
Quantum optical input-output models; quantum optical circuit theory

Today we will introduce a formalism for interconnection of quantum optical input-output models of individual
components that can be used to derive master equations for a broad class of photonic circuits. The method
works for circuits with feedback, but one must take care to avoid feedback topologies that create ‘trapped’
modes, which cannot be handled straightforwardly. The technical approach is based on a somewhat
esoteric formulation of non-relativistic quantum field theory in the Markov limit, using quantum stochastic
differential equations (QSDEs). It is not necessary to know anything about QSDEs if one simply wants to
utilize the methodology to derive circuit master equations from the interconnection of given component
models, but next time we will have a quick look ‘under the hood’ at the details of QSDE input-output models
in order to establish a very convenient abstraction for nanophotonic circuits that we call the small volume
limit.

Technical details on the approach can be found in original papers:
 J. Gough and M. R. James, “The Series Product and Its Application to Quantum Feedforward and

Feedback Networks,” IEEE Transactions on Automatic Control 54, 2530 (2009).
 J. Gough and M. R. James, “Quantum Feedback Networks: Hamiltonian Formulation,”

Communications in Mathematical Physics 287, 1109 (2009).
The above papers by Gough and James expand upon some earlier results:
 C. W. Gardiner, “Driving a quantum system with the output of another driven quantum system,” Phys.

Rev. Lett. 70, 2269 (1993).
 H. J. Carmichael, “Quantum trajectory theory for cascaded open quantum systems,” Phys. Rev. Lett.
70, 2273 (1993).

Each input-output component in a photonic circuit is described by a triple S,L,H where S is the scattering
matrix of the component, L is the coupling vector of the component, and H is the Hamiltonian of the
component’s internal degrees of freedom. S is required to be a unitary matrix, and its matrix elements can in
general be operators on the Hilbert space of the component’s internal degrees of freedom (although they
are usually just complex numbers). The elements of L can also be operators, in which case they describe
the way that external fields couple to the component’s internal degrees of freedom. H plays the usual role of
determining the (autonomous) time evolution of the component’s internal degrees of freedom. The
dimension of L is equal to the number of input-output ports n that the component has (every port must be
both an input and an output); the dimension of S is n  n; the Hamiltonian H is scalar.

Using two composition rules called the series product, denoted , and the concatenation product,
denoted , it is possible to combine the individual S,L,H models for a number of interconnected
components into an overall S,L,H model for the whole circuit. Before explaining how the series and
concatenation products work, however, let us introduce a few simple component models that we can use for
interconnection examples.
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A beamsplitter is a two-input/output component described by a scattering matrix only - it has no internal
dynamic degrees of freedom. The S,L,H triple is thus simply

S,L,H 
r11 t12

t21 r22
,

0

0
,0 ,

where since the scattering matrix must be unitary,

r11 t12

t21 r22

r11
∗ t21

∗

t12
∗ r22

∗


1 0

0 1
.

A common example is the 50/50 beamsplitter,

r11 t12

t21 r22


1
2
− 1

2

1
2

1
2

.

Note that from a theoretical standpoint the phase convention we have chosen is arbitrary (for example, the
transpose of this matrix would equally well represent a 50/50 beamsplitter), but in modeling an actual
experimental setup the phases of the matrix elements will be determined by physical properties of the actual
beamsplitting device.

An ideal laser input to a photonic circuit can be represented by a coherent displacement, which has
the S,L,H model

S,L,H  1,, 0,

where  is the complex amplitude of the displacement (laser input). The units in these models is such that
||2 should be a flux (photons per second).

A propagation phase or phase shift can be represented by the S,L,H model

S,L,H  ei, 0, 0.

Note that this is really a one dimensional scattering matrix. Since the scattering matrix is required to be
unitary, it is not valid to consider a component such as z, 0, 0 with |z| ≠ 1. If we want to represent an
attenuator of some kind we actually have to pass the field of interest through a beamsplitter, with the second
input left open, as this is required at the underlying QSDE level in order to preserve fundamental
commutation relations.

An emtpy Fabry-Perot cavity can be represented by an optical resonator with two input-output ports
(two mirrors),

S,L,H 
1 0

0 1
,

1 a

2 a
, Δ′a†a .

