
Quantum Neural Network

- Optical Neural Networks operating at the Quantum Limit -

Preface

We describe the basic concepts, operational principles and expected performance of a novel

computing machine, “quantum neural network (QNN)”, in this white paper.

There are at least three quantum computing models proposed today: they are unitary

quantum computation, adiabatic quantum computation and dissipative quantum computa-

tion models. As summarized in Table I, the unitary quantum computation model[1] should

be realized in a system well isolated from external worlds (reservoirs) so that the internal

quantum states are protected from any decoherence effect. A gate-based quantum computer,

consisting of sequential one-bit and two-bit gates, implements this quantum computational

model.Only after whole computation processes are completed with unitary rotation of state

vectors (qubits), the computational result is extracted by carefully designed quantum in-

terference processes and projective measurements[1, 2]. A theoretical description of this

quantum computational model is well established and a physical picture is transparent.

However, such a quantum system is not robust against external noise injection and gate er-

rors. This type of quantum computer is a linear interferometer in its very nature and good

at finding a hidden period or structure if a given problem has indeed the periodicity[2] or the

specific structure[1]. It is shown that the adiabatic quantum computation is mathmatically

equivalent to the unitary quantum computation[3] and the above vulnerability to external

noise injection is also the case for the adiabatic quantum computation to some extent.

If a given mathematical problem does not have any structure, however, the unitary quan-

tum computation is not necessary efficient in finding a solution. Combinatorial optimiza-

tion problems, such as traveling salesman problems (TSP), quadratic assignment problems

(QAP), satisfiability problems (k-SAT) and maximum cut problems (MAX-CUT), do not

have such internal periodicity or specific structures, for which the Grover algorithm is known

as an optimum method for the unitary quantum computation to find the solution[4]. In

Grover’s algorithm, the initial state has equal probability amplitudes for all candidate states

of 2N , i.e. the probability amplitude of each state is 1/
√
2N , where N is the problem size
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Table I: Two quantum computational models.

in bits. Then, the optimum solution (state) is identified by some means and the probabil-

ity amplitude of this state is increased by 2/
√
2N with a linear interference effect, while the

probability amplitudes for all the other states are decreased by a small amount to satisfy the

normalization condition. By repeating this process (Grover iteration)
√
2N times, the prob-

ability amplitude for the solution state reaches one and those for all the other (non-solution)

states are reduced to zero, as shown in Fig. 1(a). Then, a simple projective measurement

along the computational basis reports the optimum solution.

In order to implement the Grover algorithm for an N-bit problem, 128(N − 3) two-qubit

(C-NOT) gates and 64(N − 3) one-qubit gates must be cascaded[7]. Suppose an ideal

quantum processor with no decoherence, no gate error and all-to-all qubit coupling will

operate at a clock frequency of 1 GHz, i.e. both one and two qubit gates can be implemented

with 1 nsec time interval no matter how far two qubits are separated, one Grover iteration

for an N -bit problem can be implemented with a time of 2 × 10−7N (sec). Therefore, the

entire computational time of finding an optimal solution is T = 2 × 10−7N
√
2N(sec). The

actual computation times for N = 20, 50, 100, 150 bit problems are 4× 10−3(s), 6× 102(s),

2× 1010(s) and 6× 1017(s), respectively, as shown in Table II. This result demonstrates how

the exponential scaling law,
√
2N , of the Grover iteration places a serious limitation on the

unitary quantum computation for the applications to combinatorial optimization problems.

Since the Grover algorithm is optimum for an unstructured data search problem, no further
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Figure 1: Linear and exponential amplification of the probability amplitude of an optimum solution
state in gate-based quantum computer with Grover algorithm and quantum neural network with
optical parametric oscillator network.

improvement on the computational time is expected. However, this quantum computation

model is universal, i.e. no matter how hard a particuler problem instance is, the Grover

iteration promises to return an exact solution with a given computation time, which is a

remarkable result already.

More recently, a heuristic quantum algorithm for obtaining an approximate solution

rather than an exact solution has been proposed[8], but the problem-size dependent compu-

tational time and solution accuracy of this Quantum Approximate Optimization Algorithm

(QAOA) are not yet established. Rigetti Computing has implemented the QAOA in thier

19-bit gate-based quantum computer and obtained the computational time of 600 (s) for

the N = 19 MAX-CUT problem[9].

