
III. Theory of Optical Delay Line Coupling Quantum Neural Network

In this Chapter, we present the quantum theory of degenerate optical parametric os-

cillator (DOPO) networks based on optical delay line coupling, which have been recently

demonstrated at Stanford, NII and NTT [1–3]. Two types of c-number stochastic differential

equations (CSDE) are derived using the (exact) positive P (α, β) representation [4] and the

(approximate) truncated Wigner representation of the density operator [5]. We introduce

the EPR-like operator and the quantum discord to evaluate the quantum noise correlation

and entanglement formed in the DOPOs during the computation process.

3.1 Standard theoretical approach and computational difficulty

Figure 1(a) shows a schematic illustration of the simplest model of two coupled DOPOs

considered in this Chapter. The system is composed of two DOPO cavities and a mutual

injection path between them. The coherent pump field εp enters each DOPO cavity to excite

the intra-cavity pump mode. The bosonic annihilation and creation operators for the pump

and signal modes in the DOPOs are denoted as (âpj, â†pj) and (âsj, â†sj), where j (= 1, 2) is

the index for the DOPO. Also, the creation and annihilation operators for the signal mode in

the mutual injection path are written as (âc, â†c). Figure 1(b) displays the coupling between

the DOPO intra-cavity signal fields and the injection path signal field, which is described

as beam splitter interactions. Here, the signal field in the injection path interacts with the

two DOPO intra-cavity fields at distant points, thus we have to consider the spatial phase

explicitly. The phase factors for the bosonic operators at the facet of the DOPO#2 depend

on the injection path length z and are written as âcexp(ikcz) and â†c exp(−ikcz), where kc

is the wave number for the signal mode in the injection path. The mutual couplings are in-

phase (ferromagnetic) if exp(ikcz) = exp(−ikcz) = 1, and out of phase (anti-ferromagnetic)

if exp(ikcz) = exp(−ikcz) = −1.

The Hamiltonian for the total system can be written as

Ĥ = Ĥfree + Ĥint + Ĥpump + Ĥres + ĤBS, (1)

where the free Hamiltonian for the relevant modes is
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FIG. 1: (Color online) Schematic of the simplest model for optical delay line coupling QNN. (a) The system
comprises two DOPOs and a mutual injection path between them as a cavity. The two dichroic mirrors in
the injection path are assumed to pass the pump field completely and highly reflect the signal field. (b)
Beam splitter interactions between the DOPO intra-cavity signal fields and the injection-path mode. The
spatial phase of the injection-path field should be considered [4].

Ĥfree =
2∑
j=1

(
~ωpâ†pj âpj + ~ωsâ†sj âsj

)
+ ~ωsâ†câc, (2)

where ωs is the frequency of the signal field and ωp = 2ωs. The parametric interaction

Hamiltonian is

Ĥint = i~
2∑
j=1

[κ
2

(
â†2sj âpj − â

†
pj â

2
sj

)]
, (3)

where κ denotes the parametric coupling coefficient (see Chapter II) . The pumping Hamil-

tonian is described by

Ĥpump = i~
2∑
j=1

[
εpâ
†
pj exp (−iωdt)− εpâpj exp (iωdt)

]
, (4)

where the pump field εp is set to be positive and real, and ωd is the frequency of the external

pump field εp with ωd ≈ ωp. The beam splitter coupling constant between external and

internal pump fields is absorbed in εp. The system-reservoir coupling Hamiltonian for the

signal, pump and injection path modes is written as

Ĥres = ~
2∑
j=1

(
âsjΓ̂

†
Rsj + Γ̂Rsj â

†
sj + âpjΓ̂Rpj + Γ̂Rpj â

†
pj

)
+
(
âcΓ̂

†
Rc + Γ̂Rcâ

†
c

)
, (5)
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where Γ̂Rsj, Γ̂Rpj , and Γ̂Rc are the reservoir operators for the DOPO signal modes, pump

modes, and injection path mode. Those reservoir operators have continuous and white spec-

tra in frequency and thus induce the Fermi’s golden rule decay rates, but the frequency mode

indices are suppressed in Eq.(5) for simplicity. Finally, the beam splitter interaction Hamil-

tonian between the injection path mode and DOPO intra-cavity signal modes is denoted

by

ĤBS = i~ζ
(
âcâ
†
s1 − â†câs1 + âs2â

†
ce
−ikcz − â†s2aeikcz

)
, (6)

where ζ is the beam splitter coupling coefficient.

