
State observers and recursive filters in classical feedback control theory

State-feedback control example: second-order system
Consider the driven second-order system

q̈  −20q̇ − 0
2q  u, x1 ≡ q, x2 ≡ q̇,

d
dt

x1

x2


0 1

−0
2 −20

x1

x2


0

u
.

Here u could represent an external applied force (in a mechanical mass-spring-damper system) or voltage (in the
LCR circuit realization). Anticipating conventional control-theoretic notation that we will introduce below, let us also
write this as

d
dt

x  Ax  Bu, A 
0 1

−0
2 −20

, B 
0

1
.

Recall that the damping ratio  ≥ 0 sets important properties of the step (transient) response:

-0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

t/2

u(
t)

 r
ed

,
=

1/
3

gr
ee

n,
 

=
1

bl
ue

,
=

4/
3

bl
ac

k

We can write a general solution for the initial-value problem for such a system via the matrix exponential,

x1t

x2t
 expAt

x10

x20
,

where methods for computing expAt can be found in elementary linear algebra textbooks (the case   1 is
slightly tricky):

  1 : expAt → e−t

2 − 1

 sinht  2 − 1 cosht 1
0

sinht

−0 sinht − sinht  2 − 1 cosht
,

  1 : expAt →
e−0t  t0e−0t te−0t

−0e−0t  0e−0t − t0e−0t e−0t − t0e−0t
,

  1 : expAt → e−t

1 − 2

 sint  1 − 2 cost 1
0

sint

−0 sint − sint  1 − 2 cost
.

Let us briefly consider the linear state-feedback control scenario

u  −Kx,
where (since we have taken u to be scalar)

K  k1 k2 .

1

With this feedback law, we have
d
dt

x  Ax  Bu  A − BKx,

where

A − BK →
0 1

−0
2 −20

−
0

1
k1 k2


0 1

−0
2 −20

−
0 0

k1 k2


0 1

−0
2 − k1 −20 − k2

.

Clearly we can view this as a modified second-order system. If we define

0
′  0

2  k1 ,

then apparently we have

′0
′  0 − k2,

′ 
0 − k2

0
2  k1

,

and it follows that we can actually set 0
′ to any value we like through choice of the feedback parameter k1, and

once this is set (assuming 0
′ ≠ 0) we can adjust ′ as desired through choice of k2. Hence if we don’t like the

transient behavior of our original open-loop system (without feedback), we can in principle modify it however we
like by use of state feedback as described above. We program the desired behavior by setting the feedback gain
K.

Note that if accurate, instantaneous measurements of the components of x are available as electronic signals,
it is straightforward to produce the feedback signal u with an op-amp circuit.

The fact that we have full power to reprogram the oscillation frequency and damping ratio in this state feedback
scenario can be made obvious if we look at the dynamics with feedback, transformed back to a single
second-order ODE:

d
dt

q

q̇


0 1

−0
2 − k1 −20 − k2

q

q̇
,

0  q̈  20  k2q̇  0
2  k1q.

Hence k1 is associated with a modification of the harmonic restoring force while k2 directly and independently
modifies the velocity-damping.

Just for fun, let us calculate the eigenvalues of the feedback-modified A matrix:

0  detA − BK − I →
− 1

−0
2 − k1 −20 − k2 − 

,

0  20  k2    0
2  k1

 2  20  k2  0
2  k1.

Considering the solutions given by the quadratic equation,

  1
2
−20 − k2  20  k22 − 40

2 − 4k1 ,

we see that we can achieve any desired pair of eigenvalues ,− by setting

  −  −20 − k2,

k2  −20 −  − −,
and

 − −  20  k22 − 40
2 − 4k1 ,

k1  1
4
20  k22 − 0

2 − 1
4
 − −2

 1
4
  −2 − 0

2 − 1
4
 − −2

 − − 0
2.

2

Hence we find that we can arbitrarily program the eigenvalues of the closed-loop dynamics matrix, a design
method called ‘pole placement.’

