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Photonics and ultracold atoms - ideal quantum systems

Photons: h̄ω � kT ; Atoms: ULTRALOW temperatures to 1nK

What is different about photons and ultracold atoms?
Photons have weak interactions with dielectrics
Retain quantum coherence over long distances
Atoms can be trapped in a hard vacuum
Cooling to nanoKelvins or less
Correlations - mean field theory doesn’t work
Dynamics - time-evolution is very important

P. D. Drummond Simulating quantum computers with probabilistic methodsNovember 4, 2016 3 / 47



Photonics and ultracold atoms - ideal quantum systems

Photons: h̄ω � kT ; Atoms: ULTRALOW temperatures to 1nK

What is different about photons and ultracold atoms?
Photons have weak interactions with dielectrics
Retain quantum coherence over long distances
Atoms can be trapped in a hard vacuum
Cooling to nanoKelvins or less
Correlations - mean field theory doesn’t work
Dynamics - time-evolution is very important

P. D. Drummond Simulating quantum computers with probabilistic methodsNovember 4, 2016 3 / 47



Typical photonic experiment (Tokyo, Stanford)
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Typical atomic experiment (Orsay, ANU)
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How to calculate dynamics?

Classical solution: - use Hamilton’s equations

ṗi = −∂H

∂qi

q̇i =
∂H

∂pi

Quantum mechanics replaces classical quantities with operators:

[q̂i , p̂j ] = i h̄δij

[q̂i , q̂j ] = [p̂i , p̂j ] = 0

Then, for any operator Ô, in the Heisenberg picture:

∂ Ô

∂ t
=

1
i h̄

[
Ô, Ĥ

]
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What about mixtures of states?

Suppose the quantum system is in a mixture of quantum states |ψm〉 with
probability pm . Then the density matrix ρ̂ is defined as:

ρ̂ = ∑
m

pm |ψm〉〈ψm|

In the Schroedinger picture, we let states evolve in time, not operators!

∂ ρ̂

∂ t
=

1
i h̄

[
Ĥ, ρ̂

]
Then, for any operator Ô, the expectation value of the observable is:〈

Ô
〉

= Tr
[
ρ̂Ô
]
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What is the quantum field Hamiltonian anyway?

Here Ψ̂i is a bosonic field of spin/frequency index i :[
Ψ̂i (x),Ψ̂†

i (x′)
]
±

= δijδ
D(x−x′)

In second quantization the quantum Hamiltonian is

Ĥ = ∑
i

∫
dDx

{
h̄2

2m
∇Ψ̂†

i (x) ·∇Ψ̂i (x) +U
(1)
i (x)Ψ̂†

i (x)Ψ̂i (x)

}
∑
ijk

∫
dDx

{
U

(2)
ijk (x)Ψ̂†

i (x)Ψ̂j(x)Ψ̂k(x) +h.c .
}

+ ∑
ij

1
2

∫
dDxU(3)

ij (x)Ψ̂†
i (x)Ψ̂†

j (x)Ψ̂j(x)Ψ̂i (x) .
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What are the parameters?

This describes a dilute gas of photons or atoms:

〈Ψ̂†
i (x)Ψ̂i (x)〉 is the spin i particle density,

m is the effective mass, or equivalent dispersion coefficient

U
(1)
i is the trapping potential

U
(2)
ijk is the parametric coupling for downconversion

U
(3)
ij is χ(3) for photons, S-wave scattering for atoms

Here we implicitly assume a momentum cutoff kc
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How do we treat quantum fields?

Any field operator Ψ̂ can be expanded in orthogonal modes:

Ψ̂(x) = ∑ âmum (x)

Where:
∫
d3x u∗m (x)un (x) = δmn

Nonvanishing field (anti)-commutators are given by:[
Ψ̂(x) ,Ψ̂† (x′)]

±
= δ

3 (x−x′)

(+) = anticommutator (FERMION) and
(−) = commutator (BOSON)
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Local Mode Operators

Assume that the mode operators are localized on a lattice
Take a discrete Fourier transform to get localized modes
Spin and position indices = {sk ,rk} with lattice volume ∆V :

âi =
√

∆V Ψ̂sk rk

In the case of bosonic (fermionic) fields, the commutators
(anticommutators) are defined as:{

âi , â
†
j

}
±

= δij

The Hamiltonian is exact for a large number of sites:

Ĥ(â†, â)≈ h̄

[
ωij â

†
i âj + χijk â

†
i âj âk +

1
2

κij n̂i n̂j

]
.
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What do the mode operators do?