Using the standard quantum optics technique [6], we can derive the master equation for

the total density operator consisting of the two intra-cavity signal fields, two intra-cavity

pump fields and one injection path signal field. If we expand the density operator by the

photon number eigenstates, |ns1, ns2, np1, np2, nc〉, which form an orthonormal set for the

total system, the dimension of the density matrix is too large to compute its time evolution

numerically, since the upper bound of the photon number is much larger than one for each

mode. When the QNN consists of N(� 1) DOPOs instead of two DOPOs, the exponential

increase in the Hilbert space makes a numerical study even more intractable.

3.2 Positive P (α, β) representation

A coherent state |α〉, which is an eigenstate of the annihilation operator [7], provides

an ideal basis set for expanding the field density operator for such a system. The primary

reason for the preferred choice of coherent states is that the initial states and the final states

of the signal, pump and injection path fields are close to coherent states. The secondary

reason is that a coherent state remains a coherent state when the field is dissipated by linear

optical losses if the reservoir temperature can be assumed to be zero, which is obviously true

in our case.

We now introduce the positive P representation [8] for the five modes to expand the total

density operator:

ρ̂ =

∫
P (α, β)

|α〉〈β∗|
〈β∗|α〉

dαdβ. (7)
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Here, α = (αs1, αs2, αp1, αp2, αc)
T and β = (βs1, βs2, βp1, βp2, βc)

T contain ten c-number

variables to describe the multimode coherent states |α〉 = |αs1〉 |αs2〉 |αp1〉 |αp2〉 |αc〉 and

〈β∗|=〈β∗c |
〈
β∗p2
∣∣ 〈β∗p1∣∣ 〈β∗s2| 〈β∗s1|. These product states are used as a basis set for expanding

the density operator. The positive P (α, β) representation gives a positive and appropriately

normalized distribution function, where αX and βX undergo statistically independent ran-

dom processes in probabilistic simulations while they are complex conjugate in average, i.e.,

〈αX〉 = 〈βX〉∗. Here, X is the index for specifying the five modes.

We substitute Eq.(7) into the master equation and obtain the Fokker-Planck equation

(FPE) for the distribution P (α, β) [4]:

∂

∂t
P (α, β) =

{
2∑
j=1

[
∂

∂αsj

(
(γs + i∆s)αsj − κβsjαpj

)
+

∂

∂βsj

(
(γs − i∆s) βsj − καsjβpj

)
+

∂

∂αpj

(
(γp + i∆p)αpj − εp +

κ2

2
α2
sj

)
+

∂

∂βpj

(
(γp − i∆p) βpj − εp +

κ2

2
β2
sj

)
+

1

2

(
∂2

∂α2
pj

καpj +
∂2

∂β2
pj

κβpj +
∂2

∂αsj∂βsj
Γsj +

∂2

∂αpj∂βpj
Γpj

)]

+

[
∂

∂αc
(γc + i∆s)αc +

∂

∂βc
(γc + i∆s) βc +

1

2

∂2

∂αc∂βc
Γc

− ∂

∂αs1
ζαc −

∂

∂βs1
ζβc +

∂

∂αs2
ζαce

iθ +
∂

∂βs2
ζβce

−iθ

+
∂

∂αc
ζ
(
αs1 − αs2e−iθ

)
+

∂

∂βc
ζ
(
βs1 − βs2eiθ

) ]}
P (α,β) ,

(8)

where θ = kcz is the injection path phase shift. ∆s = ωs − ωd/2 and ∆p = ωp − ωd are the

detuning between the intra-cavity modes and the external driving field εp.

With the Ito’s rule [9], which establishes the correspondence between the FPEs and

CSDEs, we reach a series of Ito-type CSDEs [4]:
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d

 αs1
βs1

 =

 − (γs + i∆s)αs1 + κβs1αp1 − ζαc
− (γs − i∆s) βs1 + καs1βp1 − ζβc

 dt

+

 καp1 Γs

Γs κβp1

1/2  dWαs1(t)

dWβs1(t)

 ,
(9)

d

 αs2
βs2

 =

 − (γs + i∆s)αs2 + κβs2αp2 + ζαce
iθ

− (γs − i∆s) βs2 + καs2βp2 + ζβce
−iθ

 dt

+

 καp2 Γs

Γs κβp2

1/2  dWαs2(t)

dWβs2(t)

 ,
(10)

d

 αp1
βp1

 =

 εp − (γp + i∆p)αp1 − κ
2
α2
s1

εp − (γp − i∆p) βp1 − κ
2
β2
s1

 dt

+

 0 Γp

Γp 0

1/2  dWαp1(t)

dWβp1(t)