Before turning to some generalities, we note that the second-order system with the control structure we are
considering can be pushed into arbitrary states in a similar manner as the double-integrator. Suppose we are

starting at the origin at t  0 and want to reach q q̇
′
at a target time T. If we use the input u and allow our

input signals to be unbounded, we can in principle take the following approach. First, give the system a momentum
impulse at time t  0 that will cause the system to pass through position q at time T. To convince ourselves that
this is really possible, we could look at the matrix exponential solution and show that we can always solve for q̇0

such that

q


 expAT

0

q̇0

.

In the overdamped case, for example, this leads to

q̇0 
0 2 − 1

e−0T sinh 0T 2 − 1
q.

Then, at time T, apply a second momentum impulse that “corrects” the final velocity q̇ to its desired value. Note
that even with this rather singular strategy, in which we rely on our ability to apply controls so strong that they
overwhelm most of the system’s natural dynamics (harmonic restoring force and velocity-damping), we still rely on
the inherent integrator structure

d
dt

q  q̇

that allows us to use an input to q̇ only to affect the position q.

Reachability rank condition
We say that a linear system

ẋ  Ax  Bu

is reachable if for any initial state x0  x0, desired final state xf and ‘target time’ T it is possible to find a control
input ut, t ∈ 0,T that steers the system to reach xT  xf. There is a theorem (see A&M pp. 167-170) that says
that a system is reachable if its reachability matrix

Wr ≡ B AB A2B  An−1B

has full rank (here x ∈ Rn). If a system is reachable, it is furthermore possible to solve the pole placement problem,
in which we want to design a state feedback law

u  −Kx

such that we can pick any eigenvalues we want for the controlled dynamics

ẋ  Ax  Bu

 A − BKx.

Here A and B are given, and we must find a K to achieve the desired eigenvalues for A − BK. There is a very
convenient Matlab Control Toolbox function, place, that can be used to accomplish this numerically.

In the case of our second-order system with

A 
0 1

−0
2 −20

, B 
0

1
,

we have

AB 
0 1

−0
2 −20

0

1


1

−20

, Wr 
0 1

1 −20

,

and clearly Wr has full rank as detWr  −1.
Before moving on, let’s look at a simple example (from Åström and Murray, Ex. 5.3) of a system that is not

reachable:

d
dt

x1

x2

 −
1 0

0 1

x1

x2


1

1
u.

Here we can easily compute

3

Wr 
1

1

−1
−1

,

which clearly has determinant zero. This can be understood by noting the complete ‘symmetry’ of the way that u
modifies the evolution of x1 and x2. For example, if x10  x20 there is no way to use u to achieve x1T ≠ x2T
at any later time.

State feedback versus output feedback
Note that in our discussion of stabilization and pole-placement so far, we have assumed that it makes sense to
design a control law of the form

u  −Kx.

This is called a ‘state feedback’ law since in order to determine the control input ut at time t, we generally need to
have full knowledge of the state xt. In practice this is often not possible, and thus we usually specify the available
output signals when defining a control design problem:

ẋ  Ax  Bu,

y  Cx.

Here the output signal yt, which can in principle be a vector of any dimension, represents the information about
the evolving system state that is made available to the controller via sensors. An ‘output feedback’ law must take
the form

ut  f y ≤ t,

where, in general, we can allow ut to depend on the entire history of y with  ≤ t (more on this below and later
in the course). Output feedback is a natural setting for practical applications. For example, if we are talking about
cruise control for an automobile, x may represent a complex set of variables having to do with the internal state of
the engine, wheels and chassis while y is only a readout from the speedometer. Hopefully it will seem natural that it
is usually prohibitively difficult to install a sensor to monitor every coordinate of the system’s state space, and also
that it will often be unnecessary to do so (cruise control electronics can function quite well with just the car’s
speed).