Bosons ↔ harmonic oscillators; fermions ↔ two-level atoms

â† |N〉= δN |N +1〉 (FERMION)

â† |N〉=
√
N +1 |N +1〉 (BOSON)

â |N〉=
√
N |N−1〉

Hence the single mode number operator is N̂ = â†â:

N̂ |N〉= â†â |N〉= â†
√
N |N−1〉= N |N〉

In the FERMION case, you can only have N = 0,1
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What quantum states can we have?

Quantum states are generated from the vacuum state
Number states:

|N1, . . .Nm〉=
(ψ1)N1 . . .

(
a†
m

)Nm

√
N1! . . .Nm!

|0〉

Properties:
〈M|N〉= δN1M1 . . .δNmMm

Fermion case: must have Nj = 0,1

All other states can be generated using linear combinations
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Example: single mode coherent state

Single mode coherent state has a well-defined phase
Boson coherent state:

|α〉= eα â†−|α|2/2 |0〉= e−|α|
2/2

∞

∑
N=0

αN

√
N!
|N〉

Fermion coherent state: requires Grassmann algebra (not treated)

Important properties:

|〈α| β 〉|2 = e−|α−β |2

â |α〉= α |α〉
〈α| â†â |α〉= |α|2
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Simplest method for state evolution

Suppose the quantum system is described by a few modes:

|ψ〉= ∑ψN |N1,N2, . . .Nm〉= ∑ψN |N〉

Then, let HNM = 〈N| Ĥ |M〉 and: ddt |ψ〉=− i
h̄ Ĥ |ψ〉

Hence, we have a simple matrix equation:

d

dt
ψN =− i

h̄ ∑
M
HNMψM
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Problem: quantum theory is exponentially complex!

Quantum many-body problems are very large
consider N particles distributed among M modes
take N 'M ' 500,000:
Number of quantum states: Ns = 22N = 21,000,000

More quantum states than atoms in the universe
How big is your computer?
Can’t diagonalize 21,000,000×21,000,000 Hamiltonian!
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What about losses and damping?

Damping can be treated using a master equation
The density matrix ρ̂ evolves as:

d ρ̂

dt
=− i

h̄

[
Ĥ, ρ̂

]
+∑

j

κj

∫
d3rLj [ρ̂]

Here the Liouville terms describe coupling to the reservoirs:

Lj [ρ̂] = 2Ôj ρ̂Ô
†
j − Ô†

j Ôj ρ̂− ρ̂Ô†
j Ôj

For n-particle collisions: Ôi =
[
Ψ̂i (r)

]n
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Traditional quantum theory methods?

numerical diagonalisation?
intractable for & 10 modes

operator factorization
not applicable for strong correlations

perturbation theory
diverges at strong couplings, large order

exact solutions
not usually applicable to quantum dynamics
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Quantum theory in classical phase-space

Properties of Wigner/Moyal phase-space
Maps quantum states into classical phase-space α = p+ ix

Wigner first published this representation
Moyal showed equivalence to quantum mechanics
Complexity grows only linearly with number of modes!

