Simulating quantum computers with probabilistic methods

Tokyo Impact Lecture 1: Theory of phase-space representations
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Photonics and ultracold atoms - ideal quantum systems

Photons: Aw < kT; Atoms: ULTRALOW temperatures to 1nK )
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Photonics and ultracold atoms - ideal quantum systems

Photons: Aw < kT; Atoms: ULTRALOW temperatures to 1nK )

Photons have weak interactions with dielectrics

Retain quantum coherence over long distances
Atoms can be trapped in a hard vacuum
Cooling to nanoKelvins or less

Correlations - mean field theory doesn't work

Dynamics - time-evolution is very important
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Typical photonic experiment (Tokyo, Stanfor
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Typical atomic experiment (Orsay, ANU)
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How to calculate dynamics?

Classical solution: - use Hamilton's equations

) oH
i = _aqi
. 0H
q = op;

Quantum mechanics replaces classical quantities with operators:

[ai,B] = 7
[9i,9] = [Pisp]=0

Then, for any operator O, in the Heisenberg picture:
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What about mixtures of states?

Suppose the quantum system is in a mixture of quantum states |y,,) with
probability p,, . Then the density matrix p is defined as:

P =23 Pm|¥m) (¥nl
m
In the Schroedinger picture, we let states evolve in time, not operators!
ap 11~ o
% _ 1155
Jdt ik [ p

Then, for any operator O, the expectation value of the observable is:

(6)=w[po
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What is the quantum field Hamiltonian anyway?

Here \TJ,- is a bosonic field of spin/frequency index i

[\Tr,-(x), Vi (x')] L = 8;8°(x—x)
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What is the quantum field Hamiltonian anyway?

Here \TJ,- is a bosonic field of spin/frequency index i

[\Tz,-(x), Vi (x')] L = 8;8°(x—x)

v

In second quantization the quantum Hamiltonian is

Z/dD U (0T} (0; () Wk(x) + hoc.}

ijk

+ Z / dPx U ()W () VT () (x) ¥ (x)

v
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What are the parameters?

This describes a dilute gas of photons or atoms:

° <\/|\/,T(X)\/l\f,(x)> is the spin /i particle density,

@ m is the effective mass, or equivalent dispersion coefficient
(1) - : .
e U;" is the trapping potential
U,-(jz) is the parametric coupling for downconversion

(3)
Uj

Here we implicitly assume a momentum cutoff k.

is x3) for photons, S-wave scattering for atoms
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How do we treat quantum fields?

Any field operator W can be expanded in orthogonal modes:

W (x) =Y dmtm (x)
Where: [ d3x v, (x) up(X) = Smn
Nonvanishing field (anti)-commutators are given by:

[\TJ (x), U7 (x')] =53 (x—x)

+

(+) = anticommutator (FERMION) and
(—) = commutator (BOSON)
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Local Mode Operators

Assume that the mode operators are localized on a lattice

Take a discrete Fourier transform to get localized modes
Spin and position indices = {s,rx} with lattice volume AV:

4 =VAVV,,,

In the case of bosonic (fermionic) fields, the commutators
(anticommutators) are defined as:

{éi’éj}i = 9%

The Hamiltonian is exact for a large number of sites:

~ N VSN 1 PN
H(aT,a) ~ h [a),-ja:faj +x,-jka,Tajak T EK,-J-n,-nj
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What do the mode operators do?

Bosons <+ harmonic oscillators; fermions < two-level atoms

3" |N)= &y |N+1) (FERMION)
3" IN)=VN+1|N+1) (BOSON)
AIN)=VN|N—1)

A

Hence the single mode number operator is N = 57 4:

N|N) = 575|N) = 8TV N|N—1) = N|N)

In the FERMION case, you can only have N =0,1
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What quantum states can we have?

