

Significance of rainwater and reclaimed water as urban water resource for sustainable use

Hiroaki FURUMAI

Professor, Research Center for Water Environment Technology University of Tokyo

Outline

Introduction

- Climate change and fluctuation of annual rainfall in Japan
- Water resource and water supply system in Tokyo
- Concern about the sustainability of urban water use
- Facility installation for rainwater and reclaimed water use

Urban water resources for sustainable use

- Rainwater harvesting and use

Representative cases and new movement of rainwater use

- Reclaimed water use and treatment technology Current state of reclaimed water use and new projects

Fluctuation of annual rainfall and occurrence of drought in Japan

A: Lake Biwa drought(1939), B: Tokyo Olympic drought(1964), C: Nagasaki drought(1967), D: Takamatsu drought(1973), E: Fukuoka drought(1978), F: Nationwide winter drought(1984), G: West Japan winter drought(1986), H: Metropolitan area drought(1987), I: Japan Islands drought(1994), J: Matsuyama drought(2002), K: Chubu and Shikoku area drought(2005)

Concern about the sustainability of urban water use

- Increased water demand had led to the dam construction at the upstream and the extensive water withdrawal from rivers in Japan.
- Stable water supply and efficient water use have become concerning in growing mega cities in Asia.
- Efficient water use have been implemented to reduce water intake from natural water system and to secure the sound water cycle.
- Achievement of the sustainability is required ensuring a long-term water supply with adequate quality and minimizing adverse economic, social and ecological impacts.

Facility installation for Rainwater and Reclaimed water use

The number of facilities has been increased since 1980s, in which government financing system was introduced.

Rainwater harvesting facilities: ap. 1600 in 2007

Milestones of rainwater harvesting (RWH) facility

Sumo-wrestling Arena (Kokugi-kan) 1984

Tokyo Sport Stadium (Tokyo Dome) 1988

Tank Capacity of 1000m3 (effective vol. 750m3)

<u>Tank Capacity of 3000m³</u> 1000m³ for flood control 1000m³ for miscellaneous water use 1000m³ for emergency water use such as fire events

Representative examples of large-scale rainwater harvesting (RWH) in stadiums and domes

Saitama Super Arena

Tokyo Dome

Yokohama Stadium

Osaka Dome

Fukuoka Dome

Name of facilities	Constructe d year	Storage capacity (m ³)	Roof catchment area (m ²)
New Hiroshima Stadium	2009	1,000	23,000
Saitama Stadium 2002	2001	3,250	29,000
Saitama Super Arena	2000	1,200	28,000
Sendai Dome	2000	1,300	19,800
Yokohama Stadiuam	1998	2,000	30,000
Tajima Dome	1998	3,000	19,000
Kitakyushu Media Dome	1998	2,000	22,000
Nagoya Dome	1997	2,800	35,000
Osaka Dome	1997	1,700	31,400
Ohdate Extensive forest Dome	1997	4,320	21,000
Fukuoka Dome	1993	2,900	34,000
Izumo Dome	1992	1,210	36,000
Akita Sky Dome	1990	1,200	12,000
Green Dome Maebashi	1990	1,120	20,000
Tokyo Dome	1988	1,000	15,700

Hiroshima

Recent RWH project at a stadium in Hiroshima

Installed storm water reservoir under the stadium mitigates urban flooding and utilizes rainwater for watering, toilet and water amenity. Promotion display

9

New watering technology in a new Sony building using ceramic pipe as louver

Cooling device

Reduction effect on Surface temperature simulated by Nikken Sekkei Ltd

Completed in 2011

Reclaimed water use in Japan

The annual treated wastewater is 14.4 billion m³ in Japan. 1.4 % of the treated wastewater is reused.

Reclaimed water use in skyscrapers in Shinjuku, Tokyo

Large-scale recycling

Double pipe-supply system and Closed loop use

Ochiai Water Reclamation Center

Rapid Sand Filtration Process

Reclaimed water use for restoration of water environment and aquatic amenity

Needs of stream flow and urban water amenity

Water reclamation project at Tokyo Shibaura Water Reclamation Center

Biological Filtration, Ozonation and Ceramic Membrane Technology (example in Tokyo)

A highly durable ceramic filter ensures steady production of reclaimed water

Water reclamation project at Sampo WWTP in Skai City Media added ASP + Fiber filtration=>MBR

Reclaimed water use for watering in the national football training center, and toilet flushing water for buildings and industrial water for factories and incineration plant.

