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Idea of this talk: ‘Quantum software’

We need novel methods for high-order correlations

Quantum software uses complex contour integrals
Excellent results for treating boson sampling
Leads to new exact analytic results
Individual experiments treated with sampling methods
Can treat: any input, decoherence, any order correlations

New verification proposals, high-N interferometer
predictions
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What is boson sampling?

Boson sampling is a computationally hard problem
Send N single photons through an M-channel photonic device
Measure the output photon number distribution
The boson sampling device solves the problem of how to
generate bits with a permanent probability distribution
Matrix permanents are a ’#P’ hard problem, taking
exponentially long times to compute at large N

Boson sampling is conjectured to be a ’#P’ hard problem
(Aaronson, MIT)
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Why is it worth studying this?

Boson sampling is the simplest quantum complexity
Solving it may solve other problems

Maybe its only as useful as climbing Mt Everest?
Maybe it will have many applications!

Spinoffs:
Insight into bosonic many-body complexity
Linkages with group theory, mathematics
Heisenberg-limited metrology

robust against decoherence - see later slides
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High order correlations?

Bosn sampling emphasizes importance of very high order
correlations

Typically its very hard to simulate or measure high order
correlations

Quantum computer outputs are often equivalent to a high-order
correlation

Advantages
This type of effect greatly enhance nonclassical effects
Quantum networks will involve high-order correlation effects
Is there a generic metrology advantage?

Boson sampling is related to N-partite entanglement
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Boson sampling experiment
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Boson sampling experiment
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Experimental schematic

P. D. Drummond (Centre for Quantum and Optical Science, Swinburne University of Technology. )Simulating quantum computers with probabilistic methods: Tokyo ImPACT lecture 3 – Boson sampling & XY machines13 / 50



Experiments: Oxford, Queensland,
Rome, Vienna..
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Why is boson sampling computationally hard?

There are exponentially many interfering paths!

The N-photon probability is a matrix permanent

P =

∣∣∣∣∣∑
σ

∏
i

Ti ,σ(i)

∣∣∣∣∣
2

Here T =
√
1− γU : U is an N×N (sub)unitary, γ a loss

Standard methods take N×2N operations
TRILLIONS of years for N = 100 at 1GFlop
Impossible even on the largest supercomputers
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How do we know the QC works at large N ?

Requirements for verification of boson sampling
Must be measurable in finite time
Must be calculable in finite time
Must distinguish different unitaries
Must be universal - almost all unitaries
Must be non-forgeable: no VW mode!
Many suggestions: none do all this
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The complex P-representation

The contour can be a closed path
Case of an M-mode state, occupations nj :

P (ααα,βββ ) = ∏
j

[
nj !

2π i

]2 eαjβjdαjdβj

(αjβj)
1+nj

Any contour that encloses the origin is OK; we let αi = r exp
(
iφ α

i

)
.

Can also use a sum over d >Max(nj) discrete phases.
See: Physical Review A 94, 042339 (2016), arXiv1605.05796,
1609.05614

χ (ξξξ ) =
∮

. . .
∮

P (ααα,βββ )eξξξ ·T ∗βββ−ξξξ
∗·Tαααdαααdβββ .
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What is the transfer matrix?

The matrix T includes linear couplings and losses
We consider the case of T =

√
tU , in which:

U is the the unitary mode transformation U of the photonic
network
transmission coefficient t = 1− γ combines losses and detector
inefficiencies
T can be considered a submatrix of a larger unitary that
includes couplings to unobserved reservoirs.
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Unitary averages can be calculated exactly

We need an exact analytic theory for scaling laws
So, we take averages over all unitaries
This can be carried out EXACTLY
Can predict scaling laws for any size matrix!

Thanks to Yan Fyodorov’s nice theorem!
Unitary averaging methods integrate over a Haar measure.
Fyodorov’s theorem averages over exponentials of matrix traces
This allow us to average permanents analytically
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Unitary averaging

How do we interpret the physics?
The output coherence properties ONLY depend on βββ ·ααα ,
Phase-space equivalent of the total input photon number N̂ :

〈
χ
(out) (ξξξ )

〉
U

= (M−1)!
M

∑
j=0

(
−t |ξξξ |2

)j 〈
: N̂ j :

〉
j ! (M−1+ j)!