One simple example of a system in which full state knowledge is clearly not necessary is (asymptotic)
stabilization of a simple harmonic oscillator. If the natural dynamics of the plant is

mẍ  −kx,

and our actuation mechanism is to apply forces directly on the mass, then the control system looks like

d
dt

x1

x2


0 1
−k
m 0

x1

x2


0

1
u,

(where x1 is now the position and x2 the velocity). We can clearly make the equilibrium point at the origin
asymptotically stable via the linear state-feedback control law

u  −bx2  0 −b
x1

x2

,

which makes the overall equation of motion

ẍ1  − k
m x1 − bẋ1,

which we recognize as a damped harmonic oscillator. Thus it is clear that the controller only needs to know the
velocity of the oscillator in order to implement a successful feedback strategy. So even if we go to a SISO
(single-input single-output) formulation of this problem,

ẋ  Ax  Bu,

y  Cx,

we are obviously fine for any C of the form  ≠ 0

C  0  ,

since x2  y/ and we can implement an output-feedback law of the form

u  −bx2  − b
 y.

Clearly, if C is a square matrix and y has the same dimension as x, output feedback is essentially equivalent to
state feedback if C is invertible. As a generalization of what we did for the simple harmonic oscillator above, we
could just design a state feedback controller K, set

4

x̂  C−1y,

and apply feedback

u  −Kx̂  −KC−1y.

However this is a special case and not the sort of convenience we want to count on!

State estimation
At this point it might seem like we might need completely new theorems about reachability and pole-placement for
output-feedback laws, when ut is only allowed to depend on y  t. However, it turns out that we can build
naturally on our previous results by appealing to a separation method. The basic idea is that we will try to construct
a procedure for processing the data y  t to obtain an estimate x̂t of the true system state xt, and then apply
a feedback law u  −Kx̂ based on this estimate. This can be possible even when C is not invertible (not even
square). The controller thus assumes the structure of a dynamical system itself, with yt as its input, ut as its
output and x̂t as its internal state. There are various ways of designing ‘state estimators’ to extract x̂t from
y  t, of which we will discuss two, and there is also a convenient procedure for determining whether or not y
contains enough information to make full state reconstruction possible in principle. The latter test looks a lot like the
test for reachability, for not accidental reasons.

Let’s start by thinking about the simple harmonic oscillator again. We noted that in order to asymptotically
stabilize the equilibrium point at the origin, it would be most convenient to have an output signal that told us directly
about its velocity x2. However, you may have already realized that in a scenario with  ≠ 0

C   0 ,

y  x1,

it should be simple to obtain a good estimate of x2 via

x̂2  d
dt
−1y.

This is certainly a valid procedure for estimating x2, although in practice one should be wary of taking derivatives of
measured data since that tends to accentuate high-frequency noise.

In a similar spirit, we note that for any dynamical system

ẋ  Ax  Bu,

y  Cx,

if we hold u at zero we can make use of the general relations

ẏ  Cẋ  CAx,

ÿ  Cẍ  C d
dt

ẋ  C d
dt

Ax  CAẋ  CA2x,


d n

dtn y  CAnx.

If we look at how this applies to our modified simple harmonic oscillator example with

C   0 , A 
0 1

− k
m 0

,

y  C
x1

x2

 x1,

we have

CA   0
0 1

− k
m 0

 0  ,

ẏ  CA
x1

x2

 x2,

and we start to get a sense for how the natural dynamics A can move information about state space variables into
the ‘support’ of C. Hopefully it should thus seem reasonable that in order for a system to be observable, we require
that the observability matrix

5

Wo 

C

CA

CA2



CAn−1

have full rank. Informally, if a system is observable then we are guaranteed that we can design a procedure (such
as the derivatives scheme above) to extract a faithful estimate x̂ from y. However, it will generally be necessary to
monitor y for some time (and with good accuracy) before the estimation error

x̃t ≡ xt − x̂t
can be made small. In the derivatives scheme, for instance, we can’t estimate high derivatives of yt until we see
enough of it to get an accurate determination of its slope, curvature, etc.

