日本―欧州 国際共同研究「超空間制御による機能材料」 2019 年度 年次報告書			
研究課題名(和文)	ナノ粒子からなる超分子構造体構築と多孔性ナノ材料への 応用		
研究課題名(英文)	Nanoparticle Supramolecular Frameworks as Advanced Nanoporous Materials		
日本側研究代表者氏名	相田 卓三		
所属・役職	東京大学 大学院工学系研究科・教授		
研究期間	2019年 4月 1日 ~ 2022年 3月 31日		

1. 日本側の研究実施体制

ワークパッケージ No. 1	NSF 構築を指向したビ	NSF 構築を指向したビルディングブロックの開発	
氏名	所属機関・部局・役職	役割	
相田 卓三	東京大学大学院・工学系 科・教授	研究 研究の総括	
PADINHARE KAYAKALI HASHIM	東京大学大学院・工学系 科・特任研究員	研究 研究のシミュレーション、実験	
JO HYUNA	東京大学 工学系研究科 学	主 実験	
大竹 沙耶	東京大学 工学系研究科 学	主 実験	
木幡 愛	東京大学 工学系研究科 学	主 実験	
MORISHITA KIYOSHI	東京大学 工学系研究科 学	主 実験	
沈皓	東京大学 工学系研究科 学	主 実験	

2. 日本側研究チームの研究目標及び計画概要

本年度は、金ナノ粒子へ修飾可能な超分子モノマーの設計・合成を目標とする。また、このモノマーを用い、超分子連鎖重合と金属ナノ粒子との自己集合挙動を検討する。モノマーのチオール化誘導体をナノ粒子上に修飾することで、プラズモン性超分子コネクター(PSCs)として機能することが期待できる。反応性末端を有するオリゴエチレンリンカーを超分子モノマーに導入することで、水溶性や生体適合性の向上といった機能化を狙う。

3. 日本側研究チームの実施概要

This year we optimized design strategies and synthesized DNA-appended AuNP and chaperonin GroEL monomer building blocks. By using these building blocks, we achieved the preparation of desired comonomers and optimized purification methods. In a proof-of-concept study, we observed that the comonomers can be further assembled into higher-order nanostructures.

Synthesis of monomer building blocks.

DNA-appended AuNP (AuNP_{DNA}); Following a previously established method, we prepared a dense layer of 15-base-long DNA on the surface of AuNP. To investigate the possible effects of AuNP size on the construction of supramolecular frameworks, we prepared AuNP_{DNA} with average diameters 5, 10, 20 and 30 nm. **DNA-appended GroEL (GroEL_{DNA})**; Chaperonin GroEL is a cylindrical protein with high structural stability against genetic mutation, chemical functionalization and temperature. We conjugated 15-base-long DNA onto the apical domains of a cysteine-mutated GroEL via thiol-maleimide reaction. Because of the multiple cysteine moieties on both apical domains of GroEL, a maximum of 28 individual DNA strands can be functionalized on each GroEL.

Construction of supramolecular framework

As the monomer building blocks, AuNP_{DNA} and GroEL_{DNA}, feature solution-exposed complimentary DNA base pairs, conventional DNA hybridization methods such as a slow thermal annealing of a mixture of monomer building blocks resulted in a GroEL layer on the surface of the AuNPs (^{GroEL}AuNP comonomer). We investigated two plausible approaches to construct supramolecular frameworks; 1) one-pot synthesis using a mixture of AuNP_{DNA}, GroEL_{DNA} and a linker DNA; 2) Stepwise approach using purified ^{GroEL}AuNP comonomers and a linker DNA. In both approaches, we observed large aggregates in the reaction mixture, as observed by dynamic light scattering studies, and micrometer-sized assemblies in transmission electron microscopy images.