 ,
(11)

d

 αp2
βp2

 =

 εp − (γp + i∆p)αp2 − κ
2
α2
s2

εp − (γp − i∆p) βp2 − κ
2
β2
s2

 dt

+

 0 Γp

Γp 0

1/2  dWαp2(t)

dWβp2(t)

 ,
(12)

d

 αc
βc

 =

 − (γc + i∆s)αc − ζαs1 + ζαs2e
iθ

− (γc − i∆s) βc − ζβs1 + ζβs2e
−iθ

 dt

+

 0 Γc

Γc 0

1/2  dWαc(t)

dWβc(t)

 ,
(13)

where dWX(t) is the real number Wiener increment statistically independent of each other.

This term corresponds to the noise term in the equivalent (classical) Langevin equation whose

autocorrelation is given as a delta function. However, note that dWX does not include the

vacuum fluctuation introduced by the dissipative loss to external reservoirs. The vacuum

fluctuation is already included in the coherent state basis sets.

In the case of a resonant pumping ∆s = ∆p = 0 and zero temperature reservoirs Γs =
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Γp = Γc = 0, we adiabatically eliminate the pump variables using the assumption that the

pump fields decay sufficiently faster than the signal fields. Then we have a simplified model

as follows [4]:

dαs1 =

[
− γsαs1 +

κ

γp

(
εp −

κ

2
α2
s1

)
βs1 + ζαc

]
dt

+

√
κ

γp

(
εp −

κ

2
α2
s1

)
dWαs1(t),

(14)

dβs1 =

[
− γsβs1 +

κ

γp

(
εp −

κ

2
β2
s1

)
αs1 + ζβc

]
dt

+

√
κ

γp

(
εp −

κ

2
β2
s1

)
dWβs1(t),

(15)

dαs2 =

[
− γsαs2 +

κ

γp

(
εp −

κ

2
α2
s2

)
βs2 − ζαceiθ

]
dt

+

√
κ

γp

(
εp −

κ

2
α2
s2

)
dWαs2(t),

(16)

dβs2 =

[
−γsβs2 +

κ

γp

(
εp −

κ

2
β2

s2

)
αs2 − ζβce

−iθ

]
dt

+

√
κ

γp

(
εp −

κ

2
β2
s2

)
dWβs2(t),

(17)

dαc =
(
−γcαc − ζαs1 + ζαs2e

iθ
)

dt, (18)

dβc =
(
−γcβc − ζβs1 + ζβs2e

−iθ) dt. (19)

We further consider the limit where the injection path mode decays faster than the DOPO

intra-cavity signal fields, so that it is also adiabatically eliminated, i.e., γc � γs. The field

in the injection path at the steady state is given by

αc =
1

γc

(
−ζαs1 + eiθζαs2

)
, (20)

βc =
1

γc

(
−ζβs1 + e−iθζβs2

)
. (21)

Substituting Eqs.(20) and (21) into (14) - (19), we have the CSDEs for the DOPO signal

fields. When we further define the effective signal loss γ′s and the normalized beam splitter
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coupling ξ as

γ′s = γs +
ζ2

γc
, ξ =

ζ2

γsγc + ζ2
, (22)

then we have the normalized CSDEs for the signal modes as

dηj =
[
−ηj + µj

(
p− η2

j

)
+ ξηke

iθ
]

dτ + g
√
p− η2

j dWηj(τ), (23)

dµj =
[
−µj + ηj

(
p− µ2

j

)
+ ξµke

−iθ] dτ + g
√
p− µ2

j dWµj(τ). (24)

Here, ηj = gαsj, µj = gβsj, and g = κ/
√

2γ′sγp = 1/2As is the saturation parameter,

p = εp/εth is the normalized pumping rate and εth = γ′sγp/κ is the pump rate at the

oscillation threshold. The time is scaled with the signal field lifetime, i.e. τ = γ′st. dWηj(τ)

and dWµj(τ) are rescaled Wiener increments. The linear mutual injection terms have an

explicit coupling form ξηke
iθ and ξµke−iθ.

For high-Q DOPO cavities, we can expect ζ > γs, and this is an important condition for

the system to show such nontrivial quantum effects, as a Schrӧdinger’s cat state and negative

Wigner function (see Chapter V). The saturation parameter g = κ/
√

2γ′sγp determines the

typical order of the photon number inside the DOPO cavity above the oscillation threshold,

i.e., 〈ns〉 ∼ 1/g2 at above the threshold.

