
I. Introduction to Quantum Neural Networks

In this Chapter, we will introduce the basic concepts and operational principles of a novel

computing machine, optical neural networks at quantum limit, and describe their unique

characteristics. We start with the discussion how to construct such physical devices as the

quantum version of classical neurons and synapses.

1.1 Quantum neurons

Nonlinear devices that have a characteristic input-output relation as shown in Fig. 1

represent the typical activity of neurons in classical neural networks [1]. When the input

signal level is weak, the neuron linearly amplifies this input signal and thus compensates

for unavoidable linear loss in the network. When the input signal level exceeds a certain

threshold value ath, however, the output signal level is clamped at a constant value bs. This

nonlinear input-output relation is essential for classical neural networks to find a stable

operating point which manifests a solution for a given mathematical problem [1]. Each

neuron state is expressed by a continuous variable xi and obeys a continuous time evolution

governed by

d

dt
xi = −xi + f (xi)−

∂V

∂xi
, (1)

where the first term of R.H.S. of E.(1) expresses the linear loss and the second term describes

the nonlinear gain function shown in Fig. 1, which can be interpreted as a self-feedback ex-

citation to the neuron i. The third term represents the mutual coupling among neurons

and the interaction potential V implements a given mathematical problem. We emphasize

that, in the case of E.(1), a simultaneous mutual coupling between neurons without intro-

ducing undesired instability or periodic oscillation is made possible by the gradient descent

character of the third term.

1.1.1 Degenerate optical parametric amplifiers/oscillators

Any optical amplifier has a similar input-output relation as that shown in Fig. 1 due to its

inherent gain saturation effect. We focus here on the degenerate optical parametric amplifier
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Figure 1: The characteristic input-output relation of a neuron in classical neural networks.

(DOPA) shown in Fig. 2. This particular device is composed of a second-order nonlinear

crystal placed between two mirrors. The nonlinear crystal absorbs one pump photon at a

frequency 2ωs and simultaneously emits two signal photons at a frequency ωs. A pertinent

interaction Hamiltonian [2] is expressed by

H = ~κ
(
â†2s âp + â2sâ

†
p

)
. (2)

Here âs
(
â†s
)
and âp

(
â†p
)
are the annihilation (creation) operators for the signal and pump

fields, and κ is a parametric coupling constant. The simultaneously generated two signal

photons are a conjugate pair in the sense that they have a positive correlation in the in-

phase amplitudes X̂ (=
(
âs + â†s

)
/2) and a negative correlation in the quadrature amplitudes

P̂ (=
(
âs − â†s

)
/2i). As a result of such positive and negative correlations in X̂ and P̂ ,

constructive and destructive interference happens along the X-axis and P -axis, respectively,

in (X, P ) phase space. As a result of such quantum interference, if a DOPA is driven

by an external vacuum state (zero-point fluctuation) as shown in Fig. 2, the zero-point

fluctuation is amplified and deamplified along X-axis and P -axis, respectively, as shown

in Fig. 3(a). The resulting state is called a squeezed vacuum state, which is a minimum

uncertainty wavepacket and thus satisfies the Heisenberg uncertainty principle with equality,〈
∆X̂2

〉〈
∆P̂ 2

〉
= 1/16, just as the vacuum state. This is just an illustrative example of

the Liouville theorem of quantum mechanics, which dictates that the uncertainty area of a

quantum state is invariant against a unitary time evolution.

The phase sensitive amplification/deamplification mentioned above is not a rare phe-

nomenon in nature. One classical example is a swing driven by a person as shown in Fig. 4,

where a person (corresponding to the pump in DOPA) completes a full cycle (up-down-up)
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Figure 2: A degenerate optical parametric amplifier/oscillator.

Figure 3: Quantum Noise distributions of (a) DOPA at below the threshold and (b) DOPO at above the
threshold.

while a swing (corresponding to the signal) makes only a half cycle (left-to-right). Note

that the phase of the person and the phase of the swing are mutually locked in order to

realize an amplitude amplification process. This corresponds to the situation in which the

in-phase amplitude X̂ is amplified. You can easily imagine from your childhood memory

what you did in order to stop the swing when it was time to go home. You stood up at

the center of the swing period and crouched at both ends. Then, the swing (signal) ampli-

tude was attenuated. This corresponds to the situation that the quadrature amplitude P̂ is

deamplified.

An optical parametric oscillator has a long history of development at Stanford Uni-

versity [3]. In the quantum neural network (QNN), a periodically polled lithium-niobete

(PPLN) waveguide device is used as such a phase sensitive amplifier (PSA) for signal pulses.

The first experimental demonstration of deamplification (squeezing) and amplification (anti-

squeezing) for input optical pulses in vacuum states using this particular device was reported

in 1995 [4]. Figure 5 shows the suppressed quadrature-phase amplitude noise and enhanced

in-phase amplitude noise by the PPLN waveguide DOPA. It is a general property of the

squeezing experiments that the degree of squeezing (vacuum noise deamplification) is lim-
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Figure 4: A phase sensitive amplification/deamplification process of a swing, in which a person makes a
full cycle (up-down-up) but the swing makes only half cycle (left-to-right).

ited by experimental system imperfections, in particular, by a linear optical loss but that

the degree of anti-squeezing (vacuum noise amplification) is not ruined so much by the

optical linear loss. Note that the quantum parallel search in the QNN is based on the anti-

squeezed quantum noise rather than squeezed quantum noise, so that the operation of QNN

is inherently robust against the optical loss.

