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Reduction and resource recycling of high-level 
radioactive wastes through nuclear transmutation

http://www.jst.go.jp/impact/en/program/08.html

Pd, Zr, ..



Our mission in ImPACT program

Develop efficient extraction technique of LLFP isotopes 
(93Zr*, 107Pd*) aiming at both the nuclear transmutation 
and recycling.
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Isotope separation vs. odd-mass selection
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Mixture of palladium isotopes in HLW

Isotope separation
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Odd-mass selection

107105

w/ ultra-high resolution laser
No precise spectroscopic data

LLFP

Wavelength of laser Non-zero nuclear spin

- 220           375            341           212            146            48 g / ton*

*JAERI-M 91-147

In the case of palladium (Pd)

Easy



Even-mass number isotopes ( I = 0)
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Difference in the electronic state structure of palladium 
between even-mass (I=0) and odd-mass (I≠0) isotopes
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Selection rules for electronic transition
absorption of photons

☆Linear polarization

☆Circular polarization

+1 for LHC and -1 for RHC.

∆𝑚𝐽 = 0

∆𝑚𝐹 = 0

Rule

∆𝑚𝐽 = ±1

∆𝑚𝐹 = ±1

Rule

We need to choose proper combination of electronic states 
of particular J to realize selective excitation and ionization.

Not easy to maintain

Easy to maintain

Nuclear spin
𝐼 = 0

Nuclear spin
𝐼 ≠ 0

Total angular 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝐹 = 𝐽 + 𝐼

Nuclear spin
𝐼 = 0

Nuclear spin
𝐼 ≠ 0

∆𝐽 = 0,±1



2-LHC lasers + ionization laser: 3 lasers

Even-mass isotopes ( I = 0)
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LHC ΔmJ = +1 LHC ΔmF = +1

Only odd-mass isotopes absorb the 2nd laser photon

LHC ΔmJ = +1 LHC ΔmF = +1

Original scheme proposed by Hao-Lin Chen (1980)
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Drawbacks of the original scheme

For selective excitation

・Using two circularly polarized lasers 

Not easy to maintain polarization

Not suitable for multi-pass optics

For ionization

・Non-resonant ionization Low efficiency

As for the Cost

・Totally 3 lasers for selective ionization 

High initial and maintenance costs



We have developed 2-laser scheme.

For selective excitation

・Using two //-linearly polarized lasers

Easy to maintain polarization

Suitable for multi-pass optics

For ionization

・Resonant ionization = High efficiency

As for the Cost

・Reduced number of lasers to 2

Less initial and maintenance costs



2-laser scheme

Original scheme
（2-step excitation＋ionization）

2-laser scheme
（2-step excitation/ionization）

autoionizing states
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Ionization 
continuum

Need to confirm if 
negligible or not.
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Appl. Phys. B123, 240 (2017).

Ionization limit
Even＋Odd

Non-resonant



Spectroscopic investigation of autoionizing states
Selective（//） and non-selective（⊥） excitations

Wavelength /nm

Wavelength /nm

Non-selective

J=1 series

4d9(2D3/2)nd ( J = 1)
12       11           10                     9                                    8

Selective



Selectivity check

105Pd+ > 99.7 %

105

Non-selective

Selective β>1000 
confirmed!

Appl. Phys. B123, 240 (2017).

The result suggests transition to ionization continuum is negligible.



Pd I  4d10 1S0
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Zirconium: Tuning ω3 in search of J=0 state

ω3scan

1064 nm

Reported by Niki

30 times larger 
intensity than the 
previous report.

91Zr+>98.6 %

Dr. Niki’s line

J = 2⇒ 1 ⇒ 1 ⇒ 0⇒ ionization
Selective excitation with 3-// linearly polarized lasers



Effort to increase ion yield (Pd)
Simple multi-pass optics

0.21 g/day @10 kHz

77 g/year @10 kHz

Pd vapor flux



Road to practical realization

• High power lasers

• Large volume multi-pass optics

Nuclear power plant
1.0 GW

Pd 27 kg/year

High-level nuclear waste (HLW)  20 ton/year

Our value  77 g/year

× 350

The difference will be overcome in the near future.
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