State observer with innovations
A more common (and more robust) method for estimating x from y is to construct a state observer that applies
corrections to an initial guess x̂ until Cx̂ becomes an accurate predictor of y.

Suppose that at some arbitrary point in time t we have an estimate x̂t. How should we update this estimate to
generate estimates of the state xt ′ with t′  t ? Most simply, we could integrate

d
dt

x̂  Ax̂  Bu,

assuming we know A and B for the plant. It is generally assumed that we know u since this signal is under our
control! Then we notice that the estimation error x̃ evolves as

d
dt

x̃  d
dt
x − x̂

 Ax  Bu − Ax̂  Bu

 Ax − x̂

 Ax̃.

Hence, this strategy has the nice feature that if A is stable,

lim
t→

x̃  0,

meaning that our estimate will eventually converge to the true system state. Note that this works even if B and u
are non-zero.

What if we are not so lucky as to have sufficiently stable natural dynamics A? As mentioned above, a good
strategy is to try to apply corrections to x̂ at every time step, in proportion to the so-called innovation,

w ≡ y − Cx̂.

Here y − Cx̂ is the error we make in predicting yt on the basis of x̂t. Clearly when x̃ is small, so is w. A
‘Luenberger state observer’ can thus be constructed as

d
dt

x̂  Ax̂  Bu  Ly − Cx̂,

where L is a ‘gain’ matrix that is left to our design. This observer equation results in
d
dt

x̃  ẋ − d
dt

x̂

 Ax − Bu − Ax̂  Bu  Ly − Cx̂

 Ax − x̂ − Ly − Cx̂

 Ax − x̂ − LCx − x̂

 A − LC x̃.

Hence we see that our design task should be to choose L, given A and C, such that A − LC has nice stable
eigenvalues.

This should remind you immediately of the pole-placement problem in state feedback, in which we wanted to
choose K, given A and B, such that A − BK had desired eigenvalues. Indeed, one can map between the two
problems by noting that the transpose of a matrix MT has the same eigenvalues as M. Thus we can view our
observer design problem as being the choice of LT such that

A − LCT  AT − CTLT

has nice stable eigenvalues, and this now has precisely the same structure as before. Indeed, there is a complete

6

‘duality’ between state feedback and observer design, with correspondences

A ↔ AT, B ↔ CT, K ↔ LT, Wr ↔ Wo
T.

Hence it should be clear, for example, how the Matlab function place that we mentioned above can be used also
for observer design. And as long as the observability matrix has full rank, we are guarenteed to be able to find an L
such that A − LC has arbitrary desired eigenvalues.

Pole-placement with output feedback
As discussed in section 7.3 of Åström and Murray
(http://www.cds.caltech.edu/~murray/amwiki/index.php/Main_Page), the following theorem holds (here we simplify
to the r  0 case):

For a system

ẋ  Ax  Bu,

y  Cx,

the controller described by

u  −Kx̂,
d
dt

x̂  Ax̂  Bu  Ly − Cx̂

gives a closed-loop system with the characteristic polynomial

detsI − A  BKdetsI − A  LC.

This polynomial can be assigned arbitrary roots if the system is observable and reachable.
The overall setup is summarized in the following cartoon:

Next we need to examine how this sort of strategy performs in the presence of noise.

State observers in the presence of noise: some examples
We begin by illustrating some of the concepts we introduced above, on state observers for linear systems.

Consider, as our plant, a simple harmonic oscillator:

d
dt

x1

x2


0 1

−0
2 0

x1

x2


0

1
u,

d
dt

x  Ax  Bu,

where as usual x1 ↔ q, x2 ↔ q̇. The dynamics as given fix A and B, and let us consider a general output signal
related linearly to the state:

7

y  Cx  C1 C2
x1

x2

.