Figure 5: Vacuum noise amplification/deamplification characteristics of a PPLN waveguide PSA for optical
signal pulses [4].

The input-output relation of the DOPA for an increasing signal power above the satu-

ration level approximately reproduces the nonlinear response function f (a) shown in Fig.

1. A physical mechanism behind this gain saturation is the depletion of the pump power,

which triggers a reverse energy flow, i.e. two signal photons are absorbed simultaneously

to generate one pump photon. When the input signal power becomes sufficiently large, the
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reverse energy flow from the signal to the pump is switched on and the linear amplification

process must stop. For quantum neurons, a related but slightly different nonlinear effect is

employed to amplify a solution state to a macroscopic level, which we will explain next.

The two mirrors in a DOPO shown in Fig. 2 confine an optical field as a resonator. If the

parametric amplifier gain exceeds the field decay rate from the resonator, the system can

sustain a steady state field by creating a finite average field along the X-direction. The cen-

ter position of a quantum wavepacket in X-P phase space is no more
〈
X̂
〉

=
〈
P̂
〉

= 0 but

there emerges a non-zero
〈
X̂
〉
value, as shown in Fig. 3(b). This is the oscillation thresh-

old point of DOPO. The probability for creating a positive
〈
X̂
〉

value and negative
〈
X̂
〉

value is randomly selected by 50-50% probability, which is known as spontaneous symmetry

breaking and is an ubiquitous feature for any second order phase transition phenomena [5].

In the language of nonlinear dynamics theory, the DOPO threshold represents a supercriti-

cal pitchfork bifurcation. The device pumped at above the oscillation threshold is called a

degenerate optical parametric oscillator (DOPO). The two stable states with positive and

negative
〈
X̂
〉
values correspond to the firing and non-firing states of a classical neural net-

work or up-spin and down-spin states of an Ising problem. When the input signal level to

the DOPA is varied while the pump rate is set at below the oscillation threshold, the output

signal level is first linearly amplified and then clamped due to the gain saturation. Finally, a

DOPA with an increasing input signal level at a fixed pump rate below the threshold even-

tually exceeds the oscillation threshold. In this way, the nonlinear input/output relation

shown in Fig. 1 is realized in the transition from the DOPA to DOPO.

Why are DOPOs referred to as quantum neurons and how are they different from classical

neurons? We will present the answers to these important questions in the next section.

1.1.2 Linear superposition states in DOPA/DOPO

A set of photon number eigenstates |n〉 can expand an arbitrary state of the field as

an orthonormal set. The wavefunction of a squeezed vacuum state (see Fig. 6) can be

mathematically constructed as a superposition of photon number eigenstates with even

eigenvalues:

|ψsv〉 = c0 |0〉+ c2 |2〉+ c4 |4〉+ · · · . (3)

5



A simple physical picture behind E.(3) is explained as follows: the photon number of an

intense pump field exhibits large quantum noise, typically on the order of 〈4n̂2〉 ∼ 〈n̂〉 for a

coherent pump-field. Therefore, we cannot extract which-path information, even in principle,

whether the number of absorbed pump photons in the nonlinear crystal is zero, one, two

. . . at a given time. Because one pump photon is converted into two signal photons, those

cases correspond to the output signal field in |0〉, |2〉, |4〉 , . . . photon number eigenstates.

Because of the lack of which-path information, the proper expression for the quantum state

of the output signal field must be a superposition of those states. Except for an irrelevant

phase factor, the probability amplitudes c0, c2, c4 . . . have an identical phase, for instance,

positive real numbers [6]. In the (X,P ) phase space, the different photon number eigenstates

constructively interfere with each other along X-axis, while they destructively interfere with

each other along P -axis, as shown in Fig. 6(a).

Figure 6: Two representations for a squeezed vacuum state. (a) Superposition of photon number eigenstates
with even-number eigenvalues. (b) Superposition of in-phase amplitude eigenstates.

Alternatively, a squeezed vacuum state can be mathematically constructed as a superpo-

sition of quadrature amplitude eigenstates |X〉, which are the eigenstates of the Hermitian

operator X̂:

|ψsv〉 =

∫ ∞
−∞

C (X) |X〉 dX. (4)

It is not difficult to show that the different in-phase amplitude eigenstates constructively

interfere with each other in the small P -regime centered at
〈
P̂
〉

= 0, while they destructively

interfere with each other in the large P -regime, as shown in Fig. 6(b). Therefore, more anti-

squeezing (enhanced quantum noise) along the X-axis realizes more squeezing (reduced
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quantum noise) along the P -axis.

It is worth pointing out that a statistical mixture of in-phase amplitude eigenstates

ρ̂mix =

∫ ∞
−∞

P (X) |X〉 〈X| dX, (5)

instead of E.(4), covers the same range of the eigenvalues X but require an infinite amount

of energy to realize, since the localization of the state along P -axis near
〈
P̂
〉

= 0 is now

impossible due to the lack of phase coherence between different |X〉 eigenstates. The infinite

uncertainty along P -axis means an infinite energy. A squeezed vacuum state, represented

by E.(4) and produced by the DOPA, allows a quantum parallel search with a finite energy,

while a classical mixture state, represented by E.(5), cannot be created with a finite energy.

