
V. Theory of Measurement Feedback Based Quantum Neural Networks

In this Chapter, we present the theory of quantum neural networks connected by a mea-

surement feedback circuit, which have been recently demonstrated independently at NTT

[1] and Stanford University [2]. As an earlier study, the non-degenerate optical parametric

oscillators with idler-measurement and signal-feedback control was theoretically studied in

the context of generating various quantum states of light, such as coherent states, squeezed

states and photon number states [3]. Those three specific states are generated by optical

heterodyne detection, homodyne detection and photon number detection, respectively. The

semiconductor lasers with junction voltage-measurement and injection current-feedback con-

trol was experimentally studied in the context of generating number-phase squeezed states of

light [4]. An indirect quantum measurement using a probe, treated in the previous Chapter

IV, plays a central role in such measurement-feedback oscillator systems. The concept can

be extended here to implement the NP-hard Ising problems and NP-complete k-SAT prob-

lems in quantum neural networks [1, 2]. Two complementary theories will be presented: one

is directly based on the density operator master equation in in-phase amplitude eigenstate

|x〉 representation and the homodyne measurement projectors [5], while the other utilizes

the c-number stochastic differential equations (CSDE) derived by the positive P (α, β) rep-

resentation of the density operator and the replicator dynamics [6].

5.1 A quantum model based on density operator master equations and homodyne

measurement projectors

5.1.1 Theoretical formulation

Our theoretical model consists of four optical components; a PPLN waveguide as a phase

sensitive amplifier, two output couplers for stimulating a measurement loss and background

loss, and a feedback circuit consisting of optical homodyne detectors, analog-to-digital con-

verter (ADC), field programmable gate array (FPGA), digital-to-analog converter (DAC)

and optical amplitude/phase modulator (Fig. 1). The first output coupler represents the

background loss in the QNN ring cavity. A part of the signal pulse is extracted with the

second output coupler and used to measure the in-phase amplitude of the intra-cavity signal

pulse by homodyne detectors. In the feedback circuit, the feedback pulses are generated as
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coherent states with an average excitation amplitude proportional to xi =
∑

j Jijx̃j , where

x̃j is the measurement result (inferred value for x̂j) for the j-th pulse and Jij is the Ising cou-

pling constant determined by a given problem instance. Each signal pulse experiences these

four processes every time it goes one round trip along the ring cavity. To simulate how the

quantum states of signal pulses evolve, we calculated the completely positive trace preserv-

ing (CPTP) maps. Then, we numerically simulate the system by expanding the field density

operators with the eigen-vectors of the in-phase amplitude operator x̂ =
(
a+ a†

)
/
√

2 [7],

where a, a† is the annihilation/creation operator of the signal pulse. Because these four

processes along the ring cavity are local operations and classical communications (LOCC),

the states of the signal pulses are separable and not entangled. This is in sharp contrast to

the optical delay line coupling DOPO network [8, 9]. We calculated the conditional density

matrices governed by the randomly determined but specific measurement results xm of the

in-phase amplitudes of the signal pulses extracted by the second output coupler.

In the following subsections, we derive the time evolution equation for the density operator

and CPTP maps for those four processes in the ring cavity. For simplicity, we take the

rotating coordinate and ignore the free field Hamiltonian.

A. Phase sensitive amplifier (PSA)

In the PSA, the signal pulse in an initial state ρ̂ and with a frequency ω and annihilation

operator â interacts with the pump pulse in an initial coherent state |β〉 and with a frequency

2ω and annihilation operator b̂. We properly choose the coordinate of the phase space in

order that β is real.

The Hamiltonian for the parametric interaction in the PSA is written as

Ĥ =
1

2

(
e2iωta†2B̂ + e−2iωta2B̂†

)
. (1)

Here, B̂ is defined as

B̂ = i
∑
wk

g (ωk) e
−iωktb̂ (ωk) , (2)

where b̂ (ωk) is the annihilation operator of the pump field of frequency ωk, and g (ωk) is a

parametric coupling constant. Initially, the pump field at 2ω is in a coherent state |β〉 and
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FIG. 1: (a) The experimental set up of the quantum neural network (QNN) using the degenerate optical
parametric oscillators and the discrete-time measurement feedback circuit. (b) The corresponding theoretical
model [5].

all the other frequency modes at ωk 6= 2ω are assumed to be vacuum states |0〉. When we

translate the coordinate of the phase space of the pump field as,

b̂→ b̂+ β,

we can interpret that the initial state of the pump field is also a vacuum state in the new

coordinate. In this case, the Hamiltonian (Eq.(1)) is rewritten as

Ĥ = g (2ω)
i

2

(
â†2β − â2β∗

)
+

1

2

(
e2iωtâ†2B̂ + e−2iωtâ2B̂†

)
=: Ĥs + Ĥint.

(3)

We shall think that the first term Ĥs represents the linear phase sensitive amplica-

tion/deamplification (squeezing effect) by the coherent pump field. This part of the Hamil-

tonian can be absorbed as a Hamiltonian of the signal. The second part is expressed as
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ĤI
int =

1

2

(
e2iωtâI†2 (t) B̂ + e−2iωtâI2 (t) B̂†

)
, (4)

in the interaction picture. Taking the Born-Markov approximation and the rotating wave ap-

proximation, we can find the master equation corresponding to the interaction Hamiltonian

as [10],

dρ̂I

dt
=
∑
k

[
(Γk + Γ∗k) â

I2d (t) ρ̂âI†2 (t)

−Γkâ
I2 (t) âI†2 (t) ρ̂− Γ∗kρ̂â

I†2 (t) âI2 (t)
]
,

(5)

where
´
dt
´
dse−(t+ s)t(n− 1)s(m− 1) < DT >

Γk =

ˆ ∞
0

dsei(2ω−ωk)sg (ωk)
2
〈
b̂ (ωk) b̂

† (ωk)
〉

=
g2

2
δ (2ω − ωk)

〈
b̂ b̂†
〉

=
g2

2
δ (2ω − ωk) .