Problem: Wigner distribution can have negative values

Need to truncate equations to get positive probabilities
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Detailed equivalence

Mapping of characteristic functions

W (ααα) =
1

π2M

∫
d2Mz

〈
e iz·(â−ααα)+iz∗·(â†−ααα∗)

〉

Operator mean values〈
â†m
i ânj

〉
SYM

=
∫
d2Mαααα∗mi αn

j W (ααα) =
〈

α∗mi αn
j

〉
W

〈âj〉= 〈αj〉W〈
â†
i âj + âi â

†
j

〉
/2 = 〈α∗i αj〉W
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â†m
i ânj
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Dynamical equivalence

Mapping of dynamical equations

∂W (ααα)

∂ t
=

1
π2M

∫
d2MzTr

[
∂ ρ̂

∂ t
e iz·(â−ααα)+iz∗·(â†−ααα∗)

]

Operator mappings

âj ρ̂ →
(

αj + 1
2

∂

∂α∗j

)
W

ρ̂ â†
j →

(
α∗j + 1

2
∂

∂αj

)
W

â†
j ρ̂ →

(
α∗j −

1
2

∂

∂αj

)
W

ρ̂ âj →
(

αj − 1
2

∂

∂α∗j

)
W
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How do we treat classical fields?

Any field operator ψ can be expanded in orthogonal modes:

ψ (x) = ∑αmum (x)

Where:
∫
d3x u∗m (x)un (x) = δmn

Nonvanishing vacuum expectation values are given by:〈
ψ
∗ (x)ψ

(
x′
)〉

=
1
2

δ
3 (x−x′)
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Example: Wigner function for a coherent state

Suppose we have a single mode system in a coherent state

ρ̂ = |α0〉〈α0|

Hence:
W (α) =

1
π2

∫
d2z 〈α0|e iz ·(â−α)+iz ·(â†−α∗) |α0〉

Solution with a little algebra

W (α) =
2
π
e−2|α−α0|2

This solution gives 〈α∗α〉= 1/2 for a vacuum state
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Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator

Ĥ= h̄ω â†â

∂ ρ̂

∂ t
=−iω

[
â†âρ̂− ρ̂ â†â

]
Operator mappings

â†âρ̂ →
(

α∗− 1
2

∂

∂α

)(
α + 1

2
∂

∂α∗

)
W

ρ̂ â†â→
(

α− 1
2

∂

∂α∗

)(
α∗+ 1

2
∂

∂α

)
W

∂W

∂ t
= iω

(
∂

∂α
α− ∂

∂α∗
α
∗
)
W
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]
Operator mappings
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Harmonic oscillator solution

General result for harmonic oscillator
∂W

∂ t
= iω

(
∂

∂α
α− ∂

∂α∗
α
∗
)
W

Solution by method of characteristics

∂α

∂ t
=−iωα

α(t) = α(0)e−iωt
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Fokker-Planck equations

Result of operator mappings:

∂W

∂ t
=

{
− ∂

∂αi
Ai +

1
2

∂ 2

∂αi∂α∗j
Dij +

1
6

∂ 3

∂αi∂α∗j ∂α∗k
Tijk + . . .

}
W

Scaling to eliminate higher-order terms

x = α/
√
N

∂W

∂ t
=

{
− 1√

N

∂

∂xi
Ai +

1
2N

∂ 2

∂xi∂xj
Dij +O

(
1

N3/2

)}
W
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Stochastic equation

Result of operator mappings + truncation - valid if N/M >> 1:

∂W

∂ t
=

{
− ∂

∂αi
Ai +

1
2

∂ 2

∂αi∂α∗j
Dij

}
W

Equivalent stochastic equation
∂αi

∂ t
= Ai + ζi (t)

where: 〈
ζi (t)ζ

∗
j (t)

〉
= Dijδ

(
t− t ′

)
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Example: optical fiber/BEC case

Result of operator mappings + truncation - for the GPE:
dψj

dt
= iKjψj − iU

(3)
ij |ψi |2ψj − γjψj +

√
γjζj(x, t)

Here the linear unitary evolution of the wave-function, is described by:

Kj = h̄∇
2/2m−U

(1)
j (r)

while ζi (x, t) is a complex, stochastic delta-correlated Gaussian noise with〈
ζi (x, t)ζ

∗
j (x′, t ′)

〉
= δijδ

3 (x−x′)δ
(
t− t ′

)
.