The adiabatic quantum computation model was proposed to solve an Ising model

(or MAX-CUT problem) which is one of the representative combinatorial optimization

problems[10, 11]. The D-WAVE Systems manufactured a quantum annealer based on this

concept, in which 2000 qubits are sparsely connected by the Chimera graph geometry. This

machine can solve an arbitrary MAX-CUT problem with a problem size up to N = 64[12].

Table II shows the experimental computation time for N = 20 and 50 and also the expected

computation time for N = 100 and 150 if a larger-size quantum annealer will be available

in a future[12]. A specific MAX-CUT problem chosen as a benchmark problem is a random
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Table II: Time to solution in the universal quantum computer and three quantum heuristic machines
for the MAX-CUT problems with 50% edge density.

graph with an edge density of 50%. This particular machine (D-WAVE 2000Q) has sparse

connectivity among qubits, so that only the problem size less than N = 64 bits can be

embedded into the machine and solved. The computation time to a solution is 1.1 × 10−5

(s) and 5.0× 10 (s) for N = 20 and 50 and has a problem size dependence of exp (cN2) for

N ≤ 50, where c is a constant. This result is related to the fact that ∼ O (N) physical qubits

must be used to embed the N -bit arbitrary graph using the minor embedding technique.

If we extend this trend to N = 100 and 150, we have the estimated computation time of

∼ 1017 (s) and ∼ 1032 (s), respectively.

Since the beginning of this century, scientists have looked into the possibility of finding a

new quantum computational model which fits well to combinatorial optimization problems

with no hidden periodicity. One of such efforts is the dissipative quantum computation[5, 6].

The dissipative quantum computation can be realized in an open-dissipative system which

couples to external reservoirs and naturally such a machine exists at the quantum-to-classical

crossover regime rather than in the genuine quantum substrate[5]. The dissipative coupling

to external reservoirs usually destroys the useful quantum effects, but in some cases the

dissipation becomes a very powerful computational resource[6]. Quantum chaos in coherent
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SAT machines (CSM) and quantum Darwinism in coherent Ising machines (CIM) are such

examples. Those two machines are the constituent members of quantum neural network and

described in detail in Chpaters VI and VII of this white paper, respectively. The theoretical

description for such an open-dissipative quantum machine is complicated and the physical

picture is not simple to establish. However, this type of quantum computer is inherently

robust against gate errors and external noise injection, because the solution is self-organized

in the steady state through the “einselection” by the joint interaction of the system, the

reservoirs and the observer (measurement-feedback circuit). The difference in the unitary

quantum computation and dissipative quantum computation models are summarized in

Table I.

As shown in Fig. 1(b), the probability amplitude for an optimum solution is amplified

exponentially in the coherent Ising machines (CIM) due to the spontaneous symmetry break-

ing followed by the stimulated emission of photons at optical parametric oscillator (OPO)

threshold, so that the exponential scaling (∼
√
2N) of the computation time in the unitary

quantum computation with Grover’s algorithm can be overcome. In CIM, the cost function

of a combinatorial optimization problem is mapped onto the loss of the degenerate optical

parametric oscillator (DOPO) network and an optimum solution with a minimum loss can

be obtained as a single oscillation mode[13, 14]. The exponential increase of the probabil-

ity amplitude of an optimum solution is made possible by the onset of bosonic final state

stimulation into a single oscillation mode at above the DOPO threshold.

When a quantum system is dissipatively coupled to external reservoirs, the specific quan-

tum state is chosen in the system through the joint-stabilization process between the system

and reservoirs. This self-organization process of the specific quantum state in an open quan-

tum system is called “quantum Darwinism”[5]. A particular machine which is a member of

QNN, coherent Ising machine (CIM), can solve NP-hard Ising problems by exploiting the

quantum Darwinism as a fundamental operational principle.

When an analog neural network with multiple layers has asymmetric coupling constants

between different layers, such a network is often captured by periodic solutions or chaotic

traps. This is a serious source of failure in recurrent neural networks for combinatorial op-

timization. However, it is known that classical chaos is suppressed effectively in quantum

systems due to the stretching, folding and destructive interference of the probability ampli-

tudes in a phase space. This suppression mechanism of classical chaos is called “quantum
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chaos”[5]. A particular machine which is another member of QNN, coherent SAT machine

(CSM), can solve NP-complete k-SAT problems by exploiting the quantum chaos as a fun-

damental operational principle. The QNN consists of the above CIM and CSM as two main

building blocks and implements the dissipative quantum computation model with optics.