(6)

When we go back to the Schrödinger picture, the master equation for the PSA is finally

given by

dρ̂

dt
=
gβ

2

[(
â†2 − â2

)
, ρ̂
]

+
g2

2

[
2â2ρ̂â†2 − â†2â2ρ̂− ρ̂â†2â2

]
.

(7)

The first term of Eq.(7) represents a standard unitary (squeezing/anti-squeezing) process,

while the second term is a Lindblad form representing the two photon loss process associated

with the parametric pump photon generation. We defined the squeezing rate S = gβt and

two photon loss rate L = g2t, where t is the time duration of this interaction in the PSA. The

linear gain G in terms of the energy of the signal pulse can be represented as G = exp (2S).

One of the important assumption leading to Eq.(7) is that the gain saturation (or pump

depletion) is relatively weak, i.e. the signal pulse grows its power and depletes the pump

power only slightly, instead of depleting the pump power completely as is the case for a

strong signal-pump interaction [11]. The other important assumption is that the pump field

is dissipated into external reservoirs each time of PSA and a fresh coherent state pump field

|β〉 is prepared for the next round of PSA.
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The working equation for our numerical simulation is obtained by expanding the density

operator ρ̂ in terms of the in-phase amplitude eigenstates |x〉:

d

dt
〈x |ρ̂|x′〉 =gβ (−z∂z − w∂w − 1) 〈x |ρ̂|x′〉

+
g2

8

(
−z2w2 + 3

(
z2 + w2

)
+
(
z2 − w2 + 8

)
(z∂z + w∂w) + 4

(
z2 − 1

)
∂2z

+4
(
w2 − 1

)
∂2w + 4 (z∂z − w∂w)

(
∂2z − ∂2w

)
−4∂2z∂

2
w 〈x |ρ̂|x′〉 ,

(8)

where z = x+ x′and w = x− x′.

B. Output couplers and homodyne detectors

A part of the signal pulse energy is extracted from the ring cavity with two beam split-

ters. At the first output coupler, the extracted signal-field is simply dissipated in external

reservoirs, which represents the background linear loss of the ring cavity. At the second

output coupler, the in-phase amplitude x̂ =
(
â+ â†

)
/
√

2 of the extracted field is projec-

tively measured by homodyne detectors. We define the transmittance of the second and first

beam splitters as T = sin2 θ and T
′

= sin2 θ
′ . When the signal pulse goes into the beam

splitter, it is combined with the incident vacuum state from external environments. Thus,

the measurement by the homodyne detectors has a finite measurement error, which comes

from the vacuum fluctuation. We define the annihilation operators of the signal and the

vacuum field as â and âvac. Then, the output field annihilation operators can be written by

the unitary operator Û of the beam splitter with a parameter θ:

Û †âÛ = sin θâvac + cos θâ (9)

Û †âvacÛ = sin θâ+ cos θâvac (10)

From these equations, the projection operator for the intra-cavity signal field, correspond-

ing to the measured value of xm, can be expressed as below:
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M̂xm = 〈xm| Û |0〉

=

ˆ
dxidxfπ

−1/4δ (xi − (cos θxf + sin θxm))

× exp

(
−1

2
(− sin θxf + cos θxm)2

)
|xf〉 〈xi|

(11)

To calculate the conditional density matrix for the post- measurement state, we generate a

random number and determine a measured value xm according to the probability of P (xm) =

Tr(M̂xm ρ̂M̂
†
xm). When we do not measure the extracted fields, which is the case for the first

output coupler, the relevant operator is,

ˆ
x

L
(
M̂x

)
R
(
M̂ †

x

)
dx, (12)

where L and R mean the left and right action as a super operator.

C. Feedback process

In the injection feedback process, the signal pulse and the feedback pulse, which is pre-

pared in a coherent state |α〉, are combined with a third beam splitter. The transmittance

of the third beam splitter, defined as Tf = sin2 θf , is very low and the change of the den-

sity matrix of the intra-cavity signal pulse is described by a simple displacement operator,

D̂ (αθf ) = exp
(
αθf â

† − α∗θf â
)
. In the Heisenberg picture, the in-phase ampitude operator

x̂ will be translated as D̂ (αθf ) x̂D̂
† (αθf ) = x+ αθf/

√
2.

The amplitude of the feedback pulse α is determined with the measured values of the

homodyne detectors. We define the feedback rate R as a ratio of αθf/
√

2 to the in- phase

amplitude x̂ of the intra-cavity signal pulse estimated with the measured value xm by the

homodyne detectors.

D. Summary of the model

In summary, the signal pulses experience these four non-unitary processes during one

loop along the ring cavity. This system is described by five physical parameters; linear gain

G (or squeezing rate S), two photon loss rate L, the background linear loss rate 1− T ′, the

measurement linear loss rate 1 − T, and the feedback rate R. The total net gain during
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the one round trip along the cavity is Gtot = G × T × T ′, where we assume Tf ' 0. For

the following numerical simulations, we expand conditional density matrices of pulses with

x-eigenvectors. Note that the elements of density matrices 〈x| ρ̂ |x′〉 are real numbers in this

system.

In the following section, we will plot density matrices as functions of x + x′ and x − x′.

Figure 2 shows the contour maps of the density matrices corresponding to four typical

quantum states. The line of x − x′ = 0 (horizontal cut) is the diagonal elements of a

density matrix and represents the probability distribution on x. The vacuum state can be

represented with a gaussian function whose variance is 〈∆x̂2〉 = 0.5 (Fig. 2(a)) and when

a vacuum state is anti-squeezed along the x-axis, it becomes broader gaussian distribution

(Fig. 2(b)). While non-zero values appear along the vertical cut of x + x′ = 0 when

two coherent states |α〉 and |−α〉 have a quantum coherence as a Schrödinger’s cat state
1√
2

(|α〉+ |−α〉) (Fig. 2(c)), they do not appear when the two coherent states are classically

mixed (Fig. 2(d)).