Initial fluctuations: 〈∆Ψs(x)∆Ψ∗u(x′)〉= 1
2δsuδ 3 (x−x′)
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Parametric waveguide

Result of operator mappings + truncation

dψ0

dt
=−γ0ψ0 +E (x)−χψ1ψ2 +

iv2
0

2ω0
∇

2
ψ0 +

√
γ0ζ0

dψ1

dt
=−γ1ψ1 + χψ0ψ

∗
2 +

iv2
1

2ω1
∇

2
ψ1 +

√
γ1ζ1

dψ2

dt
=−γ2ψ2 + χψ0ψ

∗
1 +

iv2
2

2ω2
∇

2
ψ2 +

√
γ2ζ2

ζi (t) is a complex, stochastic delta-correlated Gaussian noise:〈
ζi (x, t)ζ

∗
j (x′, t ′)

〉
= δijδ

3 (x−x′)δ
(
t− t ′

)
.
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First-principle simulations: the positive-P representation

What do we do with modes having low occupation numbers?
Truncated Wigner only works if all modes are heavily occupied
How about modeling other cases with low occupations:

Example: formation of a BEC must start with low occupation!
collisions that generate atoms in initially empty modes
coupling to thermal modes having low occupation?

We need a technique without the large N approximation
The positive-P representation does not truncate terms
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+P PHASE-SPACE METHODS

The positive P-representation expands in coherent state projectors

ρ̂ =
∫

P(ααα,βββ )Λ̂(ααα,βββ )d2M
αααd2M

βββ

Λ̂(ααα,βββ ) =
|ααα〉
〈
βββ
∗∣∣〈

βββ
∗∣∣ |ααα〉

Enlarged phase-space allows positive probabilities!
Maps quantum states into 4M real coordinates: ααα,βββ = p+ ix,p′+ ix′

Double the size of a classical phase-space
Exact mappings even for low occupations
Advantage: Can represent entangled states
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+P Existence Theorem

For ANY density matrix, a positive P-function always exists

P(ααα,βββ ) =
1

(2π)2M e−|ααα−βββ
∗|2/4

〈
ααα + βββ

∗

2

∣∣∣∣ ρ̂ ∣∣∣∣ααα + βββ
∗

2

〉

Enlarged phase-space allows positive probabilities!
Advantage: Probabilistic sampling is possible
Problem: Non-uniqueness may allows sampling error to grow in time
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Operator identities

Differentiating the projection operator gives the following identities

â†
nρ̂ →

[
βn−

∂

∂αn

]
P

ânρ̂ → αnP

ρ̂ ân →
[

αn−
∂

∂βn

]
P

ρ̂ â†
n → βnP

Since the projector is an analytic function of both αn and βn, we can
obtain alternate identities by replacing ∂/∂α by either ∂/∂αx or ∂/i∂αy .
This equivalence allows a positive-definite diffusion to be obtained, with
stochastic evolution.
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Measurements

How do we calculate an operator expectation value
There is a correspondence between the moments of the distribution,
and the normally ordered operator products.
These come from the fact that coherent states are eigenstates of the
annihilation operator

Using Tr
[
Λ̂(ααα,βββ )

]
= 1:

〈â†
m · · · ân〉=

∫ ∫
P(ααα,βββ )[βm · · ·αn]d2M

ααα d2M
βββ .
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Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator

Ĥ= h̄ω â†â

∂ ρ̂

∂ t
=−iω

[
â†âρ̂− ρ̂ â†â

]
Operator mappings

â†âρ̂ →
[
β − ∂

∂α

]
αP

ρ̂ â†â→
[
α− ∂

∂β

]
βP

∂P

∂ t
= iω

(
∂

∂α
α− ∂

∂β
β

)
P
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Harmonic oscillator solution

General result for harmonic oscillator
∂P

∂ t
= iω

(
∂

∂α
α− ∂

∂β
β

)
P

Solution by method of characteristics

dα

dt
=−iωα

α(t) = α(0)e−iωt

The linear time evolution is exactly the same as for a Wigner function
For coherent states, initial condition is a delta function, not a Gaussian.
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General case

Take a more general Hamiltonian, with nonlinear terms
Then we define

−→
α = (ααα,βββ )≡

(
ααα,ααα+

)
and find using operator mappings that - provided the distribution is
sufficiently bounded at infinity:

∂

∂ t
P(t,−→α ) =

[
∂iAi (

−→
α ) +

1
2

∂i∂jDij(t,
−→
α )

]
P(t,−→α ) .