3.3 Truncated Wigner representation W (α)

Alternatively, we can expand the total density operator ρ by the Wigner function W (α):

ρ =

∫
eλ
∗â−λâ†

{∫
eλα

∗−λ∗αW (α)dα

}
dλ, (25)

where â = (âs1, âs2, âp1, âp2, âc)
T and λ = (λs1, λs2, λp1, λp2, λc). α and λ form a pair of

complex numbers. χ(λ) =
∫
eλα

∗−λ∗αW (α) dα is the symmetric correlation function [9].

We substitute Eq.(25) into the master equation and the resulting Fokker-Planck equation,

with the third and higher-order terms truncated, results in another set of CSDEs [5]:
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dαs1 = (−γsαs1 + καp1α
∗
s1 + ζαc)dt+

√
γsdWs1(t)

dαs2 = (−γsαs2 + καp2α
∗
s2 − ζe−ikczαc)dt+

√
γsdWs2(t)

dαp1 = (−γpαp1 − κ
2
α2
s1 + εp)dt+

√
γpdWp1(t)

dαp2 = (−γpαp2 − κ
2
α2
s2 + εp)dt+

√
γpdWp2(t)

dαc = (−γcαc − ζαs1 + ζeikczαs2)dt+
√
γcdWc(t).

(26)

Here, dWX(t) is the c-number Wiener process and expresses the vacuum and thermal noise

injection associated with the dissipation of the signal, pump and injection path fields to

external reservoirs. Next, we assume γp, γc � γs and adiabatically eliminate the pump

and injection path modes (dαpj = dαc = 0). We also assume eikcz = e−ikcz = −1 (anti-

ferromagnetic coupling). Finally, we obtain the CSDE for the normalized signal amplitude

[5]:

dAs1 =
{
−As1 + (p− A2

s1)A∗s1 − ξAs2
}

dτ + gdW ′
s1

dAs2 =
{
−As2 + (p− A2

s2)A∗s2 − ξAs1
}

dτ + gdW ′
s2,

(27)

where Asj = gαsj is the normalized signal amplitude. The noise terms dW ′
s1 and dW ′

s2 are:

dW ′
s1 =

√
γs
γ′s

dWs1(τ) + As1dWp1(τ) +
√
ξdWc(τ),

dW ′
s2 =

√
γs
γ′s

dWs2(τ) + As2dWp2(τ) +
√
ξdWc(τ).

(28)

We can easily extend the above two CSDEs to the one-dimensional network consisting of

N DOPOs with nearest neighbor coupling, as shown in Fig. 2. The CSDE of jth DOPO

constructing such a one-dimensional DOPO network is

dAsj =
{
−Asj + (p− A2

sj)A
∗
sj − ξAsj−1 − ξAsj+1

}
dτ + gdW ′

sj

dW ′
sj =

√
γs
γ′s

dWsj(τ) + AsjdWpj(τ) +
√
ξdWcj+1(τ) +

√
ξdWcj−1(τ).

(29)

It should be pointed out that the truncated Wigner CSDE is driven by the vacuum noise

injected into the signal field dWsj, pump field dWpj and injection path field dWcj from

external reservoirs, as shown by Eq.(28) or Eq.(29). On the other hand, the positive P (α, β)

CSDE is driven only by the pump noise. This is because the coherent state basis sets

for expanding the density operator in the positive P (α, β) theory carry the full vacuum

fluctuation.
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One last comment about the truncated Wigner theory, Eq.(29), is that the non-Gaussian

nature of the DOPO signal field near the threshold is properly taken care of by this theory.

Note that truncation of higher-order nonlinearities and neglect of non-Gaussian wavepacket

tails are two different approximations.

FIG. 2: (a) Sketch of one-dimensional network consisting of N = 16 DOPOs connected with nearest-
neighbor identical anti-ferromagnetic couplings [5]. (b) A DOPO network with optical delay line coupling.
The output coupler followed by the phase sensitive amplifier (DOPA: degenerate optical parametric amplifier)
amplifies the in-phase amplitude X̂ of each DOPO pulse, while the injection coupler combines the modulated
feedback pulse with the target DOPO pulse, which implements the given Ising Hamiltonian. The state
incident to the output coupler from an open port plays an important role in the behavior of this system [10].

3.4 Quantum entanglement and inseparability

The expectation value of a normally ordered operator is readily evaluated using the

positive-P function [8].