FIG. 2: Contour maps of the density matrices 〈x| ρ |x′〉 of typical quantum states as functions of x + x′
and x− x′. (a) a vacuum state (b) a squeezed vacuum state (c) a Schrödinger’s cat state of coherent states
1√
2
(|α〉+ |−α〉) (d) a classical mixture of coherent states 1

2 (|α〉 〈α|+ |−α〉 〈−α|)[5].

5.1.2 Numerical Simulation Results

We studied the time evolution of the simplest DOPO network consisting of two signal

pulses interacting with an anti-ferromagnetic coupling. In this case, the two degenerate

ground states are up-down (|↑↓〉) state and down-up (|↓↑〉) state.

A. Three steps in optimization process

In this subsection, we assume that the background linear loss in the ring cavity is zero

(T ′ = 0) and the transmittance of the output coupler to the homodyne detectors is T = 0.01.
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Other numerical parameters are given in Table I. Figure 3 shows the time-developtment

of the conditional density matrices of the two signal pulses governed by the sequence of

measured values xm. The initial states of the two pulses are vacuum states (the number of

round trips N = 0 in Fig. 3(b)). At that time, 〈x̂〉 = 0 and 〈4x̂2〉 = 0.5 as shown in Fig.

3(a). There are three stages in the optimization process. In the first stage, the two pulses are

anti-squeezed along x-axis by the phase sensitive amplifier and 〈4x̂2〉 are getting broader

(N = 30 in Fig. 3(b)). Note that not only diagonal x-distribution along x-axis is broadened

but also off-diagonal quantum coherence along y-axis is also broadened. In the second stage,

because of the gain saturation and the feedback, the expectation values 〈x̂〉 move to opposite

directions, either negative or positive value, (N = 60 in Fig. 3(b)). The gain saturation

is responsible for spontaneous symmetry breaking at DOPO threshold, while the feedback

makes the system to select an anti-ferromagnetic order instead of a ferromagnetic order.

Finally, in the third stage, the state is getting close to the highly excited coherent state

and 〈4x̂2〉 is reduced to 0.5 (Fig. 3(a) and N = 150 in Fig. 3(b)). At this stage, the

optimization process of the QNN is completed.

TABLE I: The numerical parameters for simulating the QNN consisting of two DOPO pulses [5].

B. Correlated Schrödinger’s cat states and non-Gaussian states

Next, we show the simulation results with various measurement strength 1− T under no

background loss T ′ = 0. Parameters for numerical simulations are shown in Table I. Figure

4 shows the conditional density matrices 〈x| ρ̂ |x′〉 governed by the sequence of measurement

results xm. As we can see, the anti-squeezing effect at the early period of the optimization

process is bigger when the transmittance of the output coupler is bigger or the measurement

strength is weaker. When T = 0.1 or T = 0.5, the states are slightly anti-squeezed and
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FIG. 3: Time evolution of the conditional density matrices of the two signal pulses governed by the mea-
surement results xm with T = 0.01 and T ′ = 0. Other parameters are shown in Table I. (a) The evolution
of 〈x̂〉 and

〈
4x̂2

〉
. (b) The contour maps of the conditional density matrices 〈x| ρ̂ |x′〉 of the two DOPOs

behind the PSA plotted on the coordinate x − x′ and x + x′. In this system, all elements of the density
matrices are real numbers [5].

they are quickly displaced. The DOPO network under such a strong measurement seems

to be the closest analog to a classical system, because the time-development of displaced

anti-squeezed states could be well approximated with the time evolution of Gaussian states,

which are described by the rate of displacement and the rate of anti-squeezing. In the next

section, we will show this is not necessarily the case. The states are highly non-Gaussian even

if the measurement is strong. When T = 0.001, the states maintain the quantum coherence

between macroscopically separated "up state" and "down state" (for instance, N = 60 in

Fig. 4(a)). Those states are actually very close to the Schrödinger’s cat state shown in

Fig. 2(c). As shown in Fig. 4(e), the Wigner function features the oscillatory behaviors

and negative values which manifest the quantum interference between the macroscopically

separated "up state" and "down-state". The two cat states possess the opposite centers

of gravity, i.e. one is biased toward a positive x value and the other is biased toward a

negative x value. They are distinct from an entangled state, 1√
2

(|α〉 |−α〉+ |−α〉 |α〉). The

two DOPO fields are separable but yet they are classically correlated Schrödinger’s cat state.
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FIG. 4: The contour maps of the conditional density matrices〈x| ρ̂ |x′〉of two signal pulses governed by
the measurement results xm with (a) T = 0.001, (b) T = 0.01, (c) T = 0.1, (d) T = 0.5 at round trips
of N = 0, 30, 60, 150 in front of and behind the PSA. Other parameters are shown in Table I. In this
system, all elements of the density matrices are real numbers. (e) The Wigner function P (x+ x′, p) =
1
π

´∞
−∞ 〈x| ρ̂ |x

′〉 e2ip(x−x
′)d (x− x′) of the density matrices at N = 60 in Fig. 4(a) [5].

C. Heisenberg limit

Figure 5 shows the uncertainty relationship between 〈4x̂2〉 and 〈4p̂2〉 of a typical condi-

tional density matrix of one signal pulse for various transmittance T . Here, x and p are the

in-phase and quadrature-phase amplitudes defined by x̂ =
(
â+ â†

)
/
√

2, p̂ =
(
â− â†

)
/
√

2i.