One of the QNN’s unique features is that it is robust against external noise injection and

gate errors, since the whole computation process is a self-organization process in such an

open dissipative setting.

The classical analog of CIM was proposed as the network of injection-locked lasers, in

which a coherent mean-field produced at above the oscillation threshold searches for the

ground state of an Ising Hamiltonian and a single lasing mode with a minimum overall

loss corresponds to the desired solution[15]. In 2013, the concept was extended to the net-

work of degenerate optical parametric oscillators (DOPO), in which the intrinsic quantum

uncertainty of the squeezed vacuum state, formed in each DOPO at below the oscillation

threshold, searches for the ground state of Ising problems. Table II summarizes the exper-

imental computation time to the solution by the QNN (CIM) for the MAX-CUT problems

with an edge density of 50%[12].

The DOPO network based quantum neural network (QNN) has the following distinct

properties in its constituent element, a quantum neuron:

1. Each DOPO is prepared in a superposition state of different in-phase amplitude eigen-

states |X〉 so that a quantum parallel search, involving either quantum entanglement

or quantum tunneling, can be realized.

2. A network of DOPOs makes a decision to select a computational result by spotaneous

symmetry breaking at a critical point of DOPO phase transition.

3. A network of DOPOs amplifies the selected solution from quantum (microscopic) level

to a classical (macroscopic) level via bosonic final state stimulation at above the os-

cillation threshold.

The other constituent element for QNN is a quantum synapse which connects two quantum

neurons with a given coupling constant [Jij]. There are two ways of implementing quantum

neural networks (QNN); one is based on an optical delay line coupling scheme (DL-QNN)

and the other is based on a measurement feedback coupling scheme (MF-QNN). These
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two machines use distinct quantum parallel search mechanisms: quantum entanglement

formation for DL-QNN and quantum tunneling for MF-QNN. Both schemes can implement

not only undirectional neural network but also directional recurrent neural network, which

possesses a unique function of error detection and correction. The two schemes have the

following differences:

Figure 2: Two types of coherent Ising machines (CIM). (a) A coherent Ising machine (CIM) based on the
time-division multiplexed DOPO pulses with mutual coupling implemented by optical delay lines. A part
of each pulse is picked off from the main cavity by the output coupler followed by an optical phase-sensitive
amplifier (PSA) that amplifies the in-phase amplitude X̂ of the extracted DOPO pulse. The feedback pulses,
which are produced by combining the outputs from N −1 intensity and phase modulators, are injected back
to the target DOPO pulse by the injection coupler[16–18]. (b) A CIM with a measurement-feedback circuit.
A small portion of each DOPO signal pulse is out-coupled through the output coupler, and its in-phase
amplitude is measured by optical balanced homodyne detectors, where LO pulse is directly obtained from
the pulsed pump laser. Two detector outputs are converted to digital signals and input into an electronic
digital circuit, where a feedback signal for the ith DOPO signal pulse is computed. The feedback pulse
also taken from the pump laser is modulated in its intensity and phase to achieve the target amplitude
proportional to

∑
j JijX̃j and coupled into the ith signal pulse by an injection coupler. Flows of optical

fields and electrical signals are shown as solid and dashed lines, respectively[19, 20].
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1. In the optical delay line coupling scheme[16–18] shown in Fig. 2(a), a part of the

internal DOPO pulse field is extracted and injected back to the target DOPO pulse

after an appropriate delay and modulation are introduced based on the Ising coupling

matrix [Jij]. The DOPO pulses become entangled by such a direct optical coupling

and the produced quantum correlation forces the DOPO network selects a ground

state of the Ising Hamiltonian when the system breaks a symmetry spontaneously at

the oscillation threshold.

2. In the measurement-feedback scheme[19, 20] shown in Fig. 2(b), the internal DOPO

pulse amplitude is measured approximately by homodyne detectors, which results in

the partial reduction of the wavefunction of the measured DOPO pulse. Furthermore,

the feedback signal injection displaces the wavefunction of the target DOPO pulse. The

reduction of the measured wavefunction and the displacement of the target wavefunc-

tion jointly realize the correlated quantum tunneling, which produces the correlation

between the average amplitudes, the centers of gravity of the two wavefunctions, ac-

cording to the [Jij] matrix. The produced correlation forces the DOPO network selects

a ground state of the Ising Hamiltonian when the spontaneous symmetry breaking is

kicked in at the oscillation threshold.

The two coupling schemes are compared in Table III.