〈
â†js1â

†k
s2â

l
s1â

m
s2

〉
=

∫
βjs1β

k
s2α

l
s1α

m
s2P ({α} , {β})dαdβ, (30)

while the expectation value of a symmetrically ordered operator is conveniently evaluated

using the truncated Wigner function [9]:

〈
â†js1â

†k
s2â

l
s1â

m
s2

〉
S =

∫
α∗js1α

∗k
s2α

l
s1α

m
s2W ({α})dα. (31)

Here, 〈· · · 〉S indicates the ensemble averaging after symmetrization of the operator inside

the bracket. The normalized correlation functions between the two DOPOs (Fig. 1) for the

in-phase amplitude x̂ = (â + â†)/2 and quadrature-phase amplitude p̂ = (â − â†)/(2i) are

defined as
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C(x̂s1, x̂s2) = 〈x̂s1x̂s2〉
〈∆xs1∆xs2〉 = 〈cs1cs2〉√

〈c2s1〉−〈cs1〉2
√
〈c2s2〉−〈cs2〉2

C(p̂s1, p̂s2) = 〈p̂s1p̂s2〉
〈∆ps1∆ps2〉 = 〈ss1ss2〉√

〈s2s1〉−〈ss1〉2
√
〈s2s2〉−〈ss2〉2

,
(32)

where cX = (αX + α∗X)/2, sX = (αX − α∗X)/(2i), and ∆O =

√〈
Ô2
〉
−
〈
Ô
〉2

.

We can define the EPR-like operators by û+ = x̂s1 + x̂s2 and v̂− = p̂s1 − p̂s2 to evaluate

the degree of negative and positive quantum correlation. We assumed that the two DOPOs

are coupled with the anti-ferromagnetic interaction, i.e. eikcz = e−ikcz = −1, so that we

expect that x̂s1 and x̂s2 are negatively correlated, while p̂s1 and p̂s2 are positively correlated.

The condition for negative (or positive) quantum correlation is given by
〈
∆û2

+

〉
< 0.5, or〈

∆v̂2
−
〉
< 0.5, while the criterion for entanglement (inseparability) is given by

〈
∆û2

+

〉
+〈

∆v̂2
−
〉
< 1 [11]. Figure 3 compares the total variances of the EPR-like operator, computed

by the positive-P representation and by the truncated Wigner representation [5]. Here,

the pump rate is linearly increased from zero to 1.5 times the oscillation threshold over

time τ = 200, i.e. p = 1.5 (τ/200). The saturation parameter is g = 0.01. As can be

seen in Fig. 3, the two coupled DOPOs feature inseparability, i.e.,
〈
∆û2

+

〉
+
〈
∆v̂2
−
〉
6 1,

when the system evolves from below to above the oscillation threshold. Note that the

coupled DOPO threshold pump rate is pth = 1 − ξ rather than p
(0)
th = 1 for a solitary

(uncoupled) DOPO [12]. Increasing the coupling constant ξ enhances the inseparability.

The results obtained using the positive-P representation are indistinguishable from those by

the truncated Wigner representation. Our numerical simulation confirms that the difference

in the total variances,
〈
∆û2

+

〉
+
〈
∆v̂2
−
〉
, evaluated using the positive-P representation and

the truncated Wigner representation is within the statistical error due to the finite number

of samples M = 200, 000, which is shown only in Fig. 3(a) as vertical bars.

In the one-dimensional network shown in Fig. 2(a), we can define the EPR-like operators

û1D and v̂1D if the number N of DOPOs is even:

û1D =
N∑
j=1

x̂sj, v̂1D =
N∑
j=1

(−1)j p̂sj. (33)

We made a proof in the Appendix that the operator û1D and v̂1D are the indicators of the

quantum correlation and inseparability of the system.

Figure 4 shows the total variance of the EPR-like operator û1D + v̂1D when we inject the

10



FIG. 3: Total variance of the EPR-like operator û++ v̂− calculated by the truncated Wigner representation
(left panel (a)) and positive-P representation (right panel (b)). The statistical error bars due to the finite
number of samples M = 200.000 are only plotted in Fig. 3(a) [5].

squeezed vacuum state with reduced quantum noise, e−2r/4, in the in-phase amplitude and

enhanced quantum noise, e2r/4, in the quadrature-phase amplitude with r the squeezing pa-

rameter into the open port of the output coupler (Fig. 2(b)) in the N = 16 one-dimensional

DOPO network [5]. Here, the pump rate gradually increases from zero to 0.375 times the

oscillation threshold over time τ = 200, i.e. p = 0.375 (τ/200). The saturation parameter

is g = 0.01 and the coupling constant ξ = 0.4. If a standard vacuum fluctuation (r = 0)

is incident on the output coupler, the quantum correlation exists in the quadrature-phase

amplitude (〈∆v̂2
1D〉 < N/4) but only classical correlation exists in the in-phase amplitude

(〈∆û2
1D〉 > N/4) [5]. On the other hand, if we inject squeezed vacuum states (r > 0), the

quantum correlation exists in both in-phase and quadrature-phase amplitudes. Note that

the variance of û1D + v̂1D is below the standard quantum limit (N/2 = 8), which is the

criterion of inseparability and holds even without a squeezed input state.