Here Δ accounts for a detuning between the resonance frequency of the cavity eigenmode that is being
considered and the rotating frame of the circuit model, 1 and 2 are the partial decay rates of the two
mirrors, and a is the annihilation operator for the cavity eigenmode. If we want to add a two-level atom we
can write

S,L,H 

1 0 0

0 1 0

0 0 1

,

1 a

2 a

 

, Δ′a†a   |e〈e|  ga†  a† ,

where the extra symbols have their usual meanings from our discussion of cavity QED (although according
to the convention for these circuit models, 1,2 and  are energy decay rates rather than field decay rates,
thus  ≡ 2 et cetera). Here we have added an extra input-ouput port to represent, in essence, the vacuum
electromagnetic fields that interact with the atom and induce spontaneous emission. Note that it would not
be realistic to connect the output of this spontaneous emission port to another component because in
practice this would require collecting all 4 solid angle of spontaneous emission; on the other hand, we can
represent the effect of a laser directly driving the atom (through the ‘side’ of the cavity) by connecting a
coherent displacement to the input of this port.

Hopefully it is obvious how to generalize to ring cavities with three or more mirrors, and to cavities with
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other internal dynamics. For example, a three-mirror ring cavity with a Kerr nonlinear medium is represented
by

S,L,H 

1 0 0

0 1 0

0 0 1

,

1 a

2 a

3 a

, Δa†a  a†a†aa .

Note that in some cases we may have a ring cavity in mind in terms of the geometry, yet wish to treat some
of the mirrors as ‘high reflectors’ that do not have an associated input-output field. In these cases we can
set  i → 0 for each such port and in fact the associated row(s) of the scattering matrix and coupling vector
can simply be deleted.

To provide at least one example of a more complex device whose scattering matrix contains operator
matrix elements, we make note of the relay model

S,L,H 

g −h 0 0

−h g 0 0

0 0 h −gh

0 0 −hg g

, 0, 0 ,

where the Hilbert space of the internal degrees of freedom is span|g, |h and the operators are
g  |g〈g|, h  |h〈h|, hg  |h〈g |, gh  |g〈h|. The first two input-output ports correspond to fields
whose routings are switched by the relay, while the third and fourth ports correspond to the SET and
RESET inputs of the relay. We’ll see later how to derive such an S,L,H as the limit model for a cavity QED
system in the small volume limit.

At this point it is useful to note that we can easily write the master equation for any S,L,H model (note that
we are using  → 1 here):

̇  −iH, ∑
j

LjLj
† − 1

2
Lj
†Lj − 1

2
Lj

†Lj ,

where Lj is the jth component of the coupling vector. Note that the scattering matrix does not enter. It is
interesting to note that such master equations can sometimes be written in a form that shuffles terms
between the Hamiltonian and Lindblad parts – this will help us to match some models we derive using
photonic circuit theory with conventional forms from quantum optics, and can also help in making circuit
master equations more amenable to numerical integration.

It is clear from inspection that the S,L,H cavity QED model reproduces the usual cavity QED master
equation using this approach, although without the cavity driving term:

S,L,H 

1 0 0

0 1 0

0 0 1

,

1 a

2 a

 

, Δ′a†a   |e〈e|  ga†  a† ,

̇  −iH,  1  2 aa† − 1
2

a†a − 1
2
a†a   † − 1

2
† − 1

2
† ,

where we see explicitly the correspondences 1  2 ↔ 2 and  ↔ 2. But what if we want to add a cavity
driving term?

Here we can illustrate the use of the series and concatenation products. The very simple ‘circuit’ model we
want is

D  C  1,, 0  1,0,0  1,0,0,

where C stands for the undriven cavity QED S,L,H model written above and D will be the S,L,H model
for the cavity QED model with a coherent driving field (carrying photon flux ||2) incident on mirror #1.

