Limit theorem for QSDEs; cavity QED relay model

In this set of notes we take a very brief look at the use of quantum stochastic differential equations (QSDEs)
to model open quantum systems, and also at a very useful theorem for QSDEs that allows us to obtain
highly simplified component models for certain cavity QED systems in the small volume limit. We illustrate
the use of this theorem in the derivation of a simple scattering matrix model for a cavity QED relay, which
we will use later in our discussion of continuous quantum error correction.

General references for today’s material include, on QSDE modeling of quantum optical systems:

e Supplementary Material of J. Kerckhoff et al., “Designing Quantum Memories with Embedded
Control: Photonic Circuits for Autonomous Quantum Error Correction,” Phys. Rev. Lett. 105, 040502
(2010),

on limit theorems for QSDE models:

e L. Bouten, R. van Handel and A. Silberfarb, “Approximation and limit theorems for quantum
stochastic models with unbounded coefficients,” Journal of Functional Analysis 254, 3123 (2008),

and on the cavity QED relay model (a slightly more complex version than the one we consider here):

e H. Mabuchi, “Cavity-QED models of switches for attojoule-scale nanophotonic logic,” Phys. Rev. A
80, 045802 (2009).

Preliminaries: Schrodinger evolution operator, Heisenberg picture, SDEs
The Schrédinger evolution operator U(ts,1;) is defined by

ly(tr)) = Ut t)]w(ti)),
where the state must satisfy the Schrodinger Equation

i1y (®) = Hly®).
Hence we find the evolution equation
ih%(U(t,ti)lw(ti») = HU(L t)[w (ti)),

in(GUE))lv(t)) = HUR D),
d o L _ 1) =
LUt = S-HUGE), Udtt) = 1.

If the Hamiltonian is constant this can be solved straightforwardly via the operator exponential,
U(t,ti) = exp(—iH(t —ti)/h).
We note that any time-dependent operator moment can thus be written
(O) = (y®[Oy (1)) = (y )|V (L, t)OUti) [y (ti)),
and we note that we can reproduce all such observable quantities in the Heisenberg picture where the state
vector |y (t;)) is considered to be constant (held to its initial condition) while the operators evolve according
to
O(t) = U'(t,ti)OU(L, ti).
In quantum field theories it is generally more convenient to work in the Heisenberg picture than the
Schrédinger picture.

Below we will have a quick look at some quantum input-output models based on quantum stochastic
differential equations (QSDEs), which can be thought of as non-commutative generalizations of classical
stochastic differential equations (SDEs) which are commonly used in engineering, physics, and
mathematical finance. In both the quantum and classical cases, stochastic differential equations come in
two different flavors: Stratonovich and 1t6. When using 1t6 SDE’s one must be careful to observe the 1t6
Rule, which says (in the classical case) that if x; obeys the [t6 SDE

dXt = A(Xt)dt + B(Xl)th,
then a variable y; related to x; via



Yo = f(x)
evolves according to

of 0% f of
dye = | AG) G + 3820002 [+ Box) Seaw,

where the second-derivative term in the square brackets is known as the It6 correction. We can understand
this as corresponding to a type of Taylor expansion in which we keep terms to second order and then apply
the rules dW¢ = dt, dW;dt = dt? = 0. Note that if f is a linear function the It6 correction vanishes and we
recover the prediction of normal calculus. An important advantage of working with It6 SDE’s is that if x;
obeys the It6 SDE

dXt = A(Xt)dt + B(Xl)th,

then x; is uncorrelated with dW;. This considerably simplifies the computation of statistical moments. For
example consider the linear SDE model

dx; = Ax¢dt + FdVy,
with x; a scalar and A < 0 (the Ornstein-Uhlenbeck model). We then have
d(xe) = A(x:)dt + F(dVy)
= A(xy)dt,
(Xt) = (Xo)exp(At),
and if y; = x¢, so that (y;) is the variance of x;,
dyt = [2Ax? + F2]dt + 2F x¢dVy,
d(yt) = [2ACyr) + F2]dt + 2F(xcdV)
= [2A(yt) + F2]dt + 2F(x }dV+)
= [2A(y:) + F2]dt,
(yo) = exp(2At){<yo> + j; ds exp(—ZAS)Fz}

- cxp(ZAt){(y()) +F2 j; dsCxp(szs)},

If we assume that x; evolves from a known value x, att = 0, then (x¢) = Xo and (y,) = x2, and the
mean-square uncertainty in x; is

()= (x0)° = (Yo = ()
= exp(2At)F? J.; dsexp(—2As)

- exp(2At)F2<—i)(exp(—2At) -1
- — B (1 —exp2an)
2A '
The mean-square uncertainty thus has a steady-state value as t — « (assuming A < 0)

2y w2 o F2
<Xt > <Xt> Z‘A‘ .
There are quantum generalizations of the above ‘stochastic calculus’ methods, which underly the
derivations presented below, but we will not have time to go into these. A key point of similarity is that we
will generally need to keep second-order terms in differential expressions and apply quantum
generalizations of the rule dw¢ = dt.