Applications of reclaimed water in a mediumscale community (Tadotsu Town) **Recreational Use**

Agricultural Use

WQ standards for reclaimed water use

Established in 2005

Use and Water Quality	Toilet flushing	Sprinkling	Landscape use	Recreational use	
E.coli	N.D./100mL	N.D./100mL	T. coliform 10CFU/mL	N.D./100mL	
Turbidity	≦ 2(target value)			≦2	
рН	5.8~8.6				
Appearance	Not unpleasant				
Color	—	—	≦40	≦10	
Odor	Not unpleasant				
Treatment	Sand filtration			Chem. precipitation and sand filtration	
Residual chlorine (target)	free:0.1mg/L or combined: 0.4mg/L	free:0.1mg/L or combined: 0.4mg/L	_	free:0.1mg/L or combined: 0.4mg/L	

Advance of Japan Ultimate Membrane Bioreactor Technology Project, A-JUMP

Advanced treatment is required for appropriate reclaimed water use, achieving the water quality standards. Treatment options

> Sand filtration + Ozonation Sand filtration + Ultraviolet disinfection Biofilm filtration + Ozonation Chemical precipitation + Sand filtration + UV

MBR (Membrane bioreactor) + Ozonation/UV

The government-initiated project to demonstrate the validity of MBR to an actual system with model municipalities.(FY2009~2010)

model cases

①Introducing MBR to an existing treatment plant coordinating with reconstruction

②Satellite treatment * using MBR

XDirect treatment of wastewater from sewer pipe before reaching a sewage treatment plant for the purpose of wastewater reclamation

Membrane Treatment Technology (A-JUMP)

(1) Renovated MBR demonstration project

- Immersed MBR combined with biological phosphorous removal
- Demonstration of the applicability of MBR based on remodeling and utilization of existing facilities
- => Simple installation of membrane units to existing facilities without expansion of facilities
- Review efficiency based on use of air-lift pumps etc. =>Significant reduction of power consumption

Moriyama WWTP in Aichi prefecture - Treatment capacity: 5,000 m³/day

- Treatment method: Anaerobic-Anoxic-Oxic MBR

Membrane unit inside reactor(downward view)

MF membrane (flat membrane) unit

Membrane Treatment Technology (A-JUMP)

(2) Satellite MBR demonstration project

- MBR using ceramic MF membrane
- Review operating efficiency such as of the establishment of high permeation flux that makes use of the characteristics of ceramic
 - => Favorable treatment water quality that is adapted to reuse
 - => High permeation flux was achieved
- Demonstration of applicability of MBR in satellite sewerage treatment => Stable treatment at pump station

Miai pumping station in Heklinan City - *Treatment capacity: 360 m³/day* - *Treatment method: Circulating nitrificationdenitrification MBR*

Breakthrough by Dynamic Approach in Sewage High technology for GHG reduction project, B-DASH Verification project concerning to energy management system using ultrahigh efficiency solid-liquid separation technique (Nakahama WWTP, Osaka) Osaka [Water treatment line] < Energy conservation> [Ultrahigh efficiency Sewage solid-liquid separation] water 444 44 444 44 444 44 verification boundarv Electricity Supply and control [Sludge treatment line] <Energy generation> [High-efficiency **ISmart electrical** Garbage, high-temperature generation system] digestion1 Hybrid-type electric Plant operation generator optimizing control

Breakthrough by Dynamic Approach in Sewage High technology for GHG reduction project, B-DASH

Verification project for recyclable energy production and innovative technologies (Higashinada WWTP, Kobe)

Summary

- Climate change would accelerate localization of water resources and consequently it would become more difficult to secure stable water resource.
- To assure the safe and stable urban water supply under such circumstances, "rainwater" and "reclaimed water" have been recognized as self-own (community-own) water resources in urban area. They can be used for miscellaneous purposes and restoration of waterways and water environment.
- From the viewpoint of human health risk, water quality and its safety should be managed properly to promote the reclaimed water use by new treatment technologies.
- We also have to develop a new concept of well-balanced urban water use system under climate change conditions, considering energy saving and environmentally friendliness of the technologies.

Thank for your attention

One of the most recent RWHM projects in Tokyo

The Tokyo Sky Tree is a broadcasting tower in Sumida ward, Tokyo. It was just built on Feb. 29, 2012.

This building has a rainwater harvesting system for miscellaneous purposes and for community use such as gardening.

Capacity: 2635m³ (800m³ is for water use)

http://blog.skytree-obayashi.com/?day=20120229