After unitary averaging, it doesn’t matter where the photons
originate: any mode or combination is OK!

P. D. Drummond (Centre for Quantum and Optical Science, Swinburne University of Technology. )Simulating quantum computers with probabilistic methods: Tokyo ImPACT lecture 3 – Boson sampling & XY machines20 / 50



Next, let’s calculate the photon
correlations

Photon correlations are just derivatives of the
photon-number generator

G (γγγ)≡ Tr
(

ρ̂ ∏i (1− γi )
n̂i
)

=
∫ ∫

∏i

[
1

πγi
exp
(
−|ξi |2

γi

)]
χ (ξξξ )d2mξξξ

A case of special interest is PN|M , the probability of observing 1
photon in each of N channels, given a N-photon input and an
M-mode network. This is found on taking n first derivatives of G (γγγ),
so that:

PN|M =
tN (M−1)!N!

(M−1+N)!
= tN

[
CM+N−1
N

]−1
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First type of asymptotic scaling law

Scaling for count-rates of just one set of channels

For the general case, the scaling exponent is
ε = log t +k logk− (1+k) log(1+k), and the asymptotic result is:

logPN|M ∼
n→∞

Nε +
1
2
log [2πN(1+1/k)] (1)

Note, here k = M/N is the channel ratio of filled to
unfilled channels.
If k = 1, then we get the highest count-rates possible, i.e.,
ε = log (t/4). This means that many counts are ’lost’ because they
result in two-photon (or more) outputs in a single channel - the
Hong-Ou-Mandel effect.
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How does this look?
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Figure: Average sub-unitary permanent squared PN|M with t = 1 for
k = 1,2,4,6, with k = 1 at the top and k = 6 at the bottom.
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Problem: count rates are very low!!

Let’s estimate the typical count rate

Take a photon number of N = 24 - not that large
Assume perfect efficiency, ie t = 1
Assume a small channel ratio, ie k = 2
Assume a high repetition rate of 1012Hz
Average permanent-squared is ∼ 10−18

Need 12 days to get just one count!!
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Second type of asymptotic scaling law

Scaling for count-rates of any set of combined
channels

For the combined case, the scaling exponent is
λ = log t +2k logk− (k−1) log(k−1)− (k +1) log(k +1), so that
the scaling is:

logRN|M ∼
n→∞

Nλ +
1
2
log
[
k +1
k−1

]
(2)

Note, in this case a high channel ratio is best
If k → ∞, then we get the highest count-rate possible,
i.e.,λ → log t−1/k .
cf Arkhipov & Kuperberg: ’Birthday Paradox’
Carolan et al experiments, Bristol.
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Verifying boson sampling with channel
grouping
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Figure: Upper bound on count-rates RN|M for N photons occurring,
without bunching, in any N output channels, for k = 2, . . .6, with k = 6 at
the top.
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Physical interpretation

Let’s estimate the typical count rate
Consider a number much too large for exact permanents

Take a photon number of N = 100 - very large
Assume imperfect efficiency, ie t = 0.9
Assume a large channel ratio, ie k = 6
Assume a high repetition rate of 1012Hz
Sum of permanent-squared is ∼ 10−12

Get a count per second - feasible?
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Also need results for individual unitaries

Let ζj ≡ exp(iφj) be randomly distributed on a unit circle

perm(
∣∣∣T̃ (S ,S ′)∣∣∣2) =

〈
∏
j∈S

(
ζjζ
′
j

)∗
∏
k∈S ′

mk

〉
mk = nk/r

2 ≡ ∑j ,j ′∈S TkjζjT
∗
kj ′ζ

′
j ′

Like Gurvitz approximation, but unbiased for permanent squared
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Numerical averages for k = 5,10 :
100 random unitaries, 107 samples
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Average sub-unitary permanent squared PN |M :

How do we interpret this result?
Complex-P error in |P |2 decreases rapidly with matrix-size N

But, the experimental sampling error is proportional to |P |
We calculate |P |2 better than experiment!
Don’t generate a digital bitstream - doesn’t solve a #P problem
Can verify ANY possible N-th order correlation!
Problem: correlations too small to measure at large N
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Calculating ALL submatrix permanents