QSDE models of open quantum systems
In the Heisenberg picture we can consider a unitary evolution operator U; such that observables evolve
according to

ar = UragU¢,
which has the differential form
dat = UtaodUt* + dUta()Ut* + dUta()dUt*.



This evolution operator (which we note is actually the hermitian conjugate of the usual Schrodinger
evolution operator) is assumed to obey a ‘left’ QSDE of the Hudson-Parthasarathy form,

dU; = U{Z(Nij —8idAY + D" MidAD " + Y LidAf+ Kdt},
ij=1 i=1 i=1
where it is required that

n n n n
K+ K== LiLi, Mi==>"NijLi, D NmiNii = D NmNji = .
i=1 j=1 j=1 j=1

We see from these conditions that the M; are actually determined by N;; and the L;, so such a QSDE is
actually fully specified by {K,Li,Nij}.
With the abstract notation
dU; = U{F}, dUf = {F*}Uy,
we thus see that
dat = UtaodU¢ + dUragUy + dUraodU¢ = Urag{F*}U{ + Ui {F}aoUf + Ui {F}ao{F*} U{.
Following Gardiner's method for deriving the master equation, we can write (averaging over the noise terms)
d(ai) = (dat) = (UraodU¢ + dUragU¢ + dUraedUy¢ ),

n
%(ao = Tr|:{Uta0K*Ut* + UtKa()Ut* + Z UtLia()Li*Ut*}p():|,

i=1
and combining this with
A (a) = Tr[ 0,22t = UipoU
a<a>— r aow , Pt = UipoUy,
we obtain

n
% = K*py + ptK + ; Li piLi.

We should be careful to note that we are here working with ‘leftt QSDEs and that the L; operators that have
been written above correspond to the hermitian conjugates of the components of the coupling vector that we
defined last time in our discussion of (S,L,H) models. The difference arises because the Gough and James
network calculus is conventionally derived from ‘right’ QSDEs for the Schrddinger propagator dV; = dU¢,
whereas the QSDE limit theorem we want to discuss today has been formulated in terms of left QSDEs for
technical reasons having to do with analysis of unbounded operators.

Generic cavity-QED scenario
For a (single-sided) cavity-QED system,

dU; = {V2x @@dA7 - adA) + [7] (0087 — o"dBy) - (iAc +x)a"adt - (ita+ Ly )orodt+go@o- ac*)dt} Uy,
dU: = Ue{~V2x (adA; - a*dA) - /7] (00Bf — 0°0B) + (iAc — K)aadt + (i6a- Ly )orodti-go@o- ac*)dt}.
Comparing this to the generic Hudson-Parthasarathy form, we have
K= (iA¢ —x)a*a+ (iAa - %yOG*G —go(a*o—ac*),

Li = V2xa*, L= fyjo*, Mi=-y2ca, My=-fyjo, Nij=3i.
Checking the Hudson-Parthasarathy conditions,



K+K* = (iAc —x)a*a+ (iAa - %yOG*U —go(a*oc —aoc*) — (iAc + x)a*a— (iAa + %7\\)6*0 +go(a*c —ac*)

= -2xka*a-y oo,

n
- Y LiL; = —{2xa*a+y o*0},
i=1

n
=Y NjLf = -Lf = M;,
j=1

and the condition on the Nj; is trivial.
Using our above result to intuit the master equation, we expect
K*pt + piK = (—IA. — k)a*apr + (—iAa - %yu)a*opt +go(@*o —ac*) pt + pi(iAc —k)a*a + pt<iAa - %y”)c*c - ptgo(a*c —ac*

= —i[{Aca*a+ Aao*o +igo(a*c —ac*)}, pt] —ka*ap: — kpra*a— %G*opt - %pto*o,

n
Z L{piLi = 2xapa* + y|opio™,
i=1

and the sum of these two terms gives us the master equation we expect.