In Fig. 3, we assume relatively large coupling constants ξ (= 0.4− 0.995). Such a strong

coupling is not unrealistic if we amplify the out-coupled field with a noiseless phase sensitive

amplifier (PSA) as shown in Fig. 2(b).

3.5 Quantum discord

The quantum correlation is the general property of a composite quantum system in which

a local measurement performed on a sub-system changes the state of the whole system. There
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FIG. 4: The variance of û1D + v̂1D versus normalized time τ for various squeezing parameters r. r = 0
corresponds to the normal vaccum state input to the output coupler [5].

is a weaker but broader definition of quantum correlation than the widely used measure of

entanglement, showing that even separable states can have important quantum features.

Quantum discord [13] is a measure of the quantum correlation of a composite system,

based on two different definitions of the mutual information of a bipartite system. Sup-

pose we have a bipartite system AB composed of partial systems A and B. The mutual

information based on the total and sub-system entropy is

I(ρ̂AB) = S(ρ̂A) + S(ρ̂B)− S(ρ̂AB), (34)

where S(ρ̂) = −Tr (ρ̂ log ρ̂) is the von Neumann entropy. ρ̂A = TrB(ρ̂AB) and ρ̂B = TrA(ρ̂AB)

are the entropies associated with the reduced density operators for the sub-systems A and

B. Alternatively, the mutual information can be defined using the conditional entropy

S(A|B) , which varies with the measurement basis for the sub-system B, because each

local measurement can perturb the total system in a different way. To evaluate the genuine

quantum correlation, the measurement basis which disturbs the total system least must be

chosen. The mutual information based on the conditional entropy is defined as

J←(ρ̂AB) = S(ρ̂A)− inf
ΠB

i

∑
i

piS(ρ̂A|i), (35)
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where i is the index for the components of the positive operator-valued measure (POVM)

measurement basis {ΠB
i } for the sub-system B. The POVM measurement means an exact

measurement performed for Hermitian operators, the detail of which will be discussed in

next Chapter. ρ̂A|i is the post-measurement state of the sub-system A provided that the ith

state is measured in the sub-system B and pi is the probability for obtaining the i−th state.

inf
(
πBi
)
means the optimization of the POVM measurements

(
πBi
)
to perturb the system

least. The quantum discord is defined as the difference of the above two mutual information

[13]:

D←(ρ̂AB) = I(ρ̂AB)− J←(ρ̂AB). (36)

In general, system without entanglement can have nonzero discord, and it has been reported

that such a state may be useful for a nontrivial quantum speedup in certain problems [14, 15].

The optimization of the measurement basis in Eq.(35) is generally hard. However, for the

case of Gaussian states and local measurement limited to Gaussian POVMs, the analytic

formulas for the quantum discord have been derived [16, 17] . They quantify the amount

of genuine quantum correlation for a large part of Gaussian states, including two-mode

squeezed states, coherent states, and the vacuum state [17]. We now estimate the discord

of our system using the Gaussian quantum discord. Here, we consider the unnormalized

quadrature amplitudes for the two DOPOs [r̂] = 2 [x̂1, p̂1, x̂2, p̂2]. Then, a two-mode Gaussian

state is characterized with the covariance matrix of them:

σG =

[
1

2
〈r̂j r̂k + r̂kr̂j〉 − 〈r̂j〉〈r̂k〉

]
=

 αM γM

γT
M βM

 , (37)

where αM , βM and γM are 2× 2 matrices. The state can be equivalently characterized by

the quantities called symplectic invariants defined as

AS = detαM , BS = detβM , CS = detγM , DS = detσG. (38)

When we write the binary entropy function as fB(X) = (X + 1/2) log (X + 1/2) −

(X − 1/2) log (X − 1/2), and the quantities called symplectic eigenvalues as ν2
± =

1/2
(
∆±

√
∆2 − 4DS

)
, ∆ = AS +BS + 2CS, the Gaussian quantum discord is given by
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D←(σG) = fB

(√
BS

)
− fB(ν−)− fB(ν+) + inf

σ0

fB

(√
det ε

)
. (39)

Here, σ0 is the Gaussian measurement basis for the partial system B. ε is the covariance

matrix for the partial system A after B has been locally measured. The last term in Eq.

