���������������

�
����

�
����

���

	����������
	�

���
�����������������������

����� ��

�����
 ��

VPN Switching in VMM

��

���������������������

����

������

�������
���������������

�
����

�
����

���

	����������
	�

���
�����������������������

����� ��

�����
 ��

Experiments with Real Data Center

21

��������

!(�)&

���	������

����������

�
�����������������

������

��#'&
��%*$")$*

Fujisoft in Yokohama

Fujisoft in Kyusyu

つくばTsukubaFujisoft in Kyusyu

VPN Switching

22

multiple sessions may reduce the time required to fail over.
However, as shown in the experimental results in Section 5,
current VPN switching is fast enough to hide VPN failures
from OSs and maintain TCP connections.

4.2. Packet Relay System

Our packet relay system implementation performs two
operations: IP capsuling and NAT. IP capsuling is used
for identifying clients from servers and hiding IP address
changes from the guest OS. NAT is used for hiding IP ad-
dress changes from servers. Figure 6 shows these opera-
tions when an IP packet is sent from a client to a server.
The packet relay system uses a simple IP header like IP

over IP (IPIP) [5] to encapsule IP packets. When a packet
is sent from a client to a server, the capsuling IP header has
the relay client IP as the source and the relay server IP as the
destination (see Figure 6). The relay client IP is assigned by
VPN gateways and different from the IP address assigned to
the guest OS (guest IP). We currently assume that the guest
IP is unique in a cloud and can be used as a client ID. When
there are many clients, we can append a large (e.g., 128bits)
unique identifier, after the capsule IP header.
The relay server manages the relationship between the

guest and gateway IPs. In Figure 6, it records the rela-
tionship between “Guest IP” and “VPN GW IP”, allowing
the relay server to determine the appropriate gateway for a
client. The relay server updates the relationship manage-
ment table every time it receives an IP packet from clients.
The relay server also translates the source address of the
original IP header to its own IP address. This allows the
server to use the same IP address even when the relay client
IP address is changed. It also recalculates the check-sum of
IP packets. When the server sends back an IP packet to the
client, the packet follows a reverse flow path.
The packet relay client is implemented as a module run-

ning in BitVisor, and the packet relay server is implemented
as a user-level process running on the server.

5. Experiments

This section shows the experimental results of evaluating
our scheme. We first show the results of measuring failover
time. Then we show the results of measuring the perfor-
mance overhead of our virtualization layer.

5.1. Setup

We conducted the experiments in a wide-area distributed
Internet environment in Japan. We placed a client at
Tsukuba, and connected it to VPN gateways in data centers
in Tokyo, Yokohama, and Fukuoka. The straight-line dis-
tances from Tsukuba is approximately 56 km to Tokyo, 84

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700 800 900

Yokohama
Fukuoka

Tokyo

1000

La
te

nc
y

[m
se

c]

Elapsed time [sec]

Figure 7. Transition of Latency to Data Cen-
ters

0

2

4

6

8

10

0 5 10 15 20 25 30VP
N

 th
ro

ug
hp

ut
 [M

bi
t/

se
c]

Elapsed time [sec]

Failure occurred point Failure recovered point

15.1 19.2

Figure 8. Throughput Transition over Failure

km to Yokohama, and 926 km to Fukuoka. These data cen-
ters are connected via leased lines with a maximum speed
of 100 Mbps. The leased lines are actually implemented
with yet another VPN provided by an ISP.
We used a PC equipped with Intel Core 2 Duo E8600

(3.33 GHz), PC2-6400 4 GB memory, and Intel X25-V
SSD 40 GB as the client machine at Tsukuba. The base
VMM is BitVisor 1.1, available from sourceforge site, and
the guest OS is Windows XP. Server machines are an HP
ProLiand BL280c blade server equipped with Xeon E5502
(1.86 GHz), 2 GB memory, and 120 GB 5400 rpm 2.5 inch
HDD.We used a Kernel-based Virtual Machine (KVM) and
CentOS 5.4 for both guest and host OSs. A cloud server and
the packet relay server each ran on a virtual machine.