A particularly unique feature of the DOPA/DOPO is that the aforementioned superpo-

sition survives not only below the threshold but also at the threshold. At well above the

oscillation threshold, the DOPO produces either 0-phase or π-phase coherent field as shown

in Fig. 3(b). However, a DOPO at just above the oscillation threshold maintains the super-

position of 0-phase and π-phase, in spite of finite photon leakage from the resonator [7–9].

This is possible because a hypothetical measurement performed for a leaked signal field

cannot identify which phase the DOPO selects due to the enhanced quantum noise along

X-axis. The anti-squeezed in-phase amplitude noise realizes a so-called “quantum erasure”

for which-path information.

One of the evidence for the above statement is shown in Fig. 7(a). The density matrix

elements 〈X| ρ̂ |X ′〉 for the two out-of-phase coupled DOPOs, when the pump rate indexed

by N is increased from below to above the threshold, are plotted. In Fig. 7(a) at N = 60, the

probability distribution 〈X| ρ̂ |X〉, which is given as the slice along x-axis, and the quantum

coherence 〈X| ρ̂ |−X〉, which is given as the slice along y-axis, of the density operator feature

a macroscopically separated coherent state |α〉 and |−α〉 that maintains quantum coherence

[10]. Figure 7(b) compares the density matrix elements 〈X| ρ̂ |X ′〉 for a superposition state,

|ψ〉 = 1√
2

(|α〉+ |−α〉), and a mixed state, ρ̂ = 1
2

(|α〉 〈α|+ |−α〉 〈−α|), respectively. We can

conclude from Fig. 7(a) that the two DOPO are in Schrödinger’s cat states and yet their

centers of gravity are negatively correlated due to out-of-phase coupling. Figure 7(c) shows

the Wigner function of the DOPO state at the threshold. The oscillatory behavior and

negative values of the Wigner function is another manifestation of the quantum coherence
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between |α〉 and |−α〉 states [10]. Such a highly non-classical feature is destroyed by an

increasing cavity loss, but the superposition of |X〉 eigenstates, represented by E.(3), survives

against a large cavity loss. We will discuss this important point in detail in Chapter V.

Figure 7: (a) The probability distribution 〈X| ρ̂ |X〉 and the quantum coherence 〈X| ρ̂ |−X〉 of the two
DOPO states in a high-Q regime at the threshold pump rate. The round trip loss is 0.1%. (b) The
density matrix elements

〈
X |ρ̂|X ′

〉
for a superposition state, |ψ〉 = 1/

√
2 (|α〉+ |−α〉) and a mixed state,

ρ̂ = 1/2 (|α〉 〈α|+ |α〉 〈−α|). (c) The corresponding Wigner functions to Fig. 7(a) [10].

1.1.3 Amplitude and phase error correction by phase sensitive amplification

The DOPO fields are fluctuated by the external phase and amplitude noise injection. Both

amplitude and phase of the DOPO field are continuous variables so that the error detection

and error correction are not straightforward, just like classical analog devices. Fortunately,

the phase sensitive amplification mechanism of a DOPO can stabilize the phase to either

0 or π as far as the phase error is small compared to ±π/2. Moreover, the amplitude error

can be suppressed by the gain saturation mechanism of the DOPO. If the signal amplitude

is increased to above the steady state value, the pump amplitude is more strongly depleted

which, in turn, recovers the steady state amplitude through a reduced parametric gain. The

opposite is true when the signal amplitude is decreased to below the steady state value. In

this way, the output amplitude is stabilized through the balance between the linear cavity

loss and the saturated gain in DOPO, while the phase is stabilized by the phase sensitive

deamplification of DOPO. This is schematically shown in Fig. 8.

The DOPO provides a unique opportunity as a stable analog memory. We can stably

store the analog information (both amplitude and phase) at quantum limited accuracy with

the above mentioned mechanisms.
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Figure 8: Amplitude and phase error correction by DOPO, in which the amplitude error is corrected by
saturated amplification along X-axis and the phase error is corrected by phase sensitive deamplification
along Y -axis.

1.2 Quantum synapses

We wish to implement a target Hamiltonian as a cost function using the network of

quantum neurons. One target Hamiltonian is that of the Ising model [11]:

H =−
∑
i<j

Jijσiσj −
∑
i

hiσi, (6)

where the Ising spin σi takes either +1 (up-spin) or −1 (down-spin). As described above, we

wish to represent σi = 1 and σi = −1 by the positive or negative in-phase amplitude, which

corresponds to 0-phase or π-phase oscillation, respectively (Fig. 3(b)). The Ising coupling

Jij and the Zeeman term hi take (real) continuous values, which are determined by mapping

a given real-world problem on the Ising model. Chapters VIII - XII describe various real-

world problems that are mapped on the Ising Hamiltonian. The three-dimensional Ising

model and the two-dimensional Ising model with local fields belong to the NP-hard class in

complexity theory [12], and many hard problems can be solved through the Ising model. In

order to implement the cost function described in E.(6) as the effective loss of the DOPO

network, pairs of DOPOs must be coupled with the coupling constant Jij and also the

constant optical field hi must be injected into each DOPO [13].
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1.2.1 Optical delay line coupling scheme

Figure 9 shows one experimental scheme to implement the Ising coupling Jij in the

DOPO network, where a part of each DOPO pulse circulating in a fiber ring resonator

is picked-off at every round trip by the output coupler, amplified by an external phase

sensitive amplifier (PSA), split into multiple optical delay lines including intensity and phase

modulators [14–16] and then injected back to the target DOPO pulse at appropriate timing.