Coherent input signal
To work with a coherent-state input we define the Weyl operator,

y(f) = W(f)g,
where f € L?(R") specifies the amplitude and phase of the field at every time t € R*. All operators should
now evolve according to

jt@) = W(fo)"UraUg W(fy),
where f; denotes the function f truncated at time t. In general we have
dW(f) = {f(t)dA;‘ —F*(t)dA - %|f(t)|2dt}W(ft),

dW*(f) = W*(ft){f*(t)dAt — f(t)dAF — %|f(t)|2dt},
and defining
U = W (fo)Us,
the It6 rule gives us
du® = dw*(fo)Ur + W*(fr)dU + dW*(f)dUs.
With the general Hudson-Parthasarathy QSDE for dU;, we thus have

du¥ = W*(ft){f*(t)dA‘{V — f(t)dAY* — %\f(t)\dt}ut +W*(ft)Ut{2(Nij —8idAY + D" MidAD" + Y LidAf + Kdt}
i=1

i,j=1 i=1

n
+ W (f) (U Mydt + W (FOUF*(0) D (Nwj — S )dA!

j=1
= utW{ZI(Nu — &ip)dAL + Zl](wn — ()6 (dAD) " + _Zl](Li +FONudAl + (K+ - OMy - L) dt},
i,j= i= i=
where dAY is the noise term associated with the displacement.

In the case of our cavity QED QSDE with f = a (constant), this would give us (dropping the W
superscript on UY)

dUc = U{(V2xar +a*)dA - (V2xa+a) dA; - J77 (0dB{ - o*dBy) - (Ea*a + %\a\z)dt
+ (IA¢ — k)a*adt + (iAa - %yu)c*adt— go(a*o — aa*)dt}.

We confirm that with the new



K= —(ﬂa*a + %\a\z) + (IAc —k)a*a + (iAa - %yu)o*c— go(a*c —aoc*),

Ly =+2xa*+a*, L;= MG*, M, = —(,/2Ka+a>, M, = —MG, Nij = ij,
we have
K+K* = -2k (a*a + aa*) — 2xka*a—y o*c — |a|?,

n
- Z LiL{ = 7<ﬂa* + a*) (ma‘F a) —y|o*o = —2xa*a — J2K (ea* + a*a) - la|> - yj0*0,
i=1
which still satisfies the Hudson-Parthasarathy conditions. Looking at the implied master equation

n
= K*pe+ ptK+ ) LipiLi

i=1

p

—-

- —i[{Aca*a+ As0*c +igo(a*c —ac*)}, pt] — o> pt — V2K (@@* pr + a*pra) — k(pra*a + a*apy) — %y” (pio*o +oc*opt)
+ (1/21( a+ a)pt<./21< a* + a*) +yyopto’
= —i[{Aca*a+ Aso*o +igo(a*c —ac*)}, pt] + k(2xkapa* — prla*a—a*apr) + %(opto* — pio*o —oc*apr)

+ 42k (a*apt — a* pra — ad* pt + apra*)
= —i[{Aca*a +Aa0*0 +igo(a*o —aoc*) — iy 2k (aa* — a*a)},pt]
pal
2

we see that the effective change to the Hamiltonian is indeed the addition of a driving term
-2k (ea* — a*a), as we have seen before.

Hopefully this calculation shows that in practice, it is much easier to use the <(1,,0) method! But the
above Weyl operator transformation is in fact the rigorous underpinning of the simplified method.

+ k(2xapia* — pia*a—a*apt) + (optc* — pto*c —c*opr),

QSDE limit theorem of Bouten, van Handel and Silberfarb
Suppose we have a Hudson-Parthasarthy left QSDE whose coefficients contain a scaling factor k :
K® =k2Y +kA+B, LY =kFi+Gi, N =Wwi.
Suppose also that there exists a closed subspace H, < H such that
A YP, =0;
FM There exists Y such that YY = YV = P};
EM Fpy=o0foralll <j<n;
N PoAP, = 0.
Here Py is an orthogonal projector onto Hy, and P, = 1 — P, on H. (The full statement of these ‘structural

conditions’ is a bit more technical.) Then the theorem states that in the limit k - o, the scaled QSDE limits
to a QSDE on H|, with coefficients

K = Po(B—AYA)Py, L;= Po(G;—AYF;)P,,

n n
Mi == PoWij(G] — FjYA)Py, Nij = D PoWii (F{YFj +31j)Po.
j=1 I=1
This limit holds in the sense that

lim sup ”Ut(k)*l//— U{‘l//” =0 Vye Hy®F, T <o,
koo o<t<T
where U is the solution of the Hudson-Parthasarathy Equation (the Heisenberg-picture propagator) in the
original model with scaling parameter k, and Uy is the solution in the limit QSDE. Thus Uy is the solution of
the Schrodinger Equation on the joint state-space of the system and its input-output fields, and the limit
stated above amounts to strong uniform convergence on compact time intervals. The proof is rather
technical and relies on a version of the Trotter-Kato theorm for QSDEs — see Bouten, Silberfarb and Van
Handel (2008) cited above.