5.2. Failover Time

The VPN failover time consists of the time to (1) detect a
VPN failure, (2) switch VPN gateways, and (3) restart TCP
transmission. According to our scheme, the time to detect a
VPN failure is expected to be (n+1)×RTO, whereRTO is
calculated by Jacobson’s algorithm and n is the retry num-
ber. To verify estimated RTO, we first measured the tran-
sition of the network latency to each data center. Figure 7
shows the results. The latency to both Tokyo and Yokoyama
was around 15 msec and Fukuoka was 35 msec. In these la-
tencies, the estimated RTO for Tokyo was about 1 s.
We then measured the failover time. We intentionally

caused a VPN failure and measured the transition of TCP

6

Before: Tsukuba-Tokyo (56Km)
After: Tsukuba-Yokohama (84Km)

Newtork Latency and Throughput of
VPN Switching

23

Tsukuba-Tokyo (56Km)
Tsukuba-Yokohama (84Km)
Tsukuba-Fukuoka (926Km)

Tokyo Yokohama Fukuoka

VPN on OS 13.18 12.63 32.04

VPN on VMM 13.46 13.00 32.57

VPN on VMM with relay 13.71 13.23 32.80

0

5

10

15

20

25

30

35

La
te

nc
y

[m
se

c]

Figure 9. Latency

Tokyo Yokohama Fukuoka

VPN on OS 58.88 52.98 26.43

VPN on VMM 49.31 47.45 25.27

VPN on VMM with relay 41.22 41.94 24.45

0

10

20

30

40

50

60

70

Ba
nd

w
id

th
 [M

bi
t/

se
c]

Figure 10. Throughput

throughput between the client and server over VPN. The
client was first connected to the VPN gateway in Tokyo,
and then switched to the VPN gateway in Yokohama after
detecting a failure. We also captured packets to obtain the
exact timing of detection and swiching. Figure 8 shows the
results. In this figure, a failure occurred 15.1 s after the start
of the experiment. Then the failure was recovered within 3
s, that is, 3 × RTO. After detecting the VPN failure, con-
necting to the new VPN gateway took 332 msec (197 msec
for IKE Phase 1 and 135 msec for IKE Phase 2). After that,
it took about 800msec until the guest OS restarts TCP trans-
mission. Finally, the TCP throughput was recovered 3.9s
after the failure. The results show that our proposed scheme
works correctly and is effective for hiding VPN failures.

5.3. Performance

We next measured the overhead of the virtualization
layer. In our implementation, the client VMM including the
VPN client module incurs overhead. In addition, the packet
relay system incurs additional overhead to implement IP

calsuling and NAT in a user-level process. We measured
the overhead in three environments: “VPN on OS” repre-
sents that VPN is implemented in a OS (using YAMAHA
YMS-VPN1), “VPN on VMM” represents that VPN is im-
plemented in BitVisor but not using the packet relay sys-
tem, and “VPN on VMM with relay” represents that VPN
is implemented in BitVisor and using the packet relay sys-
tem. We measured latency and throughput from a client at
Tsukuba to each data center over a VPN.
Figure 9 shows the latency. The overhead of our system

was 0.53–0.76 msec in total for each data center: the VMM
incured 0.28–0.53msec and the packet relay system incured
0.23–0.25msec. Figure 10 shows the throughput. The over-
head of our system was about 8–30% in total: the VMM in-
cured 4–16% overhead and the packet relay system incured
3–14% overhead. The overhead becomes relatively lower
when connecting to a more far data center. The overhead of
the packet relay system could be reduced by implementing
the system in the OS kernel instead of a user-level process.

6. Related Work

Several researchers used overlay networks based on
peer-to-peer technologies to improve the reachability [12,
15, 16, 18]. They assume failures and miss configuration
in the border gateway protocol (BGP) or autonomous sys-
tems. However, these systems require many nodes to con-
struct overlay networks. Our scheme is not a peer-to-peer
system and uses a relatively small set of gateways to im-
prove availability of the network.
A router redundancy protocol, such as the virtual router

redundancy protocol (VRRP) [3], places master and slave
routers in redundancy. When a failure occurs in the master
router, the slave router detects the failure and automatically
takes over the master router’s functionalities. However, the
master-slave structure does not tolerate failures in networks.
Mobile IP [4] achieves transparent IP node migration. It

allows the continuation of communication even if a node
moves to a different network. However, it is designed for
mobile nodes and requires agents such as home and foreign
agents than must be continuously available.
FVPN [10] was proposed as a VPN failure recovery

framework. This framework supports seamless network
fail-over by leveraging the inherent redundancy of the un-
derlying Internet infrastructure. However, this framework
does not tolerate IP address changes. IPTACR [11] can re-
cover from IPsec pass-through failure. However, it requires
modification to the VPN client software.