In the configuration shown in Fig. 9, N independent DOPOs are simultaneously realized as

N optical pulses circulating in a fiber ring cavity with an internal PSA (PPLN waveguide

optical parametric amplifier) which is driven externally by pump pulse trains.

Figure 9: A quantum neural network based on the time-division multiplexed DOPO pulses with mutual
coupling implemented by optical delay lines. A part of each pulse is picked off from the main cavity by the
output coupler followed by an optical phase sensitive amplifier (PSA) which amplifies the in-phase amplitude
X̂ of the extracted DOPO pulse. The feedback pulses, which are produced by combining the outputs from
N − 1 intensity and phase modulators, are injected back to the target DOPO pulse by the injection coupler
[14–17].

The external phase sensitive amplifier is provided by another DOPA and boosts the in-

phase amplitude X̂ of a picked-off pulse before it is attenuated by the beam splitter and

modulator loss. Using such N − 1 optical delay lines, any (ith) pulse can be connected to

any other (jth) pulse with a coupling constant Jij. Such an all-optical coupling scheme has

been experimentally demonstrated for N = 4 and 16 pulses using free-space optics [14, 15]

and for N = 104 pulses using a planar lightwave circuit (PLC) [16]. In the last system, for

example, the optical fiber length is 2 km so that a round trip time is 10µs while the pulse

repetition frequency is 1 GHz so that the pulse interval is 1 nsec, which leads to N = 104

DOPO pulses inside a single ring cavity [16].
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This optical delay line coupling machine is capable of producing the quantum noise corre-

lation among the internal DOPO pulses [18, 19]. In Chapter III, we will develop the quantum

theory of the optical delay line coupling QNN and discuss this point in detail using the two

measures for evaluating quantum noise correlation: quantum entanglement and discord.

1.2.2 Measurement feedback coupling scheme

An alternative experimental scheme to implement the Ising coupling Jij is shown in Fig.

10 [20, 21]. Instead of directly connecting the DOPO pulses with optical delay lines, we can

measure approximately the in-phase amplitude of the internal DOPO pulse by the optical

balanced homodyne detectors. If the inferred in-phase amplitude of the j-th DOPO pulse

is represented by X̃j, the feedback pulse to the i-th DOPO pulse should have an in-phase

amplitude proportional to
∑

j JijX̃j. The complicated task of the synchronous computation

of the vector-vector multiplication, which must be completed in the pulse interval time of

100 ps - 1 ns, is achieved by a single measurement-feedback circuit consisting of an analog-to-

digital converter (ADC), field programmable gate array (FPGA), digital-to-analog converter

(DAC) and optical amplitude/phase modulators [20, 21]. The feedback pulse and local

oscillator pulse used for optical homodyne detection are both provided by a part of the

pump pulse, as shown in Fig. 10.

Such a measurement feedback coupling scheme (Fig. 10) is equivalent to an optical

delay line coupling scheme (Fig. 9) except for the following advantage/disadvantage. The

advantage of the measurement-feedback scheme is that all-to-all coupling of the order of

N2 connection can be implemented by a single measurement feedback circuit, so that the

daunting task of constructing an N −1 optical delay lines and stabilizing their delay lengths

(or optical phase) with an error much less than the optical wavelength can be avoided. In

addition, many-body Ising-type interactions, such as H = −
∑
Kijkσiσjσk , can be readily

implemented. The disadvantage of the measurement feedback scheme is that the FPGA

circuit must complete ∼ O (N) vector-vector multiplication and addition within each pulse

interval. This imposes a limitation on the machine size N and the pulse repetition frequency.

On the other hand, the optical delay line coupling scheme enjoys its inherent high-speed

operation with a pulse repetition frequency limited only by optical device performance.

There is a subtle difference in the operational principles from quantum mechanical view-
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Figure 10: A quantum neural network with a measurement-feedback circuit. A small portion of each
DOPO signal pulse is out-coupled through the directional coupler I, and its in-phase amplitude is measured
by optical balanced homodyne detectors, where LO pulse is directly obtained from the pulsed pump laser.
Two detector outputs are converted to digital signals and input into an electronic digital circuit, where a
feedback signal for the i-th DOPO signal pulse is prepared. The feedback pulse also taken from the pump
laser is modulated in its intensity and phase to achieve the target amplitude proportional to

∑
j JijX̃j and

coupled into i-th signal pulse by directional coupler II. Flows of optical fields and electrical signals are shown
as solid and dashed lines, respectively [17, 20, 21].

points between the optical delay line coupling and measurement feedback coupling schemes.

The measurement feedback scheme does not produce any entanglement. The total density

operator stays in the product state of individual DOPO pulse density operators. However,

the measurement feedback scheme is capable of implementing the non-unitary state reduc-

tion to realize non-Gaussian states induced by quantum measurements, which contributes to

enhance quantum tunneling in the search process. In Chapter V, we will discuss this point

in detail using the quantum theory of the measurements feedback QNN. Before we discuss

these advanced subjects, let us describe the basic and common principle of the quantum

neural networks in the next two sections.