Quantum states are generated from the vacuum state

@ Number states:

@ Properties:
<M‘ N> = 6N1[\/[1 e 6NmMm

@ Fermion case: must have N; =0,1

All other states can be generated using linear combinations
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Example: single mode coherent state

Single mode coherent state has a well-defined phase

@ Boson coherent state:

o) = ad’—|af? 210) = e —Jaf?/2 Z f‘/\”

e Fermion coherent state: requires Grassmann algebra (not treated)

Important properties:
(] B = el bF
ala) = ofar)

At a 2
(o] 3'3]a) = |
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Simplest method for state evolution

Suppose the quantum system is described by a few modes:

W)=Y wn [N, Na,... N = )y [N)
Then, let Hum = (N|H|M) and: < |y) = — LA |y)
Hence, we have a simple matrix equation:

d i
—yn=—1 Y H
dt‘VN i NM YMm
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Problem: quantum theory is exponentially complex!

Quantum many-body problems are very large

@ consider N particles distributed among M modes
take N ~ M ~ 500, 000:
Number of quantum states: Ny = 22NV = 21,000,000
More quantum states than atoms in the universe
How big is your computer?

Can’t diagonalize 21:000,000 5 21,000,000 Hamjltonian!

P. D. Drummond Simulating quantum computers with prok November 4, 2016 16 / 47



What about losses and damping?

Damping can be treated using a master equation

@ The density matrix p evolves as:

B iy . oo
dt——ﬁ[H,phJZK,/drz[p]

@ Here the Liouville terms describe coupling to the reservoirs:

~ o~ n
@ For n-particle collisions: O; = [\U,-(r)}
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Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for = 10 modes
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Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for = 10 modes

@ operator factorization
not applicable for strong correlations
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Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for = 10 modes

@ operator factorization
not applicable for strong correlations

@ perturbation theory
diverges at strong couplings, large order
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Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for = 10 modes

@ operator factorization
not applicable for strong correlations

@ perturbation theory
diverges at strong couplings, large order

@ exact solutions
not usually applicable to quantum dynamics
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Quantum theory in classical phase-space

Properties of Wigner/Moyal phase-space

@ Maps quantum states into classical phase-space a = p+ ix
e Wigner first published this representation
@ Moyal showed equivalence to quantum mechanics

o Complexity grows only linearly with number of modes!

Problem: Wigner distribution can have negative values

@ Need to truncate equations to get positive probabilities
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Detailed equivalence

Mapping of characteristic functions

W(a) 1 d2MZ<eiz-(éfa)+iz*-(ﬁTfa*)>

_ 2M
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Detailed equivalence

Mapping of characteristic functions

W (a)= 1 J2M5 < iz-(a—a)+iz"-(a" - a)>

7'L'2M

Operator mean values

Atm an _ 2M *m N _ *m ~ N
° <ai aj>SYM_fd ao; Mo W(a)_<a,- aj>W

° (3j) = {(aj)y
o (alg+a4]) /2= (oras)y,
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Dynamical equivalence

Mapping of dynamical equations

n

W (@) 1 /dzMzTr [‘3!;eiz~(a—a)+iz*~(a'*'—a*)]

at  mweM
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Dynamical equivalence

Mapping of dynamical equations

n

W (@) 1 /dzszr [aafzeiz~(é—a)+iz*~(ﬁ"'—a*)]

at  mweM

v

Operator mappings

> éjﬁ—><aj+%aif)w
° ﬁAJT—><aJ’-“—|—%ai%)W
° A}ﬁ—>(aj—%%j>w
° ﬁAj*(O‘J_%aZ;)W
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How do we treat classical fields?

Any field operator y can be expanded in orthogonal modes:

v(x)= Z U Um (X)

Where: [ d3x v, (X) up(X) = Smn
Nonvanishing vacuum expectation values are given by:

(W 6w () = 58 ()
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Example: Wigner function for a coherent state

Suppose we have a single mode system in a coherent state

p = |ao) (ool

Hence: .
W (a) = ?/dzz«xo‘eiz'(é—a)-i-iz'(é’—a*)

OCo>

Solution with a little algebra

©
\

W () = Ze2lo—0of’

A\

This solution gives (a*a) = 1/2 for a vacuum state
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Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator
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Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator

.
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Harmonic oscillator solution

General result for harmonic oscillator
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Fokker-Planck equations