If a network of DOPOs is arranged into a layered neural network with directional coupling

constants Jij 6= Jji between different layers, such a recurrent network can find efficiently the

satisfying solutions of NP-complete k-SAT problems. Quantum uncertainty is utilized as a

useful computational resource which realizes the destructive interference in a phase space to

avoid chaotic traps in this case.

In a slightly wider scope for next-generation computing systems, various alternative ap-

proaches to modern von-Neuman type computers have been intensively explored in recent

years. There are at lease four approaches actively studied in the current efforts, which are

1. Return to analog computers

2. Learn from nature

3. Mimic human brains

4. Utilize quantum effects

QNN has all of the four aspects mentioned above and it is hard to identify its membership to
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Table III: Optical delay line coupling machine (DL-QNN) vs. measurement-feedback coupling
machine (MF-QNN)

a specific category. From the viewpoint of the category 1, the DOPOs can be considered as

analog processors and memories which are relatively robust against gate errors and external

noise injection. If we take a classical limit in the theoretical model of QNN, we can recover

the Hopfield-Tank analog neural network model. This fact allows QNN to solve not only

a combinatorial optimization problem but also a continuous-variable optimization problem.

From the viewpoint of the category 2, the DOPOs make a decision on the final result

by choosing a single oscillation mode in either 0-phase coherent state or π-phase coherent

state at a DOPO threshold in a correlated way. After this spontaneous symmetry breaking

(or supercritical pitchfork bifurcation) happens, bosonic final state stimulation is kicked

in and the self-organized order is established a classical and robust system. The whole

computational process is analogous to various phase transition phenomena in nature. For

instance, QNN computation is analogous to the ferromagnetic or anti-ferromagnetic ordering

at critical temperatures. From the viewpoint of the category 3, the quantum dynamics in

QNN resemble to the classical dynamics governed by the majority vote among many copies

of identical classical neural networks (CNN). The collapse of the wavefunction made by the

single quantum system (QNN) can be simulated by many trajectories in the ensemble of

9



identical CNNs governed by unique measurement results and randam-different noise sources.

From the viewpoint of the category 4, quantum parallel search realized by squeezed vacuum

states near the oscillation threshold provides an important step to solve an Ising problem

and quantum chaos is a key to solve efficiently a k-SAT problem in QNN. The exponentially

increasing success rate to find a ground state in QNN stems from the onset of the stimulated

emission of photons at above threshold.

This white paper is organized as follows (Fig. 3). Chapter I introduces the basic concepts,

operational principles and expected performance of the DL-QNN and MF-QNN. The physics

and nonlinear dynamics of degenerate optical parametric oscillators(DOPO) are presented in

Chapter II, in which such topics as DOPO phase transition, quantum tunneling and effective

temperatures are introduced. The quantum theory for the DL-QNN is presented in Chapter

III, where quantum noise correlation expressed by entanglement and discord are identified

as the important computational resource of the machine. Chapter IV briefly reviews the

theory of quantum measurements, in particular the approximate measurements, continu-

ous nonlinear measurements and contextuality in quantum measurements are formulated.

The quantum theory of the MF-QNN is presented in Chapter V, where quantum tunneling

induced by wavepacket reduction and displacement are identified as the important compu-

tational mechanism of this machine. Chapter VI describes the principles of the coherent

Ising machines (CIM) and various benchmark studies against modern algorithms based on

numerical simulation. The performance of CIM for NP-hard Ising problems is compared to

the four types of classical neural networks: Hopfield network (discrete variables, determinis-

tic evolution), simulated annealing (discrete variables, stochastic evolution), Hopfield-Tank

neural network (continuous variables, deterministic evolution) and Langevin dynamics (con-

tinuous variables, stochastic evolution). Chapter VII describes the coherent SAT machines

(CSM). The performance of CSM for NP-complete k-SAT problems is compared with the

classical approaches.

The readers interested in obtaining the minimum knowledge about the basic concepts

and principles of the QNN can read Chapter I to achieve this goal. If he/she is interested in

the QNN cloud service starting in November, 2017, Chapter VI provides a good summary

for this novel computing machine. Finally, those who wish to understand the basic physics

and quantum theory of the two types of QNN at a deeper level may read Chapter II - V as

well as the above two chapters.
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We will release several additional chapters for presenting coherent SAT machines and

actual algorithms for real-world problems: drug discovery, wireless communications, com-

pressed sensing, machine learning and fintech in November, 2018.

The organization of the white paper are listed below:

Figure 3: Organization of the white paper.
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