We have seen that the observability criterion is that we have full rank for the matrix

Wo 
C

CA
,

and since

CA  C1 C2
0 1

−0
2 0

 −0
2C2 C1 ,

we have

detW0  det
C1 C2

−0
2C2 C1

 C1
2  0

2C2
2.

Hence as long as 0 ≠ 0, the system is observable as long as C is nonzero.
For general C, our linear (Luenberger) observer structure is

d
dt

x̂  Ax̂  Bu  Ly − Cx̂,

which induces the following dynamics for the estimation error:
d
dt

x̃  A − LCx̃.

We thus want to design L to make the eigenvalues of A − LC have negative real part. We noted that we could do
this by using Matlab’s pole-placement routine, place, with

A ↔ AT, B ↔ CT, K ↔ LT.

We try the following examples, setting 0  1 and designing for eigenvalues −1,−2:

C  1 0 : L 
3

1
, Ly − Cx̂ 

3

1
x1 − x̂1,

C  0 1 : L 
−1
3

, Ly − Cx̂ 
−1
3

x2 − x̂2,

C  1 1 : L 
1

2
, Ly − Cx̂ 

1

2
x1 − x̂1  x2 − x̂2.

To examine how the observers work, we perform some numerical integrations. Setting u  0 and

x0 
1

1
,

we have for the plant evolution

xt  expAtx0 
cos t sin t

− sin t cos t

1

1


cos t  sin t

cos t − sin t
.

For the observer we assume no knowledge of the initial state, and thus set

x̂0 
0

0
.

The dynamics of the state estimate is

d
dt

x̂ 
0 1

−0
2 0

x̂1

x̂2

 Ly − LCx̂


0 1

−0
2 0

− LC
x̂1

x̂2

 Ly.

For the purposes of this example we could actually integrate this analytically, treating y as a driving term. However

8

in the spirit of recursive state estimation we instead integrate numerically (Matlab example).
Ttot10; Nsteps5000;
tlinspace(0,Ttot,Nsteps); dtt(2)-t(1);
x[cos(t)sin(t);cos(t)-sin(t)];
xhatzeros(2,Nsteps);
for ii2:Nsteps,

yC*x(:,ii);
xhat(:,ii)  xhat(:,ii-1)  dt*(A*xhat(:,ii-1)L*(y-C*xhat(:,ii-1)));

end;
In the following we plot the results, with x1 as solid black, x2 as solid red, x̂1 as dashed black, and x̂2 as dashed red.
The results for C  1 0 :

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

The results for C  0 1 :

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

The results for C  1 1 , with y in blue:

9

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Could we have guessed the forms of these observers?

For C  1 0 , note that we can construct an “intuitive” observer by setting x̂1  y, x̂2  ẏ, which should

work well as long as there is negligible measurement noise.

For C  0 1 we obviously have x̂2  y, and we can guess

x̂1  
0

t
ds ys,

but it is not entirely clear how we should choose x̂10. Note that the Luenberger observer does something more
complicated, as it integrates

d
dt

x̂ 
0 1

−1 0
− LC

x̂1

x̂2

 Ly

≡ A′x̂  Ly, A′ 
0 2

−1 −3


1 1

−1 − 1
2

−2 0

0 −1
−1 −2
2 2

,

expA′t 
1 1

−1 − 1
2

e−2t 0

0 e−t
−1 −2
2 2


2e−t − e−2t 2e−t − 2e−2t

e−2t − e−t 2e−2t − e−t
,

x̂t  expA′t x̂0  
0

t
ds exp−A′sLy


2e−t − e−2t 2e−t − 2e−2t

e−2t − e−t 2e−2t − e−t
x̂0  

0

t
ds

4e−s − 5e−2s

5e−2s − 2e−s
y ,

with x̂0 arbitrary.

There doesn’t seem to be an obvious intuitive strategy for C  1 1 .

Before turning to consider noisy observation scenarios, we take a brief look at the behavior of the Luenberger
observer for C  1 0 and varying gain. Recall that when we designed for eigenvalues −1,−2 we obtained

L →
3

1
.