1.3 Mapping of an Ising model to DOPO network: coherent Ising machines

In Chapters III and V, we will develop the full quantum theory of the quantum neural

networks (QNN) with optical delay line coupling scheme and measurement feedback coupling

scheme, respectively.
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1.3.1 Pitchfork bifurcation

We consider in this section simpler equations of motion that capture its main computa-

tional principles for the sake of clarity. We consider the dynamics of N analog variables xj,

with xj ∈]−∞,+∞[ and j ∈ {1, ..., N}, given as follows:

ẋj (t) = − ∂V
∂xj

, (7)

with

V =
∑
l

[Vb (xl)] + εVl (x) , (8)

where Vb(xj) is the archetype bistable potential in xj with Vb(xj) = −1
2
αx2j + 1

4
x4j and Vl (x)

the analog version of the Ising Hamiltonian with Vl (x) = −
∑

j,l ωjlxjxl. Here t = γs
2
τ is

the unitless time normalized by the signal field lifetime 2/γs, γs is the signal photon decay

rate, p = Fp/Fth is the unitless pump rate normalized by the solitary DOPO threshold pump

photon flux Fth = γs
√
γp/4κ, γp is the pump photon decay rate, κ is the parametric coupling

constant, xj = Xj/As is the normalized in-phase amplitude, As =
√

γsγp/2κ2 is the saturation

amplitude which is equal to the DOPO oscillation amplitude at the normalized pump rate

p = 2. α = −1+p is the bifurcation parameter given by the normalized decay rate and linear

gain for the signal field. Moreover, the parameter ε is small enough such that 0 < ε � 1.

Equation (7) describes the dynamics of a gradient system. Under the approximation that

quadrature-phase components are always zero, the equations of motion for a solitary DOPO

are given as ẋj = αxj−x3j when ε = 0, which represents the normal form of the supercritical

pitchfork bifurcation.

In the uncoupled case, i.e., ε = 0, (the potential Vb is monostable with xj = 0 and bistable

with xj = ±
√
α when α < 0 and α > 0, respectively. In the coupled case when 0 < ε � 1

and α is large enough, the state of each variable xj can be considered as approximately

binary and can be mapped to the Ising spin. In particular, the Ising spin configuration

{σj}j is associated to the state {xj}j of the system described in E. (7) by considering that

σj is equal to the sign of xj, i.e., σj = xj/ |xj|.

When α increases over a critical threshold, there is a breaking of symmetry and the states

xj become either positive or negative. The emergence of the first nonzero stable steady state
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can be studied by considering linear stability analysis at the origin, i.e., the Jacobian matrix

J associated with E. (7) and computed at the state xj = 0, ∀j. This Jacobian matrix is

given as follows:

J = αI + εΩ, (9)

where Ω is the matrix with components Ωjl and I the identity matrix. The destabilization

of the zero state corresponds to the emergence of the first nonzero stable steady state after

the symmetry breaking and occurs when the maximal eigenvalue of the Jacobian matrix J ,

noted λ1, is equal to zero. The eigenvalue λ1 is given as λ1 = α+εµ1, where µ1 is the maximal

eigenvalue of the matrix Ω , which we consider unique for the sake of simplicity. The first

nonzero steady state becomes stable when λ1 = 0, i.e., when the bifurcation parameter α is

equal to αc given as follows [13]:

αc = −εµ1. (10)

As the bifurcation parameter α increases further above the threshold αc, other states

become stable and the system develops a complex attractor landscape. Note that E.(10)

suggests that αc < 0 in general.

1.3.2 Conditional mappling of the Ising Hamiltonian

The linear stability analysis of the zero state allows determining the bifurcation parameter

αc for which the zero state becomes unstable. Moreover, the eigenvector associated with

the eigenvalue λ1 indicates the locations of the first nonzero stable steady states just after

the bifurcation has occurred and, in the general case, these locations do not correspond to

the ground-state configurations of the Ising Hamiltonian. However, it can be noticed that,

under the particular condition that all analog amplitudes |xj| are equal, the first nonzero

stable steady states map rigorously the ground-state configurations of the Ising Hamiltonian.

Indeed, the steady-state condition of E.(7) is given as follows when xj = σjx,∀j, with x > 0:

ẋj = 0⇒ αxj − x3j + ε
∑
l 6=j

ωjlxl = 0

⇒ α− x2 + ε
∑
l 6=j

ωjlσlσj = 0.
(11)
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Thus, the homogeneous squared amplitude x2 can be written as follows:

x2 = α− 2ε

N
H, (12)

with the Ising Hamiltonian H without a dc field. When α = 2ε
N
H, the only solution of E.(12)

is x = 0. As α increases, the first nonzero steady state is reached for the minimal value of

the function 2ε
N
H as shown in E.(12) and Fig. 11, i.e., in the regions of the state space that

encode for the ground-state configurations of the Ising Hamiltonian. In a nutshell, the first

nonzero stable steady states of E.(11) encode for the ground-state configurations of the Ising

Hamiltonian if the steady-state amplitudes |xj| ,∀j, are all equal.