We have a general rule for the series product of two systems G1  S1,L1,H1 and G2  S2,L2,H2:

3



G2  G1  S2S1,S2L1  L2,H1  H2  ImL2
†S2L1,

and likewise for the concatenation product

G2  G1 
S1 0

0 S2

,
L1

L2

,H1  H2 ,

where the components of G1 and G2 need not commute. Hence we can compute

D  I3,

1 a

2 a

 

, Δ′a†a   |e〈e|  ga†  a†  I3,



0

0

,0

 I3,

1 a  

2 a

 

, HD ,

where I3 is the 3  3 identity matrix and

HD  Δa†a   |e〈e|  ga†  a†  Im 1 a† 2 a†  †


0

0

 Δ′a†a   |e〈e|  ga†  a†  Im 1 a†

 Δ′a†a   |e〈e|  ga†  a†  1
2i

1 a† − ∗a.

We see that the concatenation product is here used to ‘stack’ three single-field inputs (two of them vacuum)
in order to create a G1 whose dimensions are compatible with those of the cavity QED system G2. The
series product then actually implements driving G1 ‘into’ G2 (note that the composition expressions read
from right to left).

In order to arrive at a master equation for the driven model, we start by computing the Lindblad terms.
Obviously the terms generated by L2  2 a and L3    won’t change, so we just need to compute

L1L1
†   1 a   1 a†  ∗

 1aa†  1 ∗a  1 a†  ||2,

L1
†L1   1 a†  ∗ 1 a  

 1a†a  1 a†  1 ∗a  ||2,

hence the full Lindblad term for L1 is

̇L1
 1aa†  1 ∗a  1 a†  ||2

− 1
2
1a†a  1 a†  1 ∗a  ||2

− 1
2
1a†a  1 a†  1 ∗a  ||2

 1 aa† − 1
2

a†a − 1
2
a†a

 1 ∗a  1 a† − 1
2

1 a† − 1
2

1 ∗a − 1
2

1 a† − 1
2

1 ∗a

 1 aa† − 1
2

a†a − 1
2
a†a  1

2
1 ∗a − a†  a† − ∗a

 1 aa† − 1
2

a†a − 1
2
a†a  1

2
1 ∗a − a†,.

Thus we see that there is a term we could group into the Hamiltonian, leaving us finally with

4



̇  −iHD
′ ,  1  2 aa† − 1

2
a†a − 1

2
a†a   † − 1

2
† − 1

2
† ,

HD
′  Δa†a   |e〈e|  ga†  a†  1

2i
1 a† − ∗a  1

−i
1
2

1 ∗a − a†

 Δa†a   |e〈e|  ga†  a† − i
2

1 a† − ∗a  i
2

1 ∗a − a†

 Δa†a   |e〈e|  ga†  a† − i 1 a† − ∗a.
Hence we finally see that in comparison to the usual form of the driven cavity QED master equation, with
cavity driving term

Hdr  iEa† − a,

we have derived the correspondence

E  − 1 .

If we consider the master equation with Δ    g  0 and initial state |0,g (reducing to a simple
resonantly-driven empty cavity)

d
dt
〈a  Tra̇

→ 1 Tra∗a − a†,  1  2Tr a aa† − 1
2

a†a − 1
2
a†a

 1 Tr∗aa − aa† − ∗aa  aa†   1  2Tr aaa† − 1
2

aa†a − 1
2

aa†a

 1 Tr∗aa − aa† − ∗aa  a†a  1  2
2

Tra†aa − aa†a

 − 1 − 1  2
2

〈a,

and we therefore find that in steady-state,
d
dt
〈a  0,

〈ass  −
2 1
1  2 .

Note that the sign in this expression is crucial. From the underlying QSDE formalism it is possible to derive
that for a scenario such as this one with an empty cavity, in which all the optical states should remain simple
coherent states, the states of the output channels should be given by the expectation value of the
corresponding components of the coupling vector L. Hence in particular, the output state of input-output
channels 1 and 2 should be given in steady-state by

〈L1 ss  〈 1 a  ss  −
21
1  2  ,

〈L2 ss  〈 2 ass  −
2 12
1  2 .