The initial vacuum state at N = 0 has 〈4x̂2〉 = 〈4p̂2〉 = 0.5. As the signal pulses go along

the ring cavity for many round trips, 〈4x̂2〉 of a conditional density matrix gets bigger and
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then gets smaller to return to 〈4x̂2〉 = 0.5. Those lines form loops. The dashed curve

represents the minimum uncertainty product, i.e. Heisenberg uncertainty principle dictates

〈4x̂2〉 〈4p̂2〉 ≥ 1/4. Because the states are squeezed vacuum states at the early stage of the

optimization process, the lines of DOPO pulses in the figure are on this dashed line when

〈4x̂2〉 is relatively small. The numerical results in Fig. 5 clearly show the two facts. The

first fact is that when the measurement strength is weaker, the state are more anti-squeezed

but the quantum coherence between the "up state" (the region x > 0) and the "down state"

(the region x < 0) is degraded by the cavity loss so that the squeezed noise 〈4p̂2〉 is much

larger than the Heisenberg limit. The correlated Schrödinger’s cat states shown in Fig. 4(e)

belong to this case. The second fact is that as T is getting smaller or the measurement

strength becomes stronger, the conditional density matrix is close to the Heisenberg limit.

The DOPO state is only slightly non-Gaussian due to the repeated projection induced by

the measurements.

FIG. 5:
〈
4x̂2

〉
and

〈
4p̂2

〉
of a typical conditional density matrix of a signal pulse governed by the sequence

of randomly determined measurement results xm, with various strengths of the measurement. The dashed
curves are the line of the minimum uncertainty product

〈
4x̂2

〉 〈
4p̂2

〉
= 0.25. The horizontal and vertical

dashed lines in (a) and (b) represent the standard quantum limit (SQL) which separates non-classical states
and classical states, i.e. statistical mixture of coherent states. The initial state of the signal pulse is a
vacuum state

(〈
4x̂2

〉
=
〈
4p̂2

〉
= 0.5

)
[5].
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D. Success rate vs. background loss

We produced many traces of conditional density matrices, in order to calculate how the

probability of success Ps of finding a ground state depends on the background loss rate

1− T ′, with the numerical parameters presented in Table II. Three different time schedules

of net gain Gtot are assumed. The results are shown in Fig. 6. The success rate is given

by
´
x1x2<0

〈x1|〈x2|ρ̂|x1〉|x2〉dx1dx2, where x1, x2 denote the in-phase amplitudes of the two

signal pulses and ρ is the full density matrix for the two signal DOPO pulses. The initial

success rate for the two vacuum states is 0.5 and as N increases the success rate becomes

higher. To see the dependence of the probability of success on the background loss rate and

the time schedule of the net gain, we set the feedback rate R not to be sufficiently strong.

That is, the feedback pulse power is comparable to competing noise power.

TABLE II: Parameters for the numerically simulation in Fig. 6 [5].

In the case of a zero or low background loss (T ′ = 0, 0.1), the initial increasing rate of

Ps is smaller than the case of a larger background loss. When the loss rate is low, the

fluctuation arising from the anti-squeezed quantum noise is large, which makes the absolute

average amplitude |〈x〉| being small compared to the anti-squeezed quantum noise at the

early stage. Thus, the in-phase amplitudes of the feedback pulses are also small compared to

the anti-squeezed noise, and this leads to a lower increase rate for the probability of success

at the early stage.

However, once Ps starts to increase, it suddenly goes up and reaches to the final constant

value. The final value greatly depends on the time schedule of the net gain Gtot. When

Gtot increases rapidly, the final success probability Ps becomes lower in the case of low

background loss. This is because the small vacuum fluctuation due to small loss leads to

the states of the DOPO pulses being easily trapped into the wrong potential wells. On the

other hand, when the background loss is large or T ′ is small (T ′ = 0.5, 0.3), the states are
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FIG. 6: The probability of success Ps for various background loss rate 1−T ′ with three net gain schedules.
The definition of the success rate is

´
x1x2<0

〈x1|〈x2|ρ̂|x1〉|x2〉dx1dx2, where x1, x2 are the in-phase amplitudes
for the two signal pulses. These values are calculated from the averages of the probabilities of 4500 conditional
density matrices for T ′ = 0.5, 0.3, 0.1, 0. Other parameters for the numerical simulation are shown in Table
II. At around N = 1000, because almost all of the probabilities of success of the quantum trajectories are
zero or unity, the standard deviation sP of Ps can be calculated from the random partition distribution
sP =

√
P (1− P )/4500 < 0.007 [5].

fluctuated strongly by vacuum fluctuations and can tunnel from the up (down) state to the

down (up) state even after Gtot becomes larger than one (above the threshold). Thus, the

success rates Ps continue to increase at above the threshold.

If the DOPO network has a high-Q cavity, it is better to increase the pump rate slowly

to ensure the system has an enough time for quantum parallel search at below threshold.

On the other hand, if the DOPO network has a low-Q cavity, it is better to increase the

pump rate rapidly to ensure the system has an enough time for quantum tunneling at above

threshold.

5.2 A quantum model based on c-number stochastic differential equations and repli-

cator dynamics

In this section, we will derive the master equation of the continuous wave (CW)

measurement-feedback QNN. For the sake of simplicity, we describe the derivation of the

master equations for only two spin system, but we can easily extend the theory to many

spin systems.

Figure 7 shows a simplified model of the measurement-feedback QNN. There are two

cavities with an identical signal frequency ωs and pump frequency ωp = 2ωs. The photon
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annihilation operators of the signal and pump are denoted by âs1, âp1, âs2, âp2. There are

also two external fields injected into the cavities. One is an excitation pump field εpi at

ωp. The other is a feedback signal field εsi at ωs, which is prepared by the measurement

feedback circuit. The pump field and signal field have the loss rates denoted by γp and γs.