The ‘small volume’ limit

We are interested in using the above theorem to obtain component model abstractions in limits that are
relevant to nanophotonic device physics. One such limit is the small volume limit in which g and « both
naturally become large. In particular we may be interested in scenarios in which g,x — o such that g/k stays
fixed, or perhaps g/« stays fixed. We have previously noted that g> tends to scale inversely with the volume
of a resonator, and for a Fabry-Perot type cavity one can note that « will tend to increase as the cavity
volume decreases simply because the circulating light will bounce off of the end mirrors more often. For
monolithic or photonic-crystal defect resonators, « also increases as the volume decreases because of
fundamental limits on the confinement of light within structures of sub-wavelength dimension. The other
parameters appearing in these models, which retain their original values in the limit model, are things like
atomic decay rates and input field powers. As briefly discussed in the above-referenced paper on switch
models, the regime with (g ~ k) > y seems accessible with current systems of interest for nanophotonic
cavity QED.

Four-state, three-cavity model for the SR flip-flop switch

We now attempt to derive an SR flip-flop switch model using a four-level atom coupled to three cavity

modes. The QSDE terms are as follows:
K = —kikaa*a —kiga(a*oge — aoge) — kikpb*b — k3kcC*c — kagn(b*ogr — bogr) — Kagn(b*one — bofe) — kage(C*onr — Cofy),
L, =k Jxaa*, M; =-kiJkaa,

L2:k1 Kaa®, Mz—_kl Kaad,

Ly = koy2kp b*, M3 = —ka,/2kp b,

Ly = kz 2K¢ c*, My = 7k2 2K ¢ C,

Nij = 5”
The kind of situation we have in mind here involves a multilevel ‘atom’ with ground states {|h),|g)} and
excited states {|e),|r)}. Cavity mode a connects |g) < |e) only, cavity mode b connects |g) < |r) (set) and
|[h) < |e), and cavity mode c connects |h) < |r) (reset). (Note that this QSDE corresponds to the “Simplified
four-state relay model” in the accompanying PowerPoint slides, but the paper referenced above assumes a

different atomic level structure that can be used when the control field and routed field for the switch/relay
have very different frequencies.)

We will first take the limit k; — o0 and then k, — oo. For the first elimination,
K = |(2Y+ kA + B, Li = kFi +Gi, Nij = Wij,

Y = —kaa*a—ga(@*0ge —acd), A =0, B=-kjkpb*b—kjkcC*Cc—kagn(b*ogr —bojr) — kagn(b*one — bofe) — Kage(C*onr — Cofyy).

JKaar 0
Kaa* 0

F , G= . Wi = 8.
0 K,/ 2ich b* 4 .
0 kz 2KcC*

We choose Ho = span{|g0anync),|h0anpne),|r0anyne)}, which clearly lies within the kernel of Y. We define
Y by its action on an orthonormal basis of states. We begin with basis states of the form
{lg0anpne),|h0anpne),[r0anyne)}, for which

Y{|g0anpnc),|h0anpne),[rOanpne)} = 0,
Y{g0anpne),[h0ansne),[r0anpne)} = 0.
This ensures that YYP, = YYP, = 0. We next note that forn > 1,



Y|gNanpNe) = —KaNa|gNaNsNe) + Ja/Naj€(Na — 1), NpNe), Na > 1,
Yle(n—1),NpNe) = —xka(Na—1)[e(Na—1),NoNc) —GayNa|gNaNpNe), Na > 1,
Y|hnanpne) = —kanalhnanpne), na > 1,
Y[rnanpne) = —kaNa|rNaNpNe), Na > 1.
We can thus define

Yirnanpne) = —ﬁnnanbnc), na > 1,

Y/hnanpne) = —ﬁmnanbnc), Na =1,

ga/Na

Yie(n=1). npne) = NaNpNc) — Kalla e(Na—1).Npne), na>1,
S N = o

- . n

Y|gnanpne) = — Ka(Na— 1) |gnanpne) + 9ayNa le(Na—1),NpNc), Na>1,

K3Na(Na—1) —g3na k3Na(Na—1) — g3na
and thus satisfy YY = YY = P,. Checking the remaining structural conditions, we require
FiPo = 0,
which is evident by inspection, and
PoAP, = 0,
which is likewise trivial. Moving on to compute the limit coefficients
K = Po(B—AYA)P,, Li = Po(Gi—AYFi)P,