(39) can be optimized analytically within the range of Gaussian POVMs (adding Gaussian

ancilla bits, symplectic transformations and a homodyne detection), yielding [18].

inf
σ0

det ε =
2C2

S + (BS − 1) (DS − AS) + 2|CS|
√
C2
S + (BS − 1) (DS − AS)

(−1 +BS)2 ,

if (DS − ASBS) 6 (1 +BS)C2
S (AS +DS) ,

=
ASBS − C2

S +DS −
√
C4
S + (DS − AS)2 − 2C2

S (ASBS +DS)

2BS

, otherwise.

(40)

In addition, a simpler formula for two-mode squeezed states (including squeezed vacuum

states) has been also derived as [16].

√
det ε =

√
AS + 2

√
ASBS + 2CS

1 +
√
BS

. (41)

A bipartite state with D←(σG) > 1 always has the entanglement between its elements. A

certain entangled state can also have a value of the quantum discord smaller than 1 [16].

Figure 5 shows the quantum discord when the DOPO state is approximated as a Gaussian

state [4]. It basically reflects the quantum correlation formed in p̂1 and p̂2. When p̂1 and

p̂2 are squeezed and have positive correlation, the system holds a relatively large discord.

Moreover, a finite value D← ∼ 0.02 is observed at pump rates well above threshold. It is

worth noting that this finite discord is not attributed to the squeezing in the DOPOs as

previously discussed [16], but the mixture of coherent states with classical correlation can

have this finite value of discord. We have found that the variances in x̂j and p̂j quickly

verge on 1/4 after the oscillation threshold is passed, thus the states are well described as

coherent states. Also, the curves with the finite discord is associated with an almost perfect

correlation of x such as 〈x̂1x̂2〉 = −0.9999 ∼ −1.0000 . On the other hand, significant

intra-cavity signal field dissipation can cancel out the discord at well above the oscillation

threshold, as shown in Fig. 5 [4].
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FIG. 5: (Color online) Quantum discord when the DOPO state is approximated as a bipartite Gaussian
state. Squeezing in the DOPOs near the threshold and the mutual injection gives a large discord when αs

is samll. Coherent fields at well above the threshold and coherent communication lead to a finite discord of
∼ 0.02. 50000 stochastic runs for each curve [4].

The particular states of the two DOPOs at well above the threshold with out-of-phase

correlation between x̂1 and x̂2 have the covariance matrix given by

ρ̂cl =
1

2
|αcl〉1 |−αcl〉2 2 〈−αcl|1 〈αcl|+

1

2
|−αcl〉1 |αcl〉2 2 〈αcl|1 〈−αcl| , (42)

σ(ρ̂cl) =


4α2

cl + 1 0 −4α2
cl 0

0 1 0 0

−4α2
cl 0 4α2

cl + 1 0

0 0 0 1

, (43)

where αcl is the real and positive amplitude of the coherent states in the DOPOs. We

have found that the Gaussian discord calculated with Eq.(43) verges on D← ∼ 0.02356 for

αcl & 50, which is in a good agreement with the values in the simulation results shown in Fig.

5. Equation (42) represents a mixture of two Gaussian states, so that the result indicates a

genuine quantum correlation exists in the two coherent states with the correlation between

their eigenvalues.

3.6 Summary

Some of the important conclusions of Chapter III are summarized below.
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1. The c-number stochastic differential equations (CSDE) based on the positive P (α, β)

representation are given by Eqs.(23) and (24).

2. The CSDE based on the truncated Wigner W (α) representation are given by Eq.(27)

for two coupled DOPOs and by Eq.(29) for N DOPOs in one dimensional ring.

3. An EPR-like operator, Eq.(33), can be defined to numerically test the inseparability

and entanglement of coupled DOPOs.

4. The simple optical delay line coupling QNN in one-dimensional network with nearest-

neighbor anti-ferromagnetic coupling is shown to possess the inseparability and entan-

glement for a wide range of pumping rates as shown in Fig. 3 and Fig. 4.

5. Quantum correlation in a composite quantum system can be evaluated by alternative

measure, quantum discord, defined by Eq.(36) for general case or Eq.(39) for Gaussian

states.