1.3.3 Effect of the amplitude heterogeneity

In the more general case, the amplitudes |xj| are not equal and the mapping between the

first stable steady-state configurations and the minima of the Ising Hamiltonian does not

hold. In practice, approximate solutions to various combinatorial optimization problems

can still be obtained under this approximate mapping [13, 22]. In order to quantify the

distance between the case of exact mapping and the more general case, i.e., when amplitudes

are homogeneous and heterogeneous, respectively, we quantify the amplitude heterogeneity

using the quantity δx defined as follows:

δx =

√〈
δ2j
〉〈

x2j
〉 , (13)

with δj = x2j − 〈x2〉 and 〈x2〉 = 1
N

∑
j x

2
j . The quantity δx corresponds to the coefficient

of variation of the squared amplitudes. For α > 0 and ε � 1, the amplitudes xj can be

expressed as xj = x
(0)
j + εx

(1)
j +O (ε2) with x(0)j = σj

√
α and x(1)j = 1

2
√
α

∑
l ωjlσl using the

perturbation theory in order to find an approximate solution to the steady-state E.(11).

Thus, the squared amplitudes can be expressed as follows in the general case:

x2j =
[
x
(0)
j + εx

(1)
j +O

(
ε2
)]2

= α + ε
∑
l

ωjlσjσi +O
(
ε2
)
.

(14)

Using E.(14), we can express x2j as follows:
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x2j =
〈
x2
〉

+ δj +O
(
ε2
)
, (15)

with δj = ε (σjhj − 〈σjhj〉), hj =
∑

l 6=j ωjlσl, and 〈x2〉 = α − 2ε
N
H. We can remark that the

homogeneous case, for which there exists exact mapping between the first nonzero stable

steady states and the ground-state configurations of the Ising Hamiltonian, is the limit of

the general case when δj → 0. Thus, the approximate mapping of the Ising Hamiltonian

results from the variations of the squared amplitudes δj.

.

Figure 11: Principle of operation of the QNN for Ising problems. Gradual pumping of the DOPO network
makes it oscillate at the ground state if all DOPOs have identical absolute amplitudes. The parametric gain
is gradually increased from below threshold to reach the minimum loss rate of the ground state. Because
the lowest loss of the network corresponds to the spin configuration of the ground state of the implemented
Ising problem, QNN is expected to find the ground state as a single oscillation mode [14].

Figure 12(a) shows the modulated threshold gain αc due to the mutual coupling ωij and

the success probability Ps of finding a ground state vs. the normalized pump rate p for an

N = 8 Ising problem, in which each vertex has three edges and there is no Zeeman term

(MAX-CUT-3 problem) [13]. In this problem, each vertex has three edges with constant

weight ωij = −0.1 as shown in Fig. 12(b). At high pump rates p ≥ 1.3, the possible value

of αc is minimum for the ground state and increase monotonically with the order of excited

states. That is, the mapping is successful. However, the threshold gain αc of the first

excited state decreases to below that of the ground state at p < 1. This unexpected result

stems from the heterogeneity of the DOPO amplitudes. Figure 12(b) shows the steady state

amplitude (by circle size) and phase (by color) of each DOPO for the first excited state at

p < 1. Five of the total eight DOPOs mutually couple without destructive interference so

that they store large amplitudes. On the other hand, the remaining three DOPOs mutually
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couple with destructive interference. By keeping amplitudes in these three DOPOs small,

the whole network realizes an effective field decay rate even smaller than that of the ground

state. Consequently, the first excited state oscillates earlier than the ground state, which

leads to the malfunction of the DOPO network.

At above the threshold (p ≥ 1), the first excited state is metastable so that the oscillation

at the first excited state switches to the oscillation at the ground state by quantum tunneling

with a finite lifetime [23]. This is why the success probability Ps increases from p = 1 to

p = 1.3. However, if the pump rate is too high (p > 1.3), the potential barrier becomes

too high to tunnel from a wrong minimum to a correct minimum, which stabilizes the false

oscillation mode at the first excited state. This is the reason why Ps decreases at p > 1.3 in

Fig. 12(a).

In Chapter VII, we will describe a technique for how to ensure equal amplitudes of DOPOs

at pump rates lower than the threshold so that the ground state of the Ising Hamiltonian is

selected by a single oscillation mode.

Figure 12: (a) The dependence of the success probability Ps and the modulated threshold gain αc of the
whole network vs. the normalized pump rate p when ωij = −0.1 for the worst-case instance with N = 8
vertices. (b) The inhomogeneous oscillation amplitudes for the first excited state at a pump rate p = 0.8.
The size and color of the circle represent the amplitude and phase of each DOPO [13].

1.4 Optical neural network operating at the quantum limit and classical limit

One of the unique features of optical neural networks is the continuous crossover of

their operational modes from the quantum limit to the classical limit. In this section, we

will present various numerical results showing the difference between the two regimes, i.e.

quantum neural network (QNN) vs. classical neural network (CNN).