We find that if we set 1  2, we recover the expected result for a symmetric two-sided cavity that the
reflected power drops to zero while the transmission becomes perfect. Even though the output fields will
generally be more complicated that coherent states in the full cavity QED setup with strong coupling, the
above expressions remain reasonable indications of the optical power flow in many scenarios where the
output states remain close to coherent. Hence for so-called ‘bad cavity’ regime of cavity QED, a numerical
computation based on the master equation with g  10 and   20 produces the following cavity
transmission spectrum:
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In this plot the horizontal axis is detuning Δ′   and the vertical axis is actually 〈a†a for the intracavity field
(red is a g  0 reference, black is g  10). On resonance we see that the intracavity field is very small, and
from the above input-output relations we can infer that the incident power is largely reflected (as opposed to
dissipated by the atom via spontaneous emission, which would be another reasonable guess). In fact as this
spectrum is calculated for a very weak incident probe field, the reflected and transmitted fields should be
quite close to coherent states.

Although this has been a very simple first example of using the series and concatenation products, we
have already taken a major step forward from our previous discussion involving the master equation only as
we now have a rigorous basis for analyzing the internal, reflected and transmitted fields of a cavity QED
‘device’ based on a specified incident field amplitude. In particular, we know exactly how to relate the
parameter E that appeared in our previous master equation to the external amplitude , and we now how to
characterize the partitioning of the total cavity output between reflected and transmitted channels.

To further illustrate the use of series and concatenation products in a more complex scenario, we turn next
to an analysis of coherent-feedback suppression of spontaneous switching in ultra-low power dispersive
bistability.

We first use the series product to derive an open-loop model for the three-port ‘plant’ cavity with a
coherent driving field. The plant cavity itself is described by an autonomous dynamical model

Gb 

1 0 0

0 1 0

0 0 1

,

b1 b

b2 b

b3 b

, Hbu  Gb1  Gb2  Gb3,

Gb1  1, b1 b,Hbu, Gb2  1, b2 b, 0, Gb3  1, b3 b, 0,

Hbu  bb†b†bb  Δbb†b.

In order to include a coherent input field  we use the series product as before,

N  Gb1  Gb2  Gb3  1,, 0

 Gb1  Gb2  1,  b3 b, Im b3 b†



1 0 0

0 1 0

0 0 1

,

b1 b

2 b

  b3 b

, Hbu 
b3

2i
b − b∗ .

The corresponding open-loop master equation is
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̇  −i H, ∑
j

LjLj
† − 1

2
Lj
†Lj − 1

2
Lj

†Lj

→ −i Hbu 
b3

2i
b − b∗,  b1  b2  bb† − 1

2
b†b − 1

2
b†b

   b3 b∗  b3 b† − 1
2
∗  b3 b†  b3 b − 1

2
∗  b3 b†  b3 b

 −i Hbu 
b3

2i
b − b∗,  b1  b2  bb† − 1

2
b†b − 1

2
b†b

 ||2  ∗ b3 b   b3 b†  b3bb† − 1
2
||2 − 1

2
∗ b3 b − 1

2
 b3 b† − 1

2
b3b†b

− 1
2
||2 − 1

2
∗ b3 b − 1

2
 b3 b† − 1

2
b3b†b

 −i Hbu 
b3

2i
b − b∗,

 b1  b2  b3  bb† − 1
2

b†b − 1
2
b†b  1

2
∗ b3 b − b − 1

2
 b3 b† − b†.

We note that

1
2
∗ b3 b − b − 1

2
 b3 b† − b† 

b3

2
∗b − b†,   −i

b3

2i
b† − ∗b, ,

hence we can pull this remaining term into the Hamiltonian and finally write

̇  −i Hbu − i b3 b − b∗,  b1  b2  b3  bb† − 1
2

b†b − 1
2
b†b .

We thus see clearly that the total cavity decay rate is simply b ≡ b1  b2  b3 while the effects of the
driving term can be absorbed into the system Hamiltonian. The driven cavity model can thus be written

Nd 

1 0 0

0 1 0

0 0 1

,

b1 b

b2 b

b3 b

, Hbu − i b3 b − b∗ .

We next consider the effects of linear static coherent feedback, with a simple phase shift:

We can write
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NLS  Gb1  ei, 0,0  Gb2   Gb3  1,, 0

 1, b1 b,Hbu  ei,ei b2 b, 0  Gb3  1,, 0

 ei,  b1  ei b2 b,Hbu  sin b1b2 b†b  Gb3  1,, 0


ei 0

0 1
,

 b1  ei b2 b

b3 b
, Hbu − i b3 b − b∗  sin b1b2 b†b ,

where we re-use what we have derived above regarding the driving term, yielding the closed-loop master
equation

̇  −i Hbu − i b3 b − b∗  sin b1b2 b†b,

 b3  | b1  ei b2 |
2 bb† − 1

2
b†b − 1

2
b†b .