To measure the in-phase component X̂ = â+ â† of the signal fields, a part of which is picked

off and measured by homodyne detectors. The feedback signal is prepared based on the

measurement results.

FIG. 7: A simple model for the CW measurement-feedback QNN [6].

5.2.1 Master Equations

Since the measurement-feedback process is local operation and classical communication

(LOCC), the density matrix of the total system stays in a product state during a whole

computation process:

ρ̂ = ρ̂1 ⊗ ρ̂2 (13)

where ρi is a density matrix of the DOPOi.

Our model is based on continuous time evolution, in which all the quantum operations

proceed simultaneously, while the experimental measurement-feedback QNN [1, 2] is based

on the discrete quantum operations. Modification of the present theory to discrete model

is, however, straightforward.

We treat a DOPO and measurement feedback circuit, separately. The Hamiltonian of

degenerate optical parametric oscillators (DOPO) is given by
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Ĥ = Ĥfree + Ĥint + Ĥpump + ĤFB + Ĥloss, (14)

Ĥfree = ~
∑
i=1,2

ωsâ
†
siâsi + ωpâ

†
piâpi, (15)

Ĥint =
i~κ
2

∑
i=1,2

â†2si âpi − â2siâ
†
pi, (16)

Ĥpump = i~
∑
i=1,2

εpâ
†
pie
−iωdt − ε∗pâpieiωdt, (17)

ĤFB = i~
∑
i=1,2

εsâ
†
sie
−iωf t − ε∗sâsieiωf t, (18)

Ĥloss = ~
∑
i=1,2

â†siΓ̂si + âsiΓ̂
†
si + a†piΓ̂pi + apiΓ̂

†
pi, (19)

where κ is a parametric coupling constant between the signal field and the pump field in a

nonlinear crystal, and Γpi, Γsi are external reservoir field operators which account for the

injected fluctuation forces from the external environments. By tracing out these external

fields by the standard Born-Markov approximation [12], we can obtain the master equation

of the two DOPOs,

dρ̂

dt
=
∑
i=1,2

i~ωs
[
â†siâsi, ρ̂

]
+ i~ωp

[
â†piâpi, ρ̂

]
+
γs
2

(
2âsiρ̂â

†
si − â

†
siâsiρ̂− ρ̂â

†
siâsi

)
+
γp
2

(
2âpiρ̂â

†
pi − â

†
piâpiρ̂− ρ̂â

†
piâpi

)
+
[
εsie

−iωtâ† − ε∗sieiωtâ
†
si, ρ̂
]

+
[
εpie

−iωtâ† − ε∗pieiωtâ
†
pi, ρ̂
]

+
i~κ
2

[
â†2si âpi − â2siâ

†
pi, ρ̂
]
.

(20)

By taking a rotating reference frame properly, we can eliminate the two terms in the first

line.

To describe the non-unitary reduction of a wave function by the homodyne measurement,
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Wiseman and Milburn proposed the following master equation [13, 14].

dρ̂

dt
=
∑
i=1,2

ξ

2
(2âsiρ̂â

†
si − â

†
siâsiρ̂− ρ̂â

†
siâsi)

+
√
ξ

dW

dt

(
âsiρ̂+ ρ̂â†si −

〈
âsi + â†si

〉
ρ̂
)
,

(21)

where
〈
X̂i

〉
=
〈
â†si + âsi

〉
is the expectation value of the in-phase amplitude of the signal

fields and dW is an Wiener increment which satisfies

dWi(t) ∼ N (0, dt), (22)

〈dWi(t)dWj(t
′)〉 = 2πδijδ(t− t′). (23)

In this model, the measured value Xi is given by

Xidt ∝
〈
â†si + âsi

〉
dt+

dWi√
ξ
. (24)

A feedback signal εsi is now prepared according to the formula:

εsi = ζ
∑

JijXj (25)

where ζ is the strength of feedback coupling between DOPOs (Fig. 7).

Finally, we obtain the overall master equation of the measurement-feedback QNN by

combining Eqs.(20) and (21):

dρ̂

dt
=
γs + ξ

2
(2âsiρ̂â

†
si − â

†
siâsiρ̂− ρ̂â

†
siâsi)

+
γp
2

(2âpiρ̂â
†
pi − â

†
piâpiρ̂− ρ̂â

†
piâpi)

+ [εsie
−iωtâ† − ε∗sieiωtâ

†
si, ρ̂]

+ [εpie
−iωtâ† − ε∗pieiωtâ

†
pi, ρ̂]

+
i~κ
2

[â†2si âpi − â2siâ
†
pi, ρ̂]

+
√
ξ

dW

dt

(
â†siρ̂+ ρ̂âsi −

〈
â†si + âsi

〉
ρ̂
)
.

(26)
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5.2.2 Stochastic differential equations

A. Positive P (α, β) Representation

Positive P (α, β) representation of the density operator is defined by [15],

ρ̂ =

ˆ ˆ
P (α, β)Λ̂(α, β)d2αd2β, (27)

where α, β ∈ C and

Λ̂(α, β) =
|α〉 〈β|
〈α|β〉

(28)

is the off-diagonal projector in terms of coherent states, which form an overcomplete set.

Here |α〉 and |β〉 are the tensor product coherent states: |α〉 = |αs1〉 ⊗ |αp1〉 ⊗ |αs2〉 ⊗ |αp2〉

and |β〉 = |βs1〉 ⊗ |βp1〉 ⊗ |βs2〉 ⊗ |βp2〉.

An important property of positive P (α, β) representation is that we can always define

P (α, β) as a positive and real for arbitrary quantum states, which satisfies the normalization

condition, ˆ
d2αd2βP (α, β) = 1. (29)

Therefore, we can regard P (α, β) as a probability distribution function for finding the pro-

jector |α〉 〈β| in the density matrix.