17



Figure 13 shows the trajectory of the variances 2
〈

∆X̂2
〉

and 2
〈

∆P̂ 2
〉

for the DOPO

field in the measurement-feedback based coherent Ising machine (CIM) consisting of anti-

ferromagnetically coupled two spins [10]. A minimum uncertainty state at the Heisenberg

limit satisfies
〈

∆X̂2
〉〈
4P̂ 2

〉
= 1/16, which is shown by the dashed line in Fig. 13. The CIM

with a high-Q or low-Q cavity, in which a round trip loss is either 10% (-0.5 dB) or 50%

(-3 dB), continuously excites the quantum states which are close to the Heisenberg limit, as

shown by red or green line in Fig. 13. A pump rate is linearly increased from below to above

the DOPO threshold. The initial state is a vacuum state |0〉 and the final state is a coher-

ent state |α〉, so that both of them satisfy
〈

∆X̂2
〉

=
〈
4P̂ 2

〉
= 1/4. This result suggests that

the approximate measurement of X̂ per every round trip pumps out an extra-entropy from

the DOPO system and the whole computation is performed with the quantum states close

to the pure states. On the other hand, optical neural networks at the thermal noise limit

(kBT � ~ω) should operate in the classical regime defined by
〈
4X̂2

〉
≥ 1/4 and

〈
4P̂ 2

〉
≥ 1/4

, which is shown by the shaded area in Fig. 13.

Figure 13: The trajectory of 2
〈
4X̂2

〉
and 2

〈
4P̂ 2

〉
of the high-Q or low-Q cavity CIM consisting of two

anti-ferromagnetically coupled spins [10].

The success probability Ps of finding the ground state of N = 16 one-dimensional Ising

spin model, in which only nearest neighbor anti-ferromagnetic interaction exists, is numer-

ically evaluated for various temperature parameters nth = kBT/~ω and is shown in Fig. 14

[19]. The optical delay line coupling QNN is assumed. In this numerical simulation, the

pump rate is abruptly increased from p = 0 to p = p0 at t = 0. In the case of ~ω � kBT

(quantum noise limit), the squeezed vacuum state of each DOPO realizes the quantum par-
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allel search and establishes the quantum correlation (entanglement) among DOPOs during

a transient time before the steady state amplitude is formed [18, 19] so that the maximum

success probability is achieved at a final pump rate just above the threshold (p0 ' pth = 1),

which allows the network to have a sufficient time to search the solution with quantum noise.

If the final pump rate p0 is far above the threshold, the coherent field with random 0-phase

or π-phase is formed quickly in each DOPO, before the quantum parallel search establishes

the quantum noise correlation and identifies a correct solution before each DOPO oscillates.

The quantum noise induced tunneling is also not strong enough to overcome the potential

barrier separating 0-phase and π-phase when the oscillation field is strong. In this way, the

network is trapped in one of the excited states (local minima). In the case of ~ω � kBT

(thermal noise limit), the squeezed thermal state, which is the statistical mixture of the

amplitude eigenstates |X〉, does not allow the quantum parallel search during a transient

time before the steady state amplitude is formed so that the maximum success probability

is achieved at a final pump rate well above the threshold (p0 � pth = 1), where the coherent

mean-field searches a solution against thermal noise as classical neural networks.

Figure 14: The success probability of finding a solution for N = 16 one-dimensional Ising spin model for
various temperature parameters kBT/~ω [19].

In classical neural networks, the neuron state (in-phase amplitude X) has a pre-

determined value before a measurement is actually made. Thus, the action of measurement
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does not change this value of X no matter what value is reported by the detector. On the

other hand, the neuron state in quantum neural networks does not have a pre-determined

X value. The measurement result X̃ for the observable X̂ is determined by the joint action

of the measured neuron (DOPO field) and the measuring devices (homodyne detectors).

In this case, the post-measurement neuron state is changed by the specific measurement

result (partial reduction of a wavepacket) and this effect can be computed by the so-called

projection operator.

Figure 15 shows the success rate Ps to find the ground state vs. problem size N for a

generalized Ising model by a measurement-feedback based CIM. The numerical simulation

employs the c-number stochastic differential equations (CSDE) and the replicator equations,

which are derived from the measurement-feedback master equation [26]. The success rate

Ps decreases exponentially with the problem size N and Ps ∼ 0.1 at N = 2000. If the

partial reduction of the DOPO wavepacket induced by the approximate measurement of X̂

is neglected, the above quantum equations are reduced to the classical Langevin equations.

Figure 15 also shows the success rate Ps vs. the problem size N by the classical Langevin

equations. The success rate Ps decreases more rapidly in this case and Ps < 0.01 at N =

2000, which highlights the importance of the measurement-induced wavepacket reduction in

the CIM.

1.5 Gottesman-Knill theorem and non-Gaussian wavepackets

Not all quantum dynamics are difficult to simulate by classical digital computers. Some

of representative quantum processes, including entangled state generation and purification,

can be efficiently simulated by classical methods, so that such a quantum process alone does

not likely achieve an exceeding computation power compared to the current states of art in

digital computing technology.

Gottesman and Knill were the first to point out this subtle distinction between classical

and quantum information processing [24]. The statement of the Gottesman-Knill theorem

can be summarized as follows:

If a particular quantum process starts with

1. computational basis states, such as all ground states |0〉1 |0〉2 · · · |0〉N ,
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Figure 15: The success rate Ps to find the ground state vs. the problem size N . Quantum neural
network (QNN) is described by the c-number stochastic differential equations at the replicator
equations, while classical neural network (CNN) is described by the classical Langevin equations.

2. employs a limited set of unitary evolutions such as Hadamard gate, phase gate and

controlled-NOT gate (Clifford group),

and ends with

3. projective measurements along the computational basis states {|0〉 , |1〉} ,

such a quantum process can be efficiently simulated by classical digital computers. A reader,

who is familiar with the famous Shor’s factoring algorithm, knows that it requires to imple-

ment a fractional phase which is not included in the above Clifford group constraint, so that

the Shor algorithm is outside of the above limitation.

