Collaborative Research: The Japan March 11 Earthquake: Tsunami inundation, and initial spread of Fukushima Dai-ichi Radionuclides into the Pacific Ocean: Model Assessment

J-Rapid

PI: Jun Sasaki¹ T. Suzuki¹ and R. U. A. Wiyono¹

Rapid

PI: Changsheng Chen²

C. Beardsley³, Z. Lai², R., H. Lin², J. Lin³ and R. Ji³

¹Yokohama National University (YNU), Japan ²University of Massachusetts-Dartmouth (UMASS-D), USA ³Woods Hole Oceanographic Institution (WHOI), USA

Outline

Global-Japan coastal nesting FVCOM (<u>Finite</u> <u>Volume Community Ocean Model</u>) tsunami model system

- Concept of the system
- Application to 2011 Tohoku tsunami inundation
- Application to the initial spread of Fukushima Daiichi radionuclides into the Pacific Ocean
- Discussion on the necessity of the system

□FVCOM simple application to tsunami problems

- 2011 Tohoku tsunami propagation in Tokyo Bay
- Tsunami damage to seaweed farming

GLOBAL-JAPAN COASTAL NESTING FVCOM TSUNAMI MODEL SYSTEM

Global-Japan coastal nested FVCOM tsunami model system

Run Global-FVCOM (Finite-Volume Community Ocean Model) to hindcast ocean conditions from January 1 to May 31, 2011.

□ Re-run **Global-FVCOM** with starting at 00:00 GMT, March 11, and add seafloor change at 14:46 JST.

Run nested high-resolution JC-FVCOM coastal inundation model with boundary conditions from Global-FVCOM and initial earthquakeinduced sea level setup from the earthquake model for period: March 11 to May 31, 2011.

Global-FVCOM and JC-FVCOM grids

Reproducing regional circulation pattern

Global-FVCOM

- Vertically 45 levels
- Driven by astronomical tidal forcing with 8 constituents and NCEP reanalysis data for meteorological conditions
- Products of GHRSST SST and AVISO SSH were assimilated into the model.

JC-FVCOM

□JC-FVCOM was driven by the same meteorological forcing and output of Global-FVCOM at the nested boundary

2011 Tohoku tsunami inundation along Sendai Coast

Tsunami inundation around FNPP1

Simulated currents around FNPP1

DISPERSION OF ¹³⁷Cs FROM FNPP1

Global-Japan nesting FVCOM tracer experiment

 Release tracers (¹³⁷Cs) from FNPP1 and track them in both the Global-FVCOM and JC-FVCOM 3-D fields, using concentration-based approaches.

Compare model results with land and ocean observations and use combined information to describe the key processes and assess model skill in their simulation.

Locations of the north and south discharging canals of FNPP1 and 8 sampling sites 30 km off the coast

Locations for all the collected observation data

Time series of model data comparisons at 1F-N and 1F-S

Time series of model data comparisons at 8 MEXT sampling sites 30 km off the coast

Detected after 2 weeks

Observed 137Cs before April 8 may be due to the atmospheric deposition.

The initial surface dispersion of ¹³⁷Cs from FNPP1 into the coast

Comparison of the initial surface dispersion of ¹³⁷Cs between JC-FVCOM and Global-FVCOM

Initial surface spread of ¹³⁷Cs off the shelf of Japan in JC-FVCOM

- Before June, the plume was mainly constrained within the coast and trasport southward
- Reaching its maximu extend about 180 km south of FNPP1 around June, some of which being carried away by Kuroshio
- In July and August, the plume was predominantly transported toward the north and gradually dispersed into the interior of Pacific Ocean.

Comparison of the surface spread of 137Cs on June 1

Time series of model-data comparison for surface ¹³⁷Cs

Comparison of the plan view of the surface ¹³⁷Cs

Though the model makes a good prediction for the basin stations, it tends to overestimate the magnitude and size of the plume for the coastal area.

Time series of model-data comparison for near-bottom ¹³⁷Cs

On the contrary, model tends to underestimate ¹³⁷Cs concentrations near bottom.

Spatial and temporal distribution of ¹³⁷Cs in sediments (Bq/kg)

TSUNAMI DAMAGE IN TOKYO BAY

Comparison of Computed and Observed Tsunami Profiles

Chiba Port

360

21:00

20:00

Past Tsunamis in Tokyo Bay

1703 Genroku-Kanto M8.2

Yokohama 3.5m, Miura 6-8m

1854 Ansei-Tokai in M8.3

 Urayasu 1m, Yokohama 1-2m, Uraga 3m

🗖 1923 Taisho-Kanto м7.9

 Funabshi 0.6m, Yokohama 1m, Uraga1.5m, Miura 5m

1960 Chilean M9.5

2011 Great East Japan M9.0

- Funabashi 2.8m, Harumi 1.5m, Yokohama 1.6m
- Designed storm surge: T.P. 3-4 m

Source: Sasaki et al. (2012), Hatori (2006)

Funabashi Fishery Port

undation height 2.8 m

Photo on March 20, 2011

Gate closed before the tsunami and thus no inundation in the adjacent residential area

Google earth

Survey results of seaweed damage in Tokyo Bay

Grid

Grid size

Whole Tokyo Bay	5m~100m
Focusing areas, including seaweeds	5m
Fault area	1km

The number of grids

	Node	Cell
Osawa	651279	12361513
Futtsu	1111241	2179780
Kisaradu	1330454	2611429

Correlation between damage and drag force in Futtsu

Drag force

Damage

Three types of expected tsunamis

Initial surface level

2011 Tohoku tsunami Far-field Keicho-type tsunami Near-field Northern Tokyo Bay tsunami Inside the bay

Three types of expected tsunamis

Conclusions

The global-Japan coastal nesting FVCOM tsunami model system is suitable for realistic tsunami inundation simulation.

- □Initial spread of 137Cs over the shelf of Japan is well reproduced using the system.
 - Resolving the detailed shape of breakwaters of FNPP1 is the key factor for better reproduction

Simple application of FVCOM is often acceptable for reproducing behaviors of tsunami propagation and inundation.

References

- Chen, C., Beardsley, R. C., Cowles, G., Qi, J., Lai, Z., et al.: An unstructured grid, finite-volume community ocean model-FVCOM user manual. School for Marine Science and Technology, University of Massachusetts Dartmuth, New Bedford, third Edition, Technical Report SMAST/UMASSD, 11-1101, 2011.
- □ Lai, Z., Chen, C., Beardsley, R. C., Lin, H., Ji, R., Sasaki, J. and Lin, J.: Initial spread of 137Cs over the shelf of Japan: a study using the high-resolution global-coastal nesting ocean model, Biogeosciences Discuss., 10, 1929-1955, doi:10.5194/bgd-10-1929-2013, 2013.
- Sasaki, J., Ito, K., Suzuki, T., Wiyono, R.U.A., Oda, Y., Takayama, Y., Yokota, K., Furuta, A. and Takagi, H. Behavior of the 2011
 Tohoku earthquake tsunami and resultant damage in Tokyo
 Bay. Coastal Engineering Journal, 54(1), 1250012, 26pp., 2012.