J-RAPID: Search in Disaster Rubble Piles by Collaboration of CRAWLER and Active Scope Camera

Satoshi Tadokoro,
Tohoku University, International Rescue System Institute
and

Anneliese Andrews and Mohammad Mahoor University of Denver

RAPID: CRAWLER Robot with Dual-Use Limbed Locomotion and Manipulation for Void Inspection

Anneliese Andrews and Mohammad Mahoor University of Denver

and

Satoshi Tadokoro International Rescue System Institute / Tohoku University

Proposed Work - CRAWLER & Active Scope Camera

- CRAWLER aka TerminatorBot
 - Limbed Crawler for Rubble Penetration
 - Two limbs for locomotion and manipulation
 - Drags body like a cold-blooded animal
- Physical Enhancements
 - More robust limb design
 - Water proof skin
 - Cellphone chip camera
- Active Scope Camera (ASC)
 - Mobile video scope with Actuated Cable Skin
 - Robust intrusion into narrow gap of rubble piles
 - Need of Explosion Proof
- Application to CRAWLER
 - Actuated Control Tether for deep penetration

Proposed Work - CRAWLER: Results

- More Robust Elbow Design
 - Eliminates Precision Gears (subject to dirt and damage)
 - Tougher Cable Drive
- Cellular Phone Chip Camera
 - < 1 cm in Size, Digital</p>
 - Easy to include multiple cameras
 - FPGA-based frame grabber
- First Visit to Sendai Region in Nov. 2011
 - Tohoku University for lab tests

Active Scope Camera for Search in Confined Space

Video Scope with Active Surface

Search in 3 cm gap

(Oct.3, 2006 @ Intl. Disaster (Intl. Rescue System Inst. **Relief Team Exercise)**

Kobe Lab., Collapsed House Simulation Facility)

(Tadokoro, Tohoku U)

Ciliary Vibration Drive Mechanism

Principle of Motion

[Actuator2006, IROS2006]

- Drive by reaction force produced by pressing inclined cilia using vibration
- Tips of cilia repetitively stick and slip

Active Scope Camera

Actuation by the whole surface Change the direction of motion

J-RAPID Objectives

- Enhance collaboration of DU and Tohoku U
- More performance of ASC
 - Long design for deep search scalability of fabrication
 - Higher mobility
- Anti-explosion of ASC
 - Application of fluid water-hammer actuator
- Active tether for mobile robot CRAWLER of DU
 - For more deep penetration
- Collaborative experiments

Proposal: Tube-type ASC

- Advantages
 - No projection out side of the tube
 - Enough space to mount

(1) Suitable tube design

- Criteria
 - Flexibility in order to insert into narrow space
 - High torsion rigidity for twisting operation
 - Low damping to propagate vibrations ⇒Experiments

We selected a corrugated tube

- -Flexibility by the corrugated structure
- -High torsion rigidity by being made from a hard material

(2) Smart head bending mechanism

Designed to satisfy three points

- 1. Expand the length of the motion range
- 2. Maintain the bending angle at 90 degrees
- 3. Increase the occurring impelling force

Adopted a wire pulling drive with McKibben actuators

- -Four McKibben actuators
- -Bend in 2 degrees of freedom
- -Controlled ON or OFF
- -Actuator length: 240 mm
- -Moving part length: 120 mm

(3) Auditory communication and gravity indicator

- Development of electric circuit put in the tube
 - Miniaturization

- •Small microphone, speaker
- •3-axis accelerometer
- Microcontroller

Operation with gravity indicator

- ➤ Selects a suitable bending direction
- ➤ Understands map information
 - Image indicates the color corresponding to buttons
 - Image rotates for adjusting the gravity direction

ASC system for rescue operations

Overall the length: 8.1 m

Outside diameter: 37 mm

Vibration motors: 27 motors total

(300 mm Intervals)

Functions

- •CCD camera
- The head bending mechanism
- •A auditory communication system (A microphone and 9 speakers)
- A gravity indicator
- Gas-drawing pipe

ASC for Vertical Insertion

Drum

ASC

Turning Head

- (1) Active Scope Camera
- Ciliary Vibration Drive
- Motion on rubbles
- Reduction of friction

- (4) Rotational Drum
 - Control insertion by rotation

- (2) Turning Head
- Obstacle avoidance
- Wider field of view
- (3) Camera + Light

Controller

Bottom

- Remote control of system

- Wide field of view

- LED

New ASC System

Horizontal Motion

Experimental Result SHMZ

Conclusions

- Purpose: Collaborative improvement research of rescue robots, CRAWLER and Active Scope Camera (ASC)
- Major Achievements:
 - Finding effectiveness of ASC technology for CRAWLER's tether and WH actuator for ASC
 - Physical enhancement of CRAWLER (robust limb design, water proof skin, cellular phone chip camera)
 - New-type high-power water hammer actuators with compact design for potential use in ASC
 - New design of tube-type ASC which can use the water hammer actuator
 - High performance of tube-type ASC in narrow passage (motion through 25 mm-diameter pipe-elbow systems)
 - New-type flexible pneumatic actuator designs with explosion proof
 - High-speed motion of the flexible pneumatic actuator up to 7 m/s
 - Application of the flexible pneumatic actuator for new-type ASC for uneven terrain
 - Improvement of mobility of ASC on rubble piles
 - Voice communication capability with victims under rubbles
 - Image processing functions for measuring and showing the gravity direction
 - Practical verification of new ASC at firefighters' training center