A continuous variable (harmonic oscillator) version of the above theorem was developed

by Bartlett et al. [25]. The statement of this theorem runs as follows:

If a quantum process with harmonic oscillators starts with

1. Gaussian states, such as all coherent states |α〉1 |α〉2 · · · |α〉N ,

2. employs a limited set of unitary evolutions such as squeezing gate and displacement

gate,

and ends with
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3. projective measurements of one quadrature amplitude (by homodyne detection) or

simultaneous measurement of two quadrature amplitudes (by heterodyne detection),

such a quantum process can be efficiently simulated by classical digital computers.

If we consider the above theorem against the measurement-feedback CIM (QNN), we can

identify the gain saturation (or two photon loss) as the essential quantum dynamics which

make the QNN difficult to simulate efficiently by classical methods. You can find the gain

saturation term, −
(
x2j + p2j

)
xj, in E.(11) provide the non-classical nature to QNN.

Figure 16(a) shows the third-order dispersion
〈

∆X̂3
〉
of the in-phase amplitude vs. the

normalized pump rate p for the N = 2 anti-ferromagnetically coupled spins [26].
〈

∆X̂3
〉
is

identically equal to zero for a Gaussian wavepacket, which is clearly observed at below the

DOPO threshold in Fig. 16(a). However at above the threshold,
〈

∆X̂3
〉
of the two DOPOs

bifurcate to either positive or negative value. This is because the DOPO wavepacket at above

the threshold has a rapidly decaying tail at larger amplitudes but a slowly decaying tail

toward smaller amplitudes due to the highly asymmetric potential profile, as shown in Fig.

16(b). As a result of the asymmetric (non-Gaussian) wavepackets, the quantum tunneling

easily occurs between 0-phase and π-phase states at the threshold region. Figure 17 confirms

this effect. In the QNN shown in Fig. 17(a), the switching between the two degenerate

ground states occurs frequently. However, in the Gaussian wavepacket approximation shown

in Fig. 17(b), such a switching behavior is highly suppressed due to the rapid decay of the

tail toward smaller amplitudes.

Figure 16: (a) The third-order dispersion
〈

∆X̂3
〉
of the in-phase amplitude in the measurement-

feedback CIM (QNN). (b) The non-Gaussian wavepacket at just above the threshold due to the
turn-on of gain saturation [26].
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Figure 17: The average in-phase amplitudes
〈
X̂1

〉
and

〈
X̂2

〉
of the N = 2 anti-ferromagnetically

coupled DOPOs. (a) Exact solution with non-Gaussian wavepackets. (b) Approximate solution
with Gaussian wavepackets [26].

Quantum tunneling induced by the non-Gaussian wavepackets near the threshold has a

substantial impact on the success rate of QNN. Figure 18 shows the success rate Ps to find

the ground state vs. the anti-ferromagnetic coupling strength for N = 16 one dimensional

Ising spin ring. When the coupling strength is weak and the feedback signal is overwhelmed

by the backgroumd vacuum fluctuation, the success rate Ps is small. When the coupling

strength is large and the feedback signal dominates over the vacuum fluctuation, the success

rate Ps increases, where Ps with the non-Gaussian wavepackets exceeds Ps with the Gaussian

wavepackets. This result suggests the important role of the quantum tunneling induced by

non-Gaussian wavepackets.

1.6 Summary

Some of the important conclusions in Chapter I are summarized below.

1. Optical neural networks at room temperatures operate at kBT/~ω � 1 and can realize

a quantum parallel search. Such quantum neural networks (QNN) are composed of

the two constituent devices: quantum neurons and quantum synapses.

2. Quantum neurons are provided by degenerate optical parametric amplifiers/oscillators,

which realize the quantum parallel search at below the oscillation threshold, the deci-

sion making at the threshold and the quantum-to-classical amplification of computa-

tional results at above the threshold.
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Figure 18: The success rates Ps by the exact theory (non-Gaussian wavepackets) and the Gaussian
approximation vs. Ising coupling strength for the N = 16 one-dimensional Ising model [26].

3. Quantum synapses are provided by either direct coupling with optical delay lines or

indirect coupling with measurement-feedback circuits. They utilize distinct computa-

tional resources: quantum noise correlation (entanglement) in the optical delay line

coupling QNN and measurement-induced wavepacket reduction to non-Gaussian states

in the measurement feedback QNN. We will develop the quantum theory of the two

types of QNN in Chapters III and V.

4. QNN can solve various combinatorial optimization problems by mapping them either

on NP-hard Ising problems or NP-complete k-SAT problems. The former system,

called a coherent Ising machine, is constructed as a symmetric continuous-time ho-

mogeneous neural network and the latter system, called a coherent SAT-machine,

is realized as an asymmetric continuous-time recurrent neural network. The details

of these two machines will be presented in Chapters VI and VII (Chapter VII is in

preparation).

5. Optical neural networks at quantum limit (QNN) can outperform those at classical

limit (CNN) by exploiting superposition states for quantum search of solutions and

quantum suppression of classical chaos.

6. The gain saturation and single photon loss are the two indispensable elements to

make QNN hard to simulate by classical methods. These two dissipation processes
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and associated fluctuations from external reservoirs are crucial resources to accelerate

the search process.
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