An efficient Fourier transform is used:

∑
S ′
perm(

∣∣∣T̃ (S ,S ′)∣∣∣2) =

〈
CN ∏

j∈S

(
ζjζ
′
j

)∗〉

CN =
1
M ∑

j

e−ijNφ
M

∏
k=1

[
1+ e ijφmk

]

All N×N subpermanents computed in parallel!
Gives enormous speed-up compared to summing permanents
Not fast enough to reach N = 100
Need analytic formulae at large N
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Combining 1034 distinct 30×30
subpermanents of a 180×180 matrix

A large random unitary is its own ensemble?
We average over 1034 30×30 submatrices
Takes over 1010 lifetimes of the universe classically
Count rates: identical to the full unitary average
Large-N unitary averages give single-matrix averages
Provides a way to verify boson sampling at arbitrary N

Problem: fails to distinguish large-N unitaries

P. D. Drummond (Centre for Quantum and Optical Science, Swinburne University of Technology. )Simulating quantum computers with probabilistic methods: Tokyo ImPACT lecture 3 – Boson sampling & XY machines32 / 50



Boson sampling verification by testing nulls

Measure N single counts in any of M−p channels
Treat the null channels as losses
Advantages: scalable, depends on N-boson correlation
Distinguishes between the different possible unitaries
Leads to an analytic conjecture for all N values

Asymptotic coincidence probability is:
Conjecture :

limN→∞PN |(kN−1) =
tNj (kN−1)!(kN−2)!

(kN−N−1)!(kN+N−2)!

where: tj =
(
1−∑

N
i=1
∣∣Uj ,i

∣∣2 /N)
is the effective loss for deletion of channel j .
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Conjecture verified numerically:
combined counts, N = 20, k = 6:
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Boson-sampling interferometry
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Heisenberg advantage is immune to
phase-errors!
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Physical interpretation

Heisenberg interferometry is a huge advantage

Appears feasible with large boson networks
First practical application of boson sampling
Complex-P allows calculation up to 100x100
Confirms analytic conjecture by Motes et al
Over a trillion years with classical methods
May be applicable to BEC as well?

P. D. Drummond (Centre for Quantum and Optical Science, Swinburne University of Technology. )Simulating quantum computers with probabilistic methods: Tokyo ImPACT lecture 3 – Boson sampling & XY machines37 / 50



XY dynamics in a planar NDPO

Consider non-degenerate paramp in a planar cavity
Many quantum correlated, entangled quadratures
Possible candidate for a QC hardware
Nonclassical correlations in many modes
Wish to predict behaviour from first principles
See: J. Opt. Soc. Am. B 33, 871-883 (2016).

Preliminary analysis -
What is the universality class?
Unsqueezed quadratures are 2D XY model
Tricritical Lifshitz point: like magnetic system
Squeezed quadratures - unknown universality
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Hamiltonian

Ĥ = Ĥfree + Ĥint + Ĥpump + Ĥres ,

Free evolution and interaction Hamiltonian inside the planar cavity,
pump (i = 0) plus two downconverted fields (i = 1,2) with different
polarizations, plus drive and damping:

Ĥfree =
2

∑
i=0

h̄
∫

d2x Â†
i

[
ωi −

v2
i

2ωi
∇

2
]
Âi .

Ĥint = i h̄
∫

d2x
[
χÂ0Â

†
1Â

†
2−χ

∗Â†
0Â1Â2

]
.

Boson fields obey:
[
Âi (x , t), Â†

j (x ′, t)
]

= δijδ (x−x ′) .
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Exact positive P-representation equation

ρ̂ =
∫
d6M α̃ααd6M α̃αα

+Λ̂
(
α̃αα, α̃αα+)P (α̃αα, α̃αα+) ,

Quantum problem mapped into an exact stochastic equivalent,

∂A0

∂ t
=−γ̃0A0 +E (x)−χ

∗A1A2 +
iv2

0
2ω0

∇
2A0 ,

∂A1

∂ t
=−γ̃1A1 + χA0A

+
2 +

iv2
1

2ω1
∇

2A1 +
√

χA0ξ1 ,

∂A2

∂ t
=−γ̃2A2 + χA0A

+
1 +

iv2
2

2ω2
∇

2A2 +
√

χA0ξ2 ,

Stochastic noise fields obey:〈ξ1(x , t)ξ2(x ′, t ′)〉= δ (x−x ′)δ (t− t ′)
with A→A+, ξξξ → ξξξ

+ for hermitian conjugate fields. Construct
from real noises using ξ1,2(x , t) = [ξx(x , t)± iξy (x , t)]/

√
2.