7. Conclusion

We proposed a transparent VPN failure recovery scheme
for improving the availability of VPN connections. Our

7

Tokyo Yokohama Fukuoka

VPN on OS 13.18 12.63 32.04

VPN on VMM 13.46 13.00 32.57

VPN on VMM with relay 13.71 13.23 32.80

0

5

10

15

20

25

30

35

La
te

nc
y

[m
se

c]

Figure 9. Latency

Tokyo Yokohama Fukuoka

VPN on OS 58.88 52.98 26.43

VPN on VMM 49.31 47.45 25.27

VPN on VMM with relay 41.22 41.94 24.45

0

10

20

30

40

50

60

70

Ba
nd

w
id

th
 [M

bi
t/

se
c]

Figure 10. Throughput

throughput between the client and server over VPN. The
client was first connected to the VPN gateway in Tokyo,
and then switched to the VPN gateway in Yokohama after
detecting a failure. We also captured packets to obtain the
exact timing of detection and swiching. Figure 8 shows the
results. In this figure, a failure occurred 15.1 s after the start
of the experiment. Then the failure was recovered within 3
s, that is, 3 × RTO. After detecting the VPN failure, con-
necting to the new VPN gateway took 332 msec (197 msec
for IKE Phase 1 and 135 msec for IKE Phase 2). After that,
it took about 800msec until the guest OS restarts TCP trans-
mission. Finally, the TCP throughput was recovered 3.9s
after the failure. The results show that our proposed scheme
works correctly and is effective for hiding VPN failures.

5.3. Performance

We next measured the overhead of the virtualization
layer. In our implementation, the client VMM including the
VPN client module incurs overhead. In addition, the packet
relay system incurs additional overhead to implement IP

calsuling and NAT in a user-level process. We measured
the overhead in three environments: “VPN on OS” repre-
sents that VPN is implemented in a OS (using YAMAHA
YMS-VPN1), “VPN on VMM” represents that VPN is im-
plemented in BitVisor but not using the packet relay sys-
tem, and “VPN on VMM with relay” represents that VPN
is implemented in BitVisor and using the packet relay sys-
tem. We measured latency and throughput from a client at
Tsukuba to each data center over a VPN.
Figure 9 shows the latency. The overhead of our system

was 0.53–0.76 msec in total for each data center: the VMM
incured 0.28–0.53msec and the packet relay system incured
0.23–0.25msec. Figure 10 shows the throughput. The over-
head of our system was about 8–30% in total: the VMM in-
cured 4–16% overhead and the packet relay system incured
3–14% overhead. The overhead becomes relatively lower
when connecting to a more far data center. The overhead of
the packet relay system could be reduced by implementing
the system in the OS kernel instead of a user-level process.

6. Related Work

Several researchers used overlay networks based on
peer-to-peer technologies to improve the reachability [12,
15, 16, 18]. They assume failures and miss configuration
in the border gateway protocol (BGP) or autonomous sys-
tems. However, these systems require many nodes to con-
struct overlay networks. Our scheme is not a peer-to-peer
system and uses a relatively small set of gateways to im-
prove availability of the network.
A router redundancy protocol, such as the virtual router

redundancy protocol (VRRP) [3], places master and slave
routers in redundancy. When a failure occurs in the master
router, the slave router detects the failure and automatically
takes over the master router’s functionalities. However, the
master-slave structure does not tolerate failures in networks.
Mobile IP [4] achieves transparent IP node migration. It

allows the continuation of communication even if a node
moves to a different network. However, it is designed for
mobile nodes and requires agents such as home and foreign
agents than must be continuously available.
FVPN [10] was proposed as a VPN failure recovery

framework. This framework supports seamless network
fail-over by leveraging the inherent redundancy of the un-
derlying Internet infrastructure. However, this framework
does not tolerate IP address changes. IPTACR [11] can re-
cover from IPsec pass-through failure. However, it requires
modification to the VPN client software.

7. Conclusion

We proposed a transparent VPN failure recovery scheme
for improving the availability of VPN connections. Our

7

Summary
Dependable cloud computing environment for servers,
client and network, by using virtualization technologies.

24

Failure
Guest OS

BitVisor

Hardware

Servers
(in several data centers) Network Clients

Internet

Ongoing Work
• Extension and application of Kumoi

✓ Virtual network control with OpenFlow
✓ Failure-oblivious computing
✓ Application: Parallel, distributed parameter tuning

• BitVisor application
✓ Transparent network boot system
✓ Acceleration of guest OS boot
✓ Desktop grid with intra-VMM computation

• Energy-saving distributed storage system

25