n n
Mi ==Y PoWij(G} — F;YA)Po, Nij = Y PoWu(F{YF; +35)Po,
j=1 =1
we first obtain
PoBPo = {—kjkpb*b — kjxcc*c — kagn(b*ogr — bogr) — kago(b*one — bofe) — kage(C*onr — Cofy) }Po
= —k3kpb*b — kjxcc*c — kagn(b*ogr — bogr) — kagoPo(b*one — boje )Po — kage(C*onr — Cojy)
= —k3xpb*b — kjxcc*c — Kagn(b*ogr — bor) — kage(C*onr — Cofyp),
r( = —k%Kbb*b - k%KcC*C - kng(b*agr - bo‘ér) - kzgc(c*ahr - CG?{r).
Next
|:1 = |:2 = 0, |:3 = kz,IZKb b*, |:4 = k2 2K¢ C*,
and
|\7|1 = '\7|2 = 0, |\7|3 = —k2112K‘b b, |\7|3 = —k2 2K C.
To compute the scattering matrix we first note
Ya*P, = —&|e0a><goa| 1, ® lg— K%Jh 1aXh0a| ® 1p ® 1 — Kia|r1a><roa| ®1p® I,
aYa*P, = —Kia|h0a><hoa\ Q1p® I¢— ,%a|r0a><r0a\ ®1p® I,
kaPoaYa Py = —{ITho, + [1:0a} ® 1p ® l¢.
Ni = Po(FiYF, + 1)Pg = 1 + kaPoaYa*Py = I,
N]z = P()F’f?FzPo = KaPoa\?a*Po = —Hhr,
Nis = Po(FiYF3)Po = 0,
Nis = Po(F:YF4)Po = 0,
Nai = Po(F3YF )Py = kaPoaYa*Py = —ITiy,
N = Po(F5YF2 + 1)Py = 1 + kaPoaYa*Py = I,
Nas = Po(F3YF3)Py = 0,



Nay = Po(F3YF4)Py = 0,
N3 = Po(F3YF)Py = 0,
N3, = Po(F3YF, + 1)Py = 0,
Nis = Po(F3YF3 + 1)Py = 1,
N34 = Po(F;YF4)Po = 0,
Nai = Po(F3YF )Py = 0,
N42 = PO(FZ?FZ)PO =0,
Nas = Po(F;YF3)Po = 0,
Nas = Po(F3YF4 + 1)Po = 1.

Collecting together the results, we have
K = —kjxpb*b — kjxcc*c — kagn(b*ogr — bogr) — koge(C*onr — Cofy),

0 0 My, Ty 0 0

0 0 _Hhr Hg 0 0
L = , M= , N=

ks /2Kp b* —kK22kp b 0 0 1 0

k2 2Kc c* —k2 2KC C 0 0 O 1

Checking the H-P conditions,
K+ K* = —2k3kpb*b — 2k3xcc*c,

4
= ) Liki = —k32kpb*b - k32kccre,
i=1

and
My —I1 0 0
L= | e 7T 00 - M,
0 0 -1 0 ko /2xp b 7k2‘/2Kb b
0 0 O -1 k2 ZKCC —k2 2ch
Hg 7Hhr 0 0 Hg 7Hhr O 0 1 0 0 0
NN = _l_lhr l_[g 00 _l_[hr ]_[g 00 - 0 0
0 0 10 0 0 10 0010 |
0 0 0 1 0 0 0 1 000 1

so everything looks okay after the first elimination.
For the second elimination we have

Y = —kpb*b —xcc*c, A =-gp(b*og —bog) —ge(C*onr —Copy), B =0,

0 O Hg _Hhr O 0

0 0 My g 0 0
F= , G= . W= o

[2x0 b* 0 0 0 10

J2Kkoc* 0 0 0 01

We choose Hy = span{|g0,0.),|h0,0¢),|r0,0¢)}, which clearly lies in the kernel of Y. We define
Y[1g0p0c) = Y[h0,0c) = Y|r0y0c) = 0,
and



Y1gnpne) = ————L——|gnync), np+ne> 1,

_Kbnb+Kcnc
?|hnbnc>:—m|hnbnc>, nb+nc21,
?‘rnbn(;):—m“nbnc% Np +N¢ > l,

which achieves the desired condition YY = YY = P,. Checking the remaining structural conditions,
FiPo = F3Po = 0, F3Po = J2kpbPy =0, F;Py = 2Kk cPg = 0,
and
APy = {-gp(b*ogr —bo§r) — ge(C*onr — Copy )} (ITg + ITh + 1) ® | 050 ){0p0c|
= —0b0gr @ [160c)060c| = Geohr ® [0p1c){0b0c],
PoAPg = 0.

Hence we can move on to computing the limit coefficients,

K = Po(B—AYA)P,, L;=Po(Gi—AYFi)Py,

n n
Mi ==Y PoWij(G; — F;YA)Py, Nij = Y PoWa(F{YF; +5y)Po.
j=1 I=1
Starting with the first, we have

APy = —gbogr ® | 150c)(0p0¢| — gcohr ® [0p1c)(0p0¢],

YAP) = L0g ® [160c)X060¢| + B0 @ |051)060c];

R 2 2

AYAP( = 20-T1,]000¢)(060c| + S5 TT 050¢ )X00cl,

< _pavap. — (95 9
K = -PoAYAP) = —( &> + 2= TIr.