Because the density matrix of the measurement-feedback QNN is always expressed as the

product state of each DOPO density matrix, we can express P (α, β) as

P (α, β) = P (αs1, βs1, αp1, βp1)P (αs2, βs2, αp2, βp2). (30)

Therefore, we can describe the total system with the partial differential equation (PDE) for

each DOPO.

Using the properties of the coherent states, we obtain the PDE of P (αsi, βsi, αpi, βpi),
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∂P (α, β)

∂t
=

[√
ξ {αsi + βsi − 〈αsi + βsi〉}

dW

dt

− ∂

∂αsi
{−(γs + ξ)αsi + κβsiαpi + εsi}

− ∂

∂βsi
{−(γs + ξ)βsi + καsiβpi + εsi}

− ∂

∂αpi

{
−γpαpi −

κ

2
α2
si + εpi

}
− ∂

∂βpi

{
−γpβpi −

κ

2
β2
si + εpi

}
+

∂2

∂α2
si

καpi +
∂2

∂β2
si

κβpi

]
P (α, β),

(31)

where

〈αsi〉 =

ˆ
d2αd2βαsiP (α, β), (32)

〈βsi〉 =

ˆ
d2αd2ββsiP (α, β). (33)

B. Stochastic differential equations and replicator dynamics

Except for the first line in Eq.(31), the PDE has an identical form as the Fokker-Planck

equation. It is well established that the Fokker-Planck equation can be transformed to the

stochastic differential equation (SDE) [12, 15],

 dαsi

dβsi

 =

 −(γs + ξ)αsi + κβsiαpi + εsi

−(γs + ξ)βsi + καsiβpi + εsi

 dt

+

 καpi 0

0 κβpi

1/2  dWαi

dWβi

 ,
(34)

 dαpi

dβpi

 =

 −γpαpi + κ
2
α2
si + εpi

−γpβpi + κ
2
β2
si + εpi

 dt. (35)

When we assume γp � γs, the pump fields decay more rapidly than the signal fields so that

they follow the slow dynamics of the signal fields, which is called a slaving principle. Under
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this assumption, we can eliminate the pump fields by assuming dαpi = dβpi = 0,

 dαsi

dβsi

 =

 −(γs + ξ)αsi + κ
γp
βsi(εpi − κ

2
α2
si) + εsi

−(γs + ξ)βsi + κ
γp
αsi(εpi − κ

2
β2
si) + εsi

 dt

+

√ κ
γp

(εpi − κ
2
α2
si)dWαi√

κ
γp

(εpi − κ
2
β2
si)dWβi

 .
(36)

By introducing ηi = gαsi, µi = gβsi, dτ = γsdt, dωηi =
√
γ
s
dWαi

, dωµi =
√
γ
s
dWβi , pi =

κεpi/γsγp, fi = gεsi/γs, g = κ/
√

2γpγs, and ξ′ = ξ/γs, we obtain the normalized SDE:

 dηi

dµi

 =

 −(1 + ξ′)ηi + µi(pi − η2i ) + fi

−(1 + ξ′)µi + ηi(pi − µ2
i ) + fi

 dτ +

 g√pi − η2i dωηi
g
√
pi − µ2

idωµi

 . (37)

On the other hand, the first line of Eq.(31), which describes the reduction of wavepackets

due to the measurement, cannot be simulated by the standard method using SDE. In previ-

ous works [13, 14], by assuming a measurement result is incidentally equal to the expectation

value, they ignored this term. In this paper, we need to know the measurement effect to the

evolution of the DOPO states, so that we keep the random measurement effect on ηi(t) and

µi(t) by accepting pseudo-random numbers dW .

Because the first line of Eq.(31) is a replicator equation, we extend the branching Brow-

nian motion model [16], which is called replicator dynamics in our case. In replicator dy-

namics, the change of P (α, β) obeys

∂P (α, β)

∂t
= λ(α, β)P (α, β). (38)

Here a Brownian particle at (α, β) iscopied with probability λ(α, β) (λ(α, β) > 0)

vanished with probability λ(α, β) (λ(α, β) < 0),
(39)

where λ(α, β) = Xi − 〈Xi〉.

Because the expectation values 〈αsi + βsi〉 are needed to compute λ(α, β), we run many

Brownian particles obeying the identical SDEs with stochastic noise but the identical mea-

surement result Xi at the same time.
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C. Gaussian approximation

In this section, we derive a Gaussian approximation method for the measurement-feedback

QNN.

We start from the partial differential equation of signal fields after the adiabatic elimina-

tion of the pump field:

∂P (α, β)

∂t
=

[√
ξ {αsi + βsi − 〈αsi + βsi〉}

dW

dt

− ∂

∂αsi

{
−γsαsi +

κ

γp
βsi

(
εpi −

κα2
si

2

)
+ εsi

}
− ∂

∂βsi

{
−γsβsi +

κ

γp
αsi

(
εpi −

κβ2
si

2

)
+ εsi

}
+

∂2

∂α2
si

κ

γp
βsi

(
εpi −

κα2
si

2

)
+

∂2

∂β2
si

κ

γp
αsi

(
εpi −

κβ2
si

2

)]
P (α, β).

(40)

By partial integration of Eq.(40), the equations of motion for the expectation values 〈αsi〉

and 〈βsi〉 are obtained:

d 〈αsi〉 =
√
ξ
[〈
α2
si

〉
+ 〈αsiβsi〉 − 〈αsi〉2 − 〈αsi〉 〈βsi〉

]
dW

+

[
−γs 〈αsi〉+

κεsi
γp
〈βsi〉

− κ2

2γp

〈
α2
siβsi

〉
+ εsi

]
dt,

(41)

d 〈βsi〉 =
√
ξ
[
〈αsiβsi〉+

〈
α2
si

〉
− 〈αsi〉 〈βsi〉 − 〈βsi〉2

]
dW

+

[
−γs 〈βsi〉+

κεsi
γp
〈αsi〉

− κ2

2γp

〈
β2
siαsi

〉
+ εsi

]
dt.