P. D. Drummond (Centre for Quantum and Optical Science, Swinburne University of Technology. )Simulating quantum computers with probabilistic methods: Tokyo ImPACT lecture 3 – Boson sampling & XY machines40 / 50



Critical point analysis

Steady-state: A1A
∗
2 = A1A

∗
2 |χA0|2/(γ̃1γ̃∗2 )

Below threshold: A1A
∗
2 = 0

Above threshold: |χA0|2 = γ̃1γ̃∗2 . Both coincide, at critical pump
intensity:

|Ec |2 = γ̄
2 |γ̃0/χ|2 .

Define αi = x0Ai , X =
√
g
(
α1 + α

+
2
)
, X+ =

√
g
(
α2 + α

+
1
)

Universal stochastic equations near threshold -

∂X
∂τ

= D̃X −|X |2X + ζ̃ζζ ,

where ζ̃ζζ is a noise vector and D̃ =−η1 + η2∇2
r −η3∇4

r is a nonlocal
derivative.
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How does it get this simple?

Critical point adiabatic elimination
Near the critical point, the fluctuations in X are very slow, while Y
responds on the fast relative time scale 1/γ . We can drop terms of
O(
√
g) where g � 1, and approximate the equations as follows:

∂X

∂τ
= −

(
1−µ

g

)
X +

(
∆
√
g
−∇

2
r

)
Y −X 2X+ + ζ+ ,

∂X+

∂τ
= −

(
1−µ

g

)
X+ +

(
∆
√
g
−∇

2
r

)
Y+−X+2X + ζ

∗
+ ,

0 = −(1+ µ)Y + ∇
2
rX ,

0 = −(1+ µ)Y+ + ∇
2
rX

+.
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What happens to the other quadrature?

To lowest order in g , we can eliminate the fast or
non-critical quadrature Y , Y+-

Y (+) =
∇2X (+)

1+ µ
,

Near threshold, the squeezed quadrature is slaved to the
Laplacian of the the unsqueezed quadrature.
Far from threshold this is not the case, and the squeezed
quadrature can explore the phase-space in a way that influences
the dynamics
Quantum –> Classical transition as threshold point is
approached
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Power-law tails in k-space
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Approach to equilibrium: non-Gaussianity
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Non-Gaussian behaviour only for low k
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Universality class

University class is a 2D nonlocal X-Y model:
This is the free energy of a nonlocal planar magnetic interaction,
with X playing the role of a two component vector order
parameter. The planar type-II parametric system is a superb
platform for investigating fluctuations and universal behavior.
Like the Stanford Ising machine, it is a controllable
nonequilibrium system, with potential QC applications.

Open question-
The Ising machine using a DPO, solves NP hard graph problems
Does the X-Y model solve an NP hard problem?
Kagome lattice ground state?
Does the quantum noise enhance solutions?
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Unanswered questions

What is the optimal critical path?
Near the critical point, we may be able to solve problems like a
Kagome lattice.
But this just looks like a classical equation.
Unlikely to have quantum speedup
Can we do better by starting far from critical, so quantum
fluctuations are strong?
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Hybrids: DPO vs NDPO

What is the difference to an OPO?
Professor Mabuchi suggests one could combine DPO and NDPO.
Can we change the detuning so this becomes like a DPO?
Can this avoid being stuck in a non-optimal Ising ground state?
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Conclusions

Promising new, highly diversified QC generation

Relativistic QFT simulation using ultra-cold atoms
Analysed using truncated Wigner simulations
Verification of Boson Sampling, novel metrology
Analysed using ‘Quantum Software’ complex P-functions
New idea: NDPO as a quantum computer?
Analysed with exact positive-P simulations
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