Result of operator mappings:

ow d 1 92 1 23

MG Sy P AN ) P W A—
ot 9w’ 2000a ' 6dcdadn;

Scaling to eliminate higher-order terms

x=a/VN

ow 1 4 1 92 1
T =\ ot a0 () | W
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Stochastic equation

Result of operator mappings + truncation - valid if N/M >> 1:

ow ) 1 92
ot {‘a—a/"'+ 290,00 DJ} v

y

Equivalent stochastic equation

8a; A ]
e A;+Ci(t)

where:

(Gi(t)&/ (1)) = Dyé (t—t')
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Example: optical fiber/BEC case

Result of operator mappings + truncation - for the GPE:

dy; . .
— = K- iU i Py — v+ V3G (%, 1)

Here the linear unitary evolution of the wave-function, is described by:
1
K; = 7v2/2m— U™ (r)

while §j(x,t) is a complex, stochastic delta-correlated Gaussian noise with

(i, )& (X, t')) = §;8% (x—x) & (t— 1) .

Initial fluctuations: (AW(x)AW} (X)) = 585,63 (x—x)
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Parametric waveguide

Result of operator mappings + truncation

d

%Z—YOW(H'@@() %W1W2+7V2‘I/o+\r50
d

%:—?’ﬂl’ﬁr%%v/ﬁfvz vi+vné

dyn 2 2 2

rz_ —V

g 72W2+X1I/01I/1+2w2 Vo + /76

i(t) is a complex, stochastic delta-correlated Gaussian noise:

<C,(x t)C (X, t)> :5,-]53 (x—x’)5(t—t’) .

v
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First-principle simulations: the positive-P representation

What do we do with modes having low occupation numbers?

@ Truncated Wigner only works if all modes are heavily occupied

@ How about modeling other cases with low occupations:

o Example: formation of a BEC must start with low occupation!
e collisions that generate atoms in initially empty modes
e coupling to thermal modes having low occupation?

@ We need a technique without the large N approximation

@ The positive-P representation does not truncate terms
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+P PHASE-SPACE METHODS

The positive P-representation expands in coherent state projectors

p= [ Pla.B)N(. )  ac?B

@) (B"|
(B[ e

Ne,B) =
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+P PHASE-SPACE METHODS

The positive P-representation expands in coherent state projectors

p= [ Pla.B)N(. )  ac?B

_la) (B’

Enlarged phase-space allows positive probabilities!

Maps quantum states into 4M real coordinates: @, = p+ ix,p’ +ix
Double the size of a classical phase-space

Exact mappings even for low occupations

e 6 o6 o

Advantage: Can represent entangled states
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+P Existence Theorem

For ANY density matrix, a positive P-function always exists

o~

aJ;B*>
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+P Existence Theorem

For ANY density matrix, a positive P-function always exists

o|)

S— ~|a—p* | /4
Pla.p)= (27t) <

Enlarged phase-space allows positive probabilities!

@ Advantage: Probabilistic sampling is possible

4

@ Problem: Non-uniqueness may allows sampling error to grow in time

V.
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Operator identities

Differentiating the projection operator gives the following identities

U 0
aj;p — |:BI7 aan:|
a,p — a,P
pa, — [a,, i} P
B,
pal — B.P ]

Since the projector is an analytic function of both «, and f3,, we can
obtain alternate identities by replacing d/da by either d/d o or d/ide.
This equivalence allows a positive-definite diffusion to be obtained, with
stochastic evolution.
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Measurements

How do we calculate an operator expectation value

@ There is a correspondence between the moments of the distribution,
and the normally ordered operator products.

@ These come from the fact that coherent states are eigenstates of the
annihilation operator

@ Using Tr [K(a,ﬁ)] =1

@20 = [ [ PeB)Bn-nld™ad?B.