What happens if we try simply multiplying this gain by 10?

10

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

If instead we design for eigenvalues −10,−20 we get

L →
30

199
,

and the performance is transiently bad, but does indeed settle quite quickly:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1

0

1

2

3

4

5

6

Stochastic models (notation)
We will normally write linear stochastic control models in the form

dxt  Axt dt  But dt  FdVt,

dyt  Cxt dt  GdWt.

Here the subscripts serve to remind us of things that depend on time, and the vector nature of x and/or y is implicit.
The stochastic increments dVt and dWt satisfy

11

〈dVt   〈dWt   0,

dVt
2  dWt

2  dt,

dVtdt  dWtdt  0,

and for s ≠ t we have 〈dVsdVt   〈dWsdWt   0. We can informally think of dVt and dWt as gaussian white noises
with zero mean and variance dt. It is conventional to refer to dVt as process noise and to dWt as measurement
noise or observation noise.

It is important to be aware of the fact that stochastic differential equations (SDE’s) of the type we have written
are, rigorously speaking, a sort of shorthand notation for stochastic integrals. There is an important distinction
between Itô and Stratonovich stochastic integrals, and therefore between Itô and Stratonovich SDE’s. In control
theory one normally works with Itô SDE’s, and in any case there is a straightforward recipe for converting a model
between Itô and Stratonovich forms.

The Stratonovich form is sometimes preferred (especially in physics) because Stratonovich SDE’s can be
manipulated using standard calculus. For Itô SDE’s, however, one must in general be careful to observe the Itô
Rule, which says that if xt obeys the Itô SDE

dxt  Axtdt  BxtdWt,

then a variable yt related to xt via

yt  Uxt
evolves according to

dyt  Axt ∂U∂x  1
2

B2xt ∂
2U
∂x2 dt  Bxt ∂U∂x dWt,

where the second-derivative term in the square brackets is known as the Itô correction. Note that if U is a linear
function the Itô correction vanishes and we recover the prediction of normal calculus.

An important advantage of working with Itô SDE’s is that if xt obeys the Itô SDE

dxt  Axtdt  BxtdWt,

then xt is uncorrelated with dWt. This considerably simplifies the computation of statistical moments.
For example consider the linear SDE model

dxt  Axt dt  FdVt,

with xt a scalar and A  0 (the Ornstein-Uhlenbeck model). We then have

d〈xt   A〈xt dt  F〈dVt 

 A〈xt dt,

〈xt   〈x0 expAt,

and if yt  xt
2, so that 〈yt  is the variance of xt,

dyt  2Axt
2  F 2 dt  2Fxt dVt,

d〈yt   2A〈yt   F 2 dt  2F〈xt dVt 

 2A〈yt   F 2 dt  2F〈xt 〈dVt 

 2A〈yt   F 2 dt,

〈yt   exp2At 〈y0   
0

t
dsexp−2AsF 2

 exp2At 〈y0   F 2 
0

t
dsexp−2As .

If we assume that xt evolves from a known value x0 at t  0, then 〈x0   x0 and 〈y0   x0
2, and the mean-square

uncertainty in xt is

〈xt
2  − 〈xt 2  〈yt  − 〈xt 2

 exp2AtF 2 
0

t
dsexp−2As

 exp2AtF 2 − 1
2A

exp−2At − 1

 − F2

2A
1 − exp2At.

The mean-square uncertainty thus has a steady-state value as t → ,

〈xt
2  − 〈xt 2 → F2

2|A|
.

In numerical simulations, we can simply update xt according to

12

xtdt  xt  Axt dt  But dt  FdVt,

dyt  Cxt dt  GdWt,

where dVt and dWt are independent normal random variables with variance dt. In Matlab, if dt is a variable with
some assigned numerical value,

dVtsqrt(dt)*randn(1); dWtsqrt(dt)*randn(1);
This simple procedure is known as the Itô-Euler stochastic integration routine, which is easy to implement but has
the disadvantage that it only converges to order dt1/2. Higher-order integrators can be found in various computer
packages (including SDE toolboxes for Matlab), and are described in textbooks.