Next
Li=Ly=0,
F3Po = J/2x0 (TTg + Ty + TTr) @ | 150¢)(050c],
YF3Po = — [ (g + Iy + ITr) @ | 1506 )(060],
AVE3Pg = - |2 {95016 ® 006 )(060c| ~ V2 Gs0gr @ 2606 )X060c] — Genr @ [ 116 )060]
- - 2
[y = —PoATF:Pg = |30 o,
F4P0 = 1}2]('(; (Hg + Hh + Hr) X |Oblc><0b00|,
YF4Po = — |72 (g + Ty + T1r) ® [051)(060c].
AVF4Po = — |2 {gcom ®]060c)(060¢| ~ Go0ar @ [ 161c)(060c| ~ 42 Geir @ 0626 )(050¢ .
- - 2
Ly = —PoATF.P, = | 25 5,
Next

M = PoIIgF;YAP, — PoITnF3YAP, = 0,
Ms = —PoITnF;YAP, + PoIIgF3YAP, = 0,

9 - 202
Ms = —Po(-FiVA)Ps = Poy2ics b{ L0 ® [1506)060¢] + L0 ® [051c)(050¢} = | 52 oy,

. ~ 202
Ma = ~Po(-F3YAIPo = Poy2ice ¢{ Log @ | 1606)060c] + HEomr @ [0616)0606 } = | 5 .



Finally
N]] = PoW]](FT?F] +511)Po + PoW]z(FEYF] +62|)P0 = P()W]]P() = Hg,

Ni2 = PoW1 1 (F{YF2 +6812)Po + PoW 12 (F5YF2 + 820)Pg = PoW 2Py = —ITpy,

Nai = PoWoi (F1YF ) +811)Po + PoWar (F5YF| + 821)Po = PoW2 Py = —TTpy,

N = PoWai (FiYFa + 812)Po + PoWas (F5YF2 + 622)Po = PoWauPo = I,
N33 = PoWss(F5YF3 + 833)Po = 1 + PoF3YF3Pg = 1 — 2(TTg + ITh + I1) ® |050¢)0p0¢| = —1,
N3s = PoW33(F5YFq + 834)Pg = PoF3YF4Py = P2, /kpke b(ITg + ITh + 1) ® |O0p1¢)0p0¢| = 0,
N3 = PoWas(F5YF5 + 843)Po = PoF5YF3Po = Po2 fKpkc C(ITg + I + ITy) ® | 150 )060¢| = 0,

Nig = PoWas(F;YF4 +844)Po = 1 + PoF5YF4Po = 1 — 2(TTg + ITh + I11) ® |0p0¢)0p0¢| = —1.
Collecting the results, and setting

298 292
T = ke =
K:_')/Hr,
0 0 Mg ~TIpr 0 0
0 0 Iy Iy, 0 0
L = . M= . N= o
JY Org JY Oar 0 0 -1 0
JY Orh J7 ohr 0 0 0 -1

Now we are finally ready to take the limit y — . We set
Y =—yIl;, A=B=0,

0 0 Mg Iy 0 0

0 0 Iy Iy, 0 0
F= , G= . W= o

J7 0rg 0 0 0 -1 0

JY O 0 0 0 0 -1

Then Hy = span{|g),|h)} and we set
Yigy=Yhy=0, Y|r)=—"|r).
Then

¢
Il

0,
Li=l=0L;=Ly=0,
M; =M, =M; =M,y =0,
Nii = PoW1 (FiYF +6811)Po + PoW 12 (F5YF) + 821)Po = I

e«

Nis = PoW i (FiYF2 + 812)Po + PoW 12 (F5YF2 + 622)Pg = —I1

Nai = PoWai (F1YF ) + 811)Po + PoWar (F5YF| + 821)Pg = —IT,

N = PoWay (F1YF2 +812)Po + PoWa (F5YF5 + 622)P = I
N33 = PoWss(F5YF3 +633)Po = 1 — PoF3YF3Pg = 1 — Iy = I,
N3y = PoWs3(F5YF4 + 834)Po = —PoF3YF4P = —0grom = —agn,
Ni3 = PoWas(F;YF3 + 843)Po = —PoF;5YF3Pg = —GheOrg = —Ong,
Nis = PoWas(F;YF4 + 844)Po = 1 = PoF;YF4Py = 1 — I = I1,.