P. D. Drummond Simulating quantum computers with prok November 4, 2016 34 / 47



Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator
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Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator
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Harmonic oscillator solution

General result for harmonic oscillator

ot ' “\aa" " 9B

v

Solution by method of characteristics

d_OC = —i0o
dt

The linear time evolution is exactly the same as for a Wigner function
For coherent states, initial condition is a delta function, not a Gaussian.
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General case

Take a more general Hamiltonian, with nonlinear terms

Then we define

o =(a,B)=(a,a")
and find using operator mappings that - provided the distribution is
sufficiently bounded at infinity:
@
at

P(t, @) = [a,-A,-(ﬁ)%a,-ajD,-j(t,ﬁ)} P(t, ).

Comparison of positive-P and Wigner

@ There are no other terms in +P - higher order derivatives all vanish

@ Nonlinear couplings cause noise, linear damping does not
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How do we treat +P fields?

Field operators come in conjugate pairs:

v(x)= Z OtmUm (X)
v (x) =} o, (%)

Where: [ d3x v, (x) up(X) = Smn
Vacuum expectation values are given by:

(V" (v (x))=0
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+P equations for the fiber/BEC case

Exact result of operator mappings - assume Uj; is diagonal

dy;, . . 1
T = = U iUy ()

dyt . _ :
=K iUy ? iUyt o (1)

i(t) is a real, stochastic delta-correlated Gaussian noise, from
nonlinearities:

(G(E0G(E X)) = 858 (1) 8 (x—)
(GH(EXG(Ex) ) = 86 (t— 1) 8 (x—x') .
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+P equations in an optical lattice

Single mode case of an anharmonic oscillator

do

= i Bt/ —ixadi()
T NG

Ci(t) is a real, stochastic delta-correlated Gaussian noise:

(G(05() = 8;8 (¢~ 1) -

@ What happens if we change the sign of 7

@ This is the same as reversing the time-direction.

@ How can stochastic processes be reversible?

v
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Time-reversal test: up to

” (a) Reversal
B
2
-5t
-10¢
0 O:2 0:4 0:6 0:8 1

Graph is for 100 photon case
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Phase-space distribution is not unique!

1 (a)

Relative frequency
o
o (9)]

Initial and final quantum states identical, distributions have changed!
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+P equations in a parametric waveguide

Single mode case of an anharmonic oscillator

dyo ivg 2
d¥o_ _ &(x) — Ny

It YoWo + & (x) %ll/11l/2+2w0 Yo

d iv2
%: N1+ XVYovy2+ 71V21V1 + VA Wo&1
dl[/2

a2 +XVoy1 + 7V21I/2 + VA Vo&2

i(t) is a complex, stochastic delta-correlated Gaussian noise:

<C,'(X, t)é}(x/7 t,)> = 6’163 (X - xl) 6 (t_ t,) :

v
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Weighted stochastic gauge equations

Hard quantum problems — tractable stochastic equations

Can improve sampling error using a weight factor Q

dQ/dt=Qg-§
da/dt=A+B({—g)

e Can be used for fermions OR bosons
e Many trajectories needed to control growing sampling errors
e g is a gauge chosen to stabilize trajectories
o A careful choice of basis, gauge and stochastic method is necessary
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BEC collisio

correlations calculated Yy
from here vy:vy

. ~second condensate
original - . “_ produced by Bragg
condensate - ,.‘\w;""“2"\}"""‘”“évv,,,,,,”“/z_ioptica‘l)ransition

\ )

atoms scattered into
an = spherical shell
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Positive-P vs Truncated Wigner

T 300} e o ]
R v */

£

= 200" Truncated I
X Wigner '

@ 100 Y .
Z‘ N u’,\

» E ‘Wrn .

% 0 ) exact 7 T

o N (Positive P) T

-40 -30 -20 -10 0 10 20 30 40

v, [mm/s]

3D Truncated Wigner: diverges, too few particles per mode!
+P: converges, but the sampling error increases with time
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SUMMARY

Phase-space representation methods have many applications ]
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SUMMARY

Phase-space representation methods have many applications J

Phase-space approach is relatively simple!

@ Maps quantum field evolution into a stochastic equation

@ Can also be used to treat interferometry
@ Advantage: No exponential complexity issues!
o Mathematical challenge:

e truncation error for Wigner methods
e sampling error can grow with time
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