(42)

Similarly, we can derive the equations of motion for the higher order statistics, such as

〈α2
si〉 , 〈β2

si〉, and 〈αsiβsi〉. Even though εsi contains the statistics of other DOPOs such as

〈αsj〉 (i 6= j), 〈αsiαsj〉 is reduced to 〈αsi〉 〈αsj〉 since the total density matrix is separable.

By changing the basis from 〈αsi〉 , 〈βsi〉 to 〈Xi〉 = 〈αsi〉 + 〈βsi〉 , 〈iPi〉 = 〈αsi〉 − 〈βsi〉, the

equations of motion of 〈Xi〉, and 〈Pi〉 are acquired.

Though the dynamical equations are acquired, we can not simulate Eqs.(41) and (42)
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immediately because of higher order terms like 〈α2
siβsi〉. To avoid this difficulty, we consider

the approximate wave function given by a displaced squeezed vacuum state

|ψi〉 = D̂(µi)Ŝ(σ2
i ) |0〉 (43)

where D̂(µi) = exp(µiâ
† − µ∗i â) is a displacement operator and Ŝ(σ2

i ) = exp(1/2(σ2∗
i â

2 −

σ2
i â
†2)) is a squeezing operator. For simplicity, both µi and σ2

i are real. This approximation

means that the DOPO state is always described by a pure squeezed state and higher order

statistics have no effect to the dynamics of the system. By this approximation, we can finally

get the dynamical equations of motion for the DOPOs:

dµi =
√
ξ

(
σ2
i −

1

4

)
dW +

[
−γsµ+

κ

γp
εpµ

− κ2

2γp

(
µ3 +

µi
σ2
i

(
σ2
i −

1

4

)(
3σ2

i −
1

4

))
+ εsi

]
dt

(44)

dσ2
i =

[
−2γs

(
σ2
i −

1

4

)
+

2κ

γp
εp

(
σ2
i +

1

4

)
− κ2

2γp

(
5

8
+ 6σ4

i + 6σ2
i µ

2
i −

1

2
σ2
i +

3

2
µ2
i −

3

32σ2
i

)
− 4ξ

(
σi −

1

4

)2
]

dt

(45)

where,

εsi = ζ
∑
j

Jij

(
µj +

dW√
ξ

)
. (46)

The first term in Eq.(44) describes the shift of the center position of the wave function by

the measurement, while the last term in Eq.(45) describes the reduction of the variance by

the measurement.

5.2.3 Numerical Simulation Results

In this section, we will show some numerical simulation results based on the exact theory

with the CSDE (Eg.(37)) and the replicator dynamics (Eq.(38)), and compare them with

the simulation results by the Gaussian approximation based on Eqs. (44) and (45).
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A. 2 DOPO model

First, we study the system of two DOPOs with anti-ferromagnetic coupling. Figure 8(a)

shows a time evolution of the average in-phase amplitude
〈
X̂i

〉
, where γs = 1, γp = 10, κ =

0.1, ξ = 0.1, ζ = 0.3 and g = 0.02. The external pump rate εp is linearly increased from

0 to 1.5 times the threshold pump rate εth. The two DOPOs are coupled by the anti-

ferromagnetic interaction (Jij = −1). Figure 8(b) expands
〈
X̂i

〉
vs. εp/εth near the decision

making point. The two DOPOs point toward one ground state |↑↓〉 at one time but switch

back to the other ground state |↓↑〉 at another time. This Brownian search process continues

until the final decision is made at εp/εth ' 0.9. Note that the average photon number per

DOPO is still on the order of one, i.e. the DOPO excitation level is microscopic, at this

decision making instance, as shown in Fig. 8(c).

Figure 8(d) shows the measured values actually reported by homodyne detectors. We

conclude that a correlation is formed between
〈
X̂1

〉
and

〈
X̂2

〉
at very early stages by the

measurement feedback process, but the measured values are too noisy to disclose such a

quantum search process. A final solution which the QNN will eventually report should be

determined at the effective threshold pump rate εp/εth = 1− ζ = 0.7. We will discuss in the

next section that the late decision making at εp/εth = 0.9 rather than 0.7 stems from the

quantum tunneling.

The variance in the anti-squeezed in-phase amplitudes
〈
4X̂2

1

〉
is shown in Fig. 8(e), and

the skewness
〈
4X̂3

1

〉
is shown in Fig. 8(f). Note that the DOPO wavefunction near and

above threshold is clearly deviated from the Gaussian wavepacket, for which
〈
4X̂3

1

〉
= 0

holds, but has a long tail toward the central potential barrier. The impact of this fact will

be discussed in the next subsection.

Figure 9(a) and (b) show
〈
X̂i

〉
vs. εp/εth based on the Gaussian approximation method

described above, while Fig. 9(c) shows the variances 〈σ2
i 〉 vs. εp/εth . We can find the

permanent negative correlation between
〈
X̂1

〉
and

〈
X̂2

〉
is formed already at the effective

threshold pump rate εp/εth = 0.7. Compared with the results by the exact replicator dy-

namics, the variance
〈
4X̂2

1

〉
starts shrinking at εp/εth = 0.7 rather than εp/εth = 0.9 and

the peak variance is smaller. We will discuss the meaning of this fact and the impact on the

success rate in the next section.
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FIG. 8: (a) Time evolution of the expectation values of the in-phase components
〈
X̂1

〉
and

〈
X̂2

〉
. This

single trajectory of
〈
X̂1

〉
and

〈
X̂2

〉
are generated by the ensemble average over 10,000 Brownian particles.