Collecting the results together,



g -IIn 0 0
Iy IIg 0 0

0 0 Iy —ogn
0 0 —ong Il

K:()a LZO» MZO, N:

We should keep in mind that these are H-P coefficients for a left QSDE model; generally speaking we
convert to the (S;,L,H/) triple for a right QSDE model via

Sr = N+, r = L#, Hr = In][K],
where for a vector or matrix of operators or complex numbers A = [aj;], we define A” = [a]j] where aj; is the
complex conjugate of a number or the hermitian conjugate of an operator, and A" = [a]/] = (A#)T.

Model with coherent signals
Finally we add displacements to modes 1, 3 and 4 to obtain a model with known, coherent signals. With the
general rules

Mi > Mi—fud,  Li = Li+fNui, K > K465 My = 2 [ful?,
and f;, = ﬁ, f; = as, fs = Ar,
—_Ligp_ Lig2- Ligp2
K= 2|ﬂ| Z‘as Z‘ar‘ >

Py -B Iy -IIn 0 0

_B*I1I 0 Iy IIg O 0
L=| . M= SN

ailly —afong —0s 0 0 Iy  —og

—aiogh +afllg —Qr 0 0 —ong Il

The master equation then reads
pr = —IBI* pr — las|* pr — lac|* pe + |BI* {TgpilTg + TipelTn} + (asTTh — arogn) pr(adTh — afogy) + (asong — adlg)pi(aion, — aillg)
= _|ﬁ|2{HgPtHh +hpdlg) — |0‘S|2Pt - |ar|2Pt + (aslly — arogn) pi(asTlh — afog,) + (asong — arllg) pi(asong — arllg)

_ 2, Jas)? | e 7007 — jas|? v % P e |* . o
= (|| +T+T {ZpiZ - pi} + 3 {20ngptohg — OhgOhgPt — PtORGOhg ; + 3 {20ghptogh — OGO ghpt — PtoghTah

— (atarogh)pidly — Mhpr(aiarog)” — (asafong) pdly — Hgpi(asafong)”,
where Z = Iy — 1.

Pre-limit master equation with displacements and spontaneous emission
For use in numerical simulations we apply displacements to the pre-limit model as well, obtaining
K = —kixaa*a — kjxpb*b — kjkcc*c — kiga(a*oge —acde) — kago(b*ogr — bodr) — kagn(b*ohe — bofe) — Kage(C*onr — Cofyp)
— BKi JKaa — atkay2kn b — arks 2K ¢ — %W - %|as|2 - %|ar|2,
Li =kiJkaa*+p*, M| =-k JKkaa-p,
L, = ki Jkaa*, My =-k; /xaa,
Ls = koy2k0b* + a2, Ms = —ka2kp b0,
Ly = kay2kcC* +af, Ms = —k22kcC—ar,

Nij = dij.
The corresponding master equation is then
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pr = —i[i{kiga(a*0ge —acge) + koG (0*ogr — boge) +kago(b*one — bofe) + kage(C*onr — Cof) 1, i
+ (—BKi JKaa” = asko J2in b* = arks 2k ¢ ) pu+ pi( =K1 JKa @ — atka 2o b - aks 2xc €)
— B pr = las* pr — e > o
+ klxa(-a*apy — pra*a) + K3k (—b*bpy — pib*b) + K3k c(—c*cpr — pic*c)
+ (ki Jiaa+ B)puki Jicaa + B) + (ki Jica @)pu(ki Jica a®) + (kay2i5 b+ s ) pe (ko260 b7 + 7))
+ (kz 2K C+ ar>pt<k2 2K C* + a?).
Simplifying,
pr = —i[i{kiga(a*oge — acge) + kagn(b*ogr — bogr) + Kagb(b*one — bofe) + Kage(C*onr — Cofyy) b, pi]
+ (=BKi JKa a® — asko 20 b* — arks 25 ¢ ) po+ pu(—Bki Jia @ — atka 20 b — afks 2 €)
=Bl pr = las|* pr = lar*
+ Kika(-a*apt — pra*a) + K3k (—b*bpr — pib*b) + K3k (—c*cpt — pic*c)
+kixaapa* + ki Jxa (B*ap: + pfa*) + B> pt + Kikaapia*
+k32ipbpib* + ka 2k (azbpr + prash®) + |as|? pr + k32K cCpic® + Koy 2kc (@fcpt + prarc®) + |ar|’pr,
pr = —i[i{kiga(@*0ge — acge) + kagn(b*ogr — bogr) + kagn(b*one — bofe) + kage(C*onr — Cofy )}, pi]
+ (=Pki JKa a® — asko J2i0 b* = arks 21 ¢ ) pu+ pu(—Bki Jia @ — atka 20 b - afks 2 )
+kZka(2apa* — a*apy — pra*a) + k3xp(2bpib* — b*bpi — pib*b) + k3xc(2cpic* — c*Cpr — piC*e)
+ ki Jka (B*apt + pfa*) + kzmw;bpt + prash*) + szE(aFCpt + piarC*),
pr = —i[i{kiga(@*cge — acfe) + kagn(b*ogr — bogr) + kagn(b*one — bofe) + Kage(C*onr — Cofy) b, pil
- i[i{kljx_a(ﬂ*a—ﬁa*) + ko 2K (b — ash*) +k2J2_lq(a?C—arc*)},pt]
+kKixa{2apa* — a*apt — pra*a) + kixp{2bpih* — b*bpt — pitb*b} + k3xc{2cpic* — c*Cpt — prC*C}.
Finally we add atomic spontaneous emission terms of all four kinds:
pr = —i[H, pt] + k3xa{2apa* — a*ap: — pra*al + kixp{2bpib* — b*bpt — ptb*b} + k3xc{2cpic* — c*cpt — prc*ch
+7ge{20¢ePt0ge — OgeOgePt — PiOgeCge; + Yhr{20hrPtOhr — O Ohr Pt — PtOROhrf
+79r{20¢rPt0gr — OgrOgrPt — PtOgrOgr} + Yhe{20hePtOhe — CheOhePt — PtOheChe )
H = ikiga(a*oge — aoge) + ikago(b*ogr — bogr) + ikagn(b*one — bofe) + ikage(C*onr — Cojy)
+iki J/Ka (B*a— Ba*) + ika2xp (b — asb*) + ks 2k¢ (afc — arc*).
From the adiabatic eliminations studied above, we know that we would like to have ki, k», gi/xp and g2/« all