State observers - performance with noise

First we consider the case of process noise only. Returning to our simple harmonic oscillator with C  1 0 ,

we can add a noisy force acting on the oscillator by setting

F 
0

0.3
.

Simulating both the plant and the response of the Luenberger observer, which we now write as

x̂tdt  x̂t  A − LC x̂t dt  But dt  Ldyt,

we obtain:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Here we used the L computed for target eigenvalues −1,−2. It is clear that the observer still tracks the state but
with degraded performance due to the process noise. If we try turning up the observer gain by using values
computed for target eigenvalues −10,−20, we do much better:

13

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Next we set F to zero but G  0.001. The results are:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Here the blue shows the performance of a naive velocity estimator, x̂2  ẏ (note that there is some aliasing). The
Luenberger observer does much better, as expected.

In order to bother the Luenberger observer we turn G all the way up to 0.1:

14

0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Now if we try to get greedy with this much observation noise, by turning up L to the values that would achieve
eigenvalues −10,−20 in the noiseless system,

0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

and we see that the estimation of velocity becomes very poor. So apparently too much observer gain is a bad
thing, when there is noise. Is there an optimal value of the Luenberger gain? This would seem to be an especially
important question when there is both process noise and measurement noise.

The Kalman-Bucy filter
To answer this sort of question we first have to state how we judge the observer’s performance quantitatively. It is
most common to adopt a minimum-least-squares framework, in which our objective is to design the estimator
(method of generating x̂t from knowledge of ys with s ≤ t) that achieves the lowest possible value of
〈xt − x̂txt − x̂tT . As discussed in A&M section 7.4, for the plant and observation model

dxt  Axt dt  But dt  FdVt,

dyt  Cxt dt  GdWt,

we have the following Theorem:
(Kalman-Bucy, 1961) The optimal estimator has the form of a linear observer

15

dx̂t  Ax̂t  Butdt  Lt dyt − Cx̂tdt, x̂0  〈x0 ,

where Lt  Pt CTGGT −1 and Pt  〈xt − x̂txt − x̂tT  is the (symmetric and positive-definite) estimation
error covariance matrix that satisfies the following matrix Riccati equation:

d
dt

Pt  FFT  APt  Pt AT − Pt CTGGT −1CPt, P0  〈x0x0
T .

It is important to note that the Kalman filter provides both a point estimate of the evolving system state and a
computation of the estimation error covariance matrix - it gives you its best guess and a numerical uncertainty.
When the system is stationary and if Pt converges, the observer gain settles to a constant:

L  PCTGGT −1, FFT  AP  PAT − PCTGGT −1CP  0.

The second equation is called the algebraic Riccati equation, and may be solved using Matlab’s lqe function.
We see that the essence of Kalman filtering is an optimal choice of the observer gain, which may be

time-dependent in a way that reflects our evolving degree of confidence in our state estimate. The general
structure is to apply high observer gain when we have large uncertainty, and to reduce it when our uncertainty
approaches a limiting value set by the process and measurement noises.

As an example let us compute the Kalman gain for our simple harmonic oscillator example with

F 
0

0.3
, G  0.1.

This results in

L ≈
2.08

2.16
,

and a simulation looks as follows:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

It is interesting to note that, as a consequence of its least-squares optimality, the Kalman-Bucy filter achieves
what is known as “whitening” of the innovations process dyt − Cx̂tdt. That is, if x̂t is propagated by the Kalman-Bucy
filter then dyt − Cx̂tdt becomes a completely random signal (Gaussian white noise); roughly we can think that x̂t

becomes good enough that subtracting Cx̂t dt from dyt removes all the information from the observed signal. The
notions of least-squares optimal state estimation, the innovations process, and whitening all carry over to nonlinear
scenarios.

16