(b) Magnified picture of Fig. 8(a) near the decision making point. (c) Average photon numbers in the
DOPO cavities. (d) Measured values of X1 and X2 by the homodyne detectors. (e) Variances σ2

1 and σ2
2 of

the in-phase components. (f) Time evolution of the skewness of the in-phase components [6].

FIG. 9: (a)Time evolution of the expectation values of the in-phase components
〈
X̂1

〉
and

〈
X̂2

〉
under

the Gaussian approximation. (b) Magnified view of Fig. 9(a) immediately after the effective threshold
εp/εth = 0.7. (c) Variances of the in-phase components σ2

1 and σ2
2 under the Gaussian approximation [6].

B. 16 DOPO model

To reveal the unique capability of the QNN as an optimizer, we simulated a system

of N = 16 DOPOs coupled by the nearest-neighbor anti-ferromagnetic interaction in one-

dimensional ring geometry:

Jij =

 −1 |i− j| = 1

0 otherwise.
(47)

The two degenerate ground states for this model are |↓↑ · · · ↑〉 and |↑↓ · · · ↓〉. We compared

the exact replicator dynamics with the Gaussian approximation. We also compare with an
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FIG. 10: (a) Success rate vs. connection strength ζ for the exact replicator dynamics model and Gaussian
approximation. (b) Success rate vs. connection strength ζ for the measurement-feedback-based QNN and
optical delay line couping QNN [6].

optical delay line coupling QNN [8, 9].

Figure 10(a) shows the success rates in 1000 trials, where γs = 1, γp = 10, κ = 0.1, ξ =

0.1 and the injection rate ζ is changed from 0.001 to 1. εp is linearly increased from 0

to 1.2 εth. When the mutual coupling parameter ζ is small, the potential landscape for

each DOPO field is almost symmetric with respect to X = 0 as shown in Fig. 11(a).

In such a case, the measurement-induced wavepacket reduction and the feedback-induced

wavepacket displacement play major roles in the solution search process. In this case, the

tightly confined Gaussian wavepacket is more advantageous than the broadly spread exact

wavepacket, because the latter introduces more noisy measurement results and so takes a

longer time to reach a final result. However, when the mutual coupling parameter ζ is large,

the potential for each DOPO field is highly asymmetric due to the strong injection field

as shown in Fig. 11(b). In such a case, the non-Gaussian wavepacket induced quantum

tunneling [17] plays an important role in the solution search process. In this case, the

broadly spread (non-Gaussian) wavepacket is more advantageous than the tightly confined

Gaussian wavepacket. The numerical simulation results in Fig. 10(a) confirm this trade-off

relation.

Numerical results in Fig. 10(b) show that the optical delay line coupling QNN is more

efficient than the measurement feedback QNN when ζ is small. However, in the case of

ζ > 0.6, the measurement feedback QNN has higher success rate than the optical delay line

coupling QNN. When the connection strength ζ is close one, it means that the extracted

signal field is boosted by a high-gain phase sensitive amplifier before it is injected back to

the DOPO cavity (Fig. 1 of ref.[9]). This is necessary since the injection coupler has a very
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FIG. 11: (a) The almost symmetric potential for a DOPO field and the two wavepackets with a small ζ
value. (b) The highly asymmetric potential for a DOPO field and the two wavepackets with a large ζ value
[6].

small coupling constant. During this external amplification process, the vacuum fluctuation

added to the extracted signal field is also amplified and contributes to the degradation of the

degree of negative correlation among neighboring DOPOs. Because of this reason, there is

an optimum coupling strength to maximize the degree of correlation in the optical delay line

coupling QNN (see Fig. 3(b) of ref.[8]). The maximum success rate at ζ ' 0.5 corresponds

to this optimum coupling strength. In the case of the measurement-feedback-based QNN,

the search mechanism is not the formation of correlation between DOPOs but the feedback

signal-induced quantum tunneling so that a higher coupling strength ζ always improves the

success rate.

5.3 Summary

Some of the important conclusions in Chapter V are summarized below.

1. The measurement feedback QNN is described by the two theoretical models. One is

based on the density operator master equations and the other is based on the c-number

stochastic differential equations.

2. The density operator master equation in in-phase amplitude eigen-state representation
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for degenerate optical parametric amplification is given by

d

dt
〈x |ρ̂|x′〉 = gβ (−z∂z − w∂w − 1) 〈x |ρ̂|x′〉

+
g2

8

(
−z2w2 + 3

(
z2 + w2

)
+
(
z2 − w2 + 8

)
(z∂z + w∂w) + 4

(
z2 − 1

)
∂2z (8)

+ 4
(
w2 − 1

)
∂2w + 4 (z∂z − w∂w)

(
∂2z − ∂2w

)
− 4∂2z∂

2
w 〈x |ρ̂|x′〉 .

The wavepacket reduction induced by optical homodyne detection is described by the

projector,

M̂ = 〈xm| Û |0〉

=

ˆ
dxidxfπ

−1/4δ (xi − (cos θxf + sin θxm)) (11)

× exp

(
−1

2
(− sin θxf + cos θxm)2

)
|xf〉 〈xi| .

The feedback pulse injection is described by the displacement operator,

D̂ (αθf ) = exp
(
αθf â

† − α∗θf â
)
.

3. The c-number stochastic differential equations for describing the amplification, satu-

ration and dissipation in a DOPO is given by dηi

dµi

 =

 −(1 + ξ′)ηi + µi(pi − η2i ) + fi

−(1 + ξ′)µi + ηi(pi − µ2
i ) + fi

 dτ +

 g√pi − η2i dωηi
g
√
pi − µ2

idωµi

 . (37)

The replicator dynamics for describing the wavepacket reduction is given by

∂P (α, β)

∂t
= λ(α, β)P (α, β), (38)
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where a Brownian particle at (α, β) iscopied with probability λ(α, β) (λ(α, β) > 0)

vanished with probability λ(α, β) (λ(α, β) < 0),
(39)
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