Comparison of positive-P and Wigner
There are no other terms in +P - higher order derivatives all vanish
Nonlinear couplings cause noise, linear damping does not
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How do we treat +P fields?

Field operators come in conjugate pairs:

ψ (x) = ∑αmum (x)

ψ
+ (x) = ∑α

+
mu∗m (x)

Where:
∫
d3x u∗m (x)un (x) = δmn

Vacuum expectation values are given by:〈
ψ

+ (x)ψ
(
x′
)〉

= 0
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+P equations for the fiber/BEC case

Exact result of operator mappings - assume Uij is diagonal

dψj

dt
= iKjψj − iU

(3)
j ψ

+
j ψ

2
j +

√
−iU(3)

j ψjζj(t)

dψ
+
j

dt
=−iKjψ

+
j + iU

(3)
j ψjψ

+2
j +

√
iU

(3)
j ψ

+
j ζ

+
j (t)

ζi (t) is a real, stochastic delta-correlated Gaussian noise, from
nonlinearities:

〈
ζi (t,x)ζj(t

′,x ′)
〉

= δijδ
(
t− t ′

)
δ
(
x−x ′

)〈
ζ

+
i (t,x)ζ

+
j (t ′,x ′)

〉
= δijδ

(
t− t ′

)
δ
(
x−x ′

)
.
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+P equations in an optical lattice

Single mode case of an anharmonic oscillator

dα

dt
=−iχα

2
β +

√
−iχαζ1(t)

dβ

dt
= iχβ

2
α +

√
iχβζ2(t)

ζi (t) is a real, stochastic delta-correlated Gaussian noise:〈
ζi (t)ζj(t

′)
〉

= δijδ
(
t− t ′

)
.

What happens if we change the sign of χ?
This is the same as reversing the time-direction.
How can stochastic processes be reversible?
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Time-reversal test: up to 1023 interacting bosons

Graph is for 100 photon case
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Phase-space distribution is not unique!

Initial and final quantum states identical, distributions have changed!
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+P equations in a parametric waveguide

Single mode case of an anharmonic oscillator

dψ0

dt
=−γ0ψ0 +E (x)−χψ1ψ2 +

iv2
0

2ω0
∇

2
ψ0

dψ1

dt
=−γ1ψ1 + χψ0ψ2 +

iv2
1

2ω1
∇

2
ψ1 +

√
χψ0ξ1

dψ2

dt
=−γ2ψ2 + χψ0ψ1 +

iv2
2

2ω2
∇

2
ψ2 +

√
χψ0ξ2

ζi (t) is a complex, stochastic delta-correlated Gaussian noise:〈
ζi (x, t)ζj(x′, t ′)

〉
= δijδ

3 (x−x′)δ
(
t− t ′

)
.
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Weighted stochastic gauge equations

Hard quantum problems → tractable stochastic equations
Can improve sampling error using a weight factor Ω

dΩ/∂ t = Ωg ·ζζζ
dααα/∂ t = A+B(ζζζ − g)

Can be used for fermions OR bosons
Many trajectories needed to control growing sampling errors
g is a gauge chosen to stabilize trajectories
A careful choice of basis, gauge and stochastic method is necessary
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BEC collision: 105 bosons, 106 spatial modes

correlations calculated      
from here v

y
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Positive-P vs Truncated Wigner
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3D Truncated Wigner: diverges, too few particles per mode!
+P: converges, but the sampling error increases with time
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SUMMARY

Phase-space representation methods have many applications

Phase-space approach is relatively simple!
Maps quantum field evolution into a stochastic equation
Can also be used to treat interferometry
Advantage: No exponential complexity issues!
Mathematical challenge:

truncation error for Wigner methods
sampling error can grow with time
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