large. We presumably also need k; > k; in order to justify the order in which we performed the adiabatic
eliminations. We thus propose the following master equation for simulation:

pr = —i[H, pi] + k3 {2apa* — a*apy — pra*a) + k3 {2bpb* — b*bpy — pib*b} + k3{2cpic* — c*cpr — pic*c)
+{20¢eptoge — 0geOgePt — Pt0geOge} + {20nPtOhr — OhOhrPt = PtOfOhr }
+{20¢rpt0§r — 05 Ogrpt — P1O§Ogr  + {20hePtOfe — OreOhePt — PtORChe )5
H = iki(a*og —ace) + ik2g(b*ogr — bogy) + ikag(b*one — bofe) + ikg(C*onr — Cofyy)
+iki(B*a— par) + ikay2 (atb — ash*) + k2 Y2 (afc — arc*),
to be studied in the regime k; > k, > 1. It may also be of interest to vary the ratio g, which could be
assigned a default value of 1.
Computing finally the output modes, we use the general expression (arXiv:0707.0048v3)
(dAt) o = SdA¢ + Ldt,

where the boldface symbols represent matrices or vectors. Since we are particularly interested in modes 1
and 2 and we have S =1,
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L, =k Jxaa*+p*, M; =-k Jkaa—-p,
L, = ki J/xkaa*, M, =-k;./k;a,
we find
(dAl) . = (ki JKaa* + p*)dt + dA{,
(dA?),,, = ki /xa a*dt+ dA?.
With the idea that the average intracavity photon number in the empty (no atom) cavity would be

k ’ 2
aay - LBl 1B
k 1 K'g k 1Ka
we would expect the output fields out each mirror to have magnitude k; /xz ,/(a*a) — f3, so this should all
work provided the phases do. Explicitly, with the parameter definitions as proposed above we should check
((dA{) o = (Ki@*) + p)dt,  ((dA?),,,) = ki(@*)dt,

as as and «, are alternatively activated. We would expect that when «; is on, the cavity should go
transparent and we would have ((dA{)_,) = 0, ((dA?) ) = —p*dt, while if o, is on the cavity should go
reflective and ((dA!) ) = p*dt, ((dA?),,) = 0. Comparing this with the adiabatically eliminated model with

By Iy -IIh 0 0
—p*I1 —IIp I1 0 0
L — B1n . N= h g .
ailly —afong 0 0 I, —og
—aiogh +afllg 0 0 —ong Il
we would have
(dAt)out = SdAt + Ldt,
(dAtl)out = TgdA{ — TThdA? + B*T14 dt,

(dAtz)OIJt = —IIhdA{ + [14dA? — B*I1ndt.
If as = ar = 0 and p = I1; (cavity transparenty), we would have
((dAD) ) = 0, ((dAF),,) = —B*dt,
while if p = Iy (cavity reflective) we would have
((dAD) o) = Brdt, ((dA?),,) = 0.
So that seems to agree fully.
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