6. The optical delay line coupling QNN shows the strong quantum discord near the

threshold and supports a small quantum discord of D ∼ 0.02 even at well above the

threshold.

Appendix: Properties of the EPR-like operators

Theorem 1. If the system is separable, the inequality 〈∆û2
1D〉+ 〈∆v̂2

1D〉 > N/2 is satisfied.

Proof. The left-hand side of inequaity, 〈∆û2
1D〉+ 〈∆v̂2

1D〉 , can be written as

〈
∆û2

1D

〉
+
〈
∆v̂2

1D

〉
= Tr[ρ̂û2

1D]− (Tr[ρ̂û1D])2 + Tr[ρ̂v̂2
1D]− (Tr[ρ̂v̂1D])2. (44)

If the system is separable, the system density operator ρ̂ can be decomposed as the tensor

product of the density operator of each DOPO ρ̂jk, i.e.

ρ̂ =
∑
k

qkρ̂1k ⊗ ρ̂2k ⊗ · · · ⊗ ρ̂Nk =
∑
k

qk

N∏
j=1

ρ̂jk. (45)
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Here qk is the mixing probability of each tensor product
∏N

j=1 ρ̂jk and
∑

k qk = 1 . Each

term of Eq.(44) can be written as

Tr[ρ̂û2
1D] =Tr

[∑
k

qk

N∏
j=1

ρ̂jkû2
1D

]

=Tr

[∑
k

qk

N∏
j=1

ρ̂jk

N∑
j=1

(x̂2
sj + 2

N∑
l=j+1

x̂sjx̂sl)

]

=
∑
k

qk

N∑
j=1

{〈
x̂2
sj

〉
k

+ 2
N∑

l=j+1

〈x̂sj〉k 〈x̂sl〉k

}

=
∑
k

qk

N∑
j=1

{〈
∆x̂2

sj

〉
k

+ 〈x̂sj〉2k + 2
N∑

l=j+1

〈x̂sj〉k 〈x̂sl〉k

}

=
∑
k

qk

N∑
j=1

〈
∆x̂2

sj

〉
k

+
∑
k

qk 〈û1D〉2k ,

(46)

(Tr [ρ̂û1D])2 =

(
Tr

[∑
k

qk

N∏
j=1

ρ̂jkû1D

])2

=

(∑
k

qk 〈û1D〉k

)2

, (47)

Tr
[
ρ̂ν2

1D

]
=Tr

[∑
k

qk

N∏
j=1

ρ̂jkv̂
2
1D

]
= Tr

[∑
k

qk

N∏
j=1

ρ̂jk ×
N∑

j=1

(
p̂2

sj + 2
N∑

l=j+1

(−1)j+l−2p̂sjp̂sl

)]

=
∑
k

qk

N∑
j=1

{〈
p̂2
sj

〉
k

+ 2
N∑

l=j+1

(−1)j+l−2 〈p̂sj〉k 〈p̂sl〉k

}

=
∑
k

qk

N∑
j=1

{〈
∆p̂2

sj

〉
k

+ 〈p̂sj〉2k + 2
N∑

l=j+1

(−1)j+l−2 〈p̂sj〉k 〈p̂sl〉k

}

=
∑
k

qk

N∑
j=1

〈
∆p̂2

sj

〉
k

+
∑
k

qk 〈v̂1D〉2k ,

(48)

(Tr [ρ̂v̂1D])2 =

(
Tr

[∑
k

qk

N∏
j=1

ρ̂jkv̂1D

])2

=

(∑
k

qk 〈v̂1D〉k

)2

.

(49)

Now we use the inequalities
∑

k qk 〈û1D〉2k =
∑

k qk
∑

k qk 〈û1D〉2k > (
∑

k qk 〈û1D〉k)
2 and
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∑
k qk 〈v̂1D〉2k =

∑
k qk

∑
k qk 〈v̂1D〉2k > (

∑
qk 〈v̂1D〉k)

2, which are derived from Cauthy-

Schwarz inequality. Moreover,
∑

k qk

(〈
∆x̂2

sj

〉
k

+
〈
∆p̂2

sj

〉
k

)
> 0.5 is derived from the un-

certainty principle. We can conclude that the inequality 〈∆û2
1D〉+ 〈∆v̂2

1D〉 > N/2 is satisfied

if the state is separable.

Theorem 2. If the inequalities 〈∆û2
1D〉+ 〈∆v̂2

1D〉 < N/2 is satisfied, the system is insepa-

rable and the quantum entanglement exists.

Proof. It is the contraposition of Theorem 1.
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