Hence the total cavity decay rate is a function of , and there is an additional frequency-pulling term in the
Hamiltonian. We note that for   0 we obtain

̇ → −i Hbu − i b3 b − b∗,  b  2 b1b2  bb† − 1
2

b†b − 1
2
b†b ,

while for    we obtain

̇ → −i Hbu − i b3 b − b∗,  b − 2 b1b2  bb† − 1
2

b†b − 1
2
b†b .

Hence in these simple cases we have either a pure increase or a pure decrease in the cavity decay rate as
the only net effect of the feedback. These can be understood as interferometric constructive/destructive
interference of the output fields from the b1 and b2 cavity mirrors. We infer that since the external driving
term (through mirror b3) is unaffected, it should be possible to use  to tune the average intracavity photon
number. In particular if we have a detuned driving field, we should be able to decrease the effective driving
strength by decreasing the effective b and vice versa.

For the nonlinear dynamic controller we assume two cavities a (controller) and b (plant) with component
models

Ga  1, a a ,Ha,

Gb 

1 0 0

0 1 0

0 0 1

,

b1 b

b2 b

b3 b

,Hbu ,

where

Ha  aa†a†aa  Δaa†a,

Hbu  bb†b†bb  Δbb†b.

We define the partitioning
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Gb  Gb1  Gb2  Gb3,

where

Gb1  1, b1 b,Hbu, Gb2  1, b2 b, 0, Gb3  1, b3 b, 0.

We compute the feedback network as

NND  Gb1  Ga  ei0 , 0,0  Gb2   Gb3  1,, 0

 1, b1 b,Hbu  1, a a ,Ha  ei,ei b2 b, 0  1,  b3 b, Im b3 b†

 1, b1 b,Hbu  ei, a a  ei b2 b,Ha  Imei ab2 a†b  1,  b3 b, Im b3 b†

 ei, a a  ei b2  b1 b, Ha  Hbu  sin b1b2 b†b  Imei ab2 a†b  ab1 ab†

 1,  b3 b, Im b3 b†

 SND,
a a  ei b2  b1 b

  b3 b
, Ha  Hbu  sin b1b2 b†b  Imei ab2 a†b  ab1 ab†  b3 b† .

We thus have a total Hamiltonian,

H  Ha  Hbu  sin b1b2 b†b 
ab2

2i
eia†b − e−iab† 

ab1

2i
ab† − a†b 

b3

2i
b† − ∗b,

and (as we did above) we note that the second Lindblad term leads to terms in the Master Equation,

 ̇L2
 L2L2

† − 1
2

L2
†L2 − 1

2
L2

†L2

   b3 b∗  b3 b† − 1
2
∗  b3 b†  b3 b − 1

2
∗  b3 b†  b3 b

 ||2   b3 b†  ∗ b3 b  b3bb† − 1
2

||2  ∗ b3 b   b3 b†  b3b†b 

− 1
2
 ||2  ∗ b3 b   b3 b†  b3b†b

 b3 bb† − 1
2

b†b − 1
2
b†b  1

2
 b3 b†  1

2
∗ b3 b − 1

2
 b3 b† − 1

2
∗ b3 b

 b3 bb† − 1
2

b†b − 1
2
b†b 

b3

2
∗b − b† 

b3

2
b† − ∗b.

We retain the first term in braces as a modified L2 → b3 b and note that

b3

2
∗b − b† 

b3

2
b† − ∗b 

b3

2
∗b − b†,

 −i i
b3

2
∗b − b†,

 −i
b3

2i
b† − ∗b, .

We therefore add this to the original Hamiltonian terms to obtain

H → Ha  Hbu  sin b1b2 b†b 
ab2

2i
eia†b − e−iab† 

ab1

2i
ab† − a†b  i b3 ∗b − b†,

L1  a a  ei b2  b1 b,

L2  b3 b.
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