革新的 GX 技術創出事業(GteX) チーム型研究 「水素」領域 年次報告書 令和 6 年度 研究開発年次報告書

令和6年度採択研究開発代表者(チームリーダー)

[研究開発代表者(チームリーダー)名:折茂 慎一]

[東北大学 材料科学高等研究所・所長]

「研究開発課題名:

革新水素貯蔵 -水素反応の精密解析とデジタル技術の援用-]

実施期間 : 令和6年4月1日~令和7年3月31日

§1. 研究開発実施体制

(1)材料グループ

① グループ参画者:

グループリーダー: 近藤 剛弘 (筑波大学数理物質系・物質工学域、教授)

主たる共同研究者: 折茂 慎一 (東北大学材料科学高等研究所、所長・教授)

岡本 啓 (東北大学金属材料研究所、助教)

令和7年2月2日終了

佐藤 豊人 (東北大学金属材料研究所、准教授)

花田 信子 (早稲田大学理工学術院、准教授)

令和6年10月1日よりシステムグループ

榊 浩司 (産業技術総合研究所エネルギー・環境領域

エネルギープロセス研究部門、グループリーダー)

藤田 健一 (京都大学大学院人間・環境学研究科、教授)

竹下 博之 (関西大学化学生命工学部、教授)

令和7年3月31日終了

藪 浩 (東北大学材料科学高等研究所、教授)

ZHANG Linda (東北大学学際科学フロンティア研究所、助教)

② 研究項目

- ・材料機能の多様性に基づく革新性の追求(主担当)
- ・高圧反応と解析領域の拡張、DX 化と MI/PI および数理科学の導入(支援)
- ・システム化の視点での研究展開(支援、令和6年10月1日より)

(2)解析グループ

① グループ参画者:

グループリーダー: 齋藤 寛之 (量子科学技術研究開発機構、グループリーダー)

主たる共同研究者: 山本 春也 (量子科学技術研究開発機構、上席研究員)

菖蒲 敬久 (日本原子力研究開発機構、グループリーダー)

令和6年10月1日よりシステムグループ

大友 季哉 (高エネルギー加速器研究機構、教授)

池田 一貴 (総合科学研究機構、副主任研究員)

徳増 崇 (東北大学流体科学研究所、教授)

味戸 沙耶 (東北大学金属材料研究所、助教)

② 研究項目

- ・高圧反応と解析領域の拡張(主担当)
- ・材料機能の多様性に基づく革新性の追求、DX 化と MI/PI および数理科学の導入(支援)
- ・システム化の視点での研究展開(支援、令和6年10月1日より)

(3) DX グループ

① グループ参画者:

グループリーダー: 沓掛 健太朗 (名古屋大学未来材料・システム研究所、准教授)

主たる共同研究者: 佐藤 龍平 (東京大学大学院工学系研究科、助教)

LI Hao (東北大学材料科学高等研究所、准教授) 濱田 幾太郎 (大阪大学大学院工学研究科、准教授)

清水 亮太 (東京大学大学院理学系研究科、准教授)

② 研究項目

- ・DX 化と MI/PI および数理科学の導入(主担当)
- ・高圧反応と解析領域の拡張、材料機能の多様性に基づく革新性の追求(支援)
- ・システム化の視点での研究展開(支援、令和6年10月1日より)

(4)システムグループ(令和6年10月1日より)

① グループ参画者:

グループリーダー: 花田 信子 (早稲田大学理工学術院、准教授)

主たる共同研究者: 菖蒲 敬久 (日本原子力研究開発機構、グループリーダー)

- ② 研究項目
 - ・システム化の視点での研究展開(主担当)
 - ・材料機能の多様性に基づく革新性の追求、高圧反応と解析領域の拡張、DX化とMI/PI および数理科学の導入(支援)

§2. 研究開発成果の概要

水素貯蔵チームとして、高圧水素環境安全管理システムを備えた専用研究開発スペースの整備を完了、高圧水素反応装置群の運用・供用化を開始した。

材料グループでは、新たな AB_3 型水素吸蔵材料を開発、室温で約 17 gH_2/kg (質量水素密度)ならびに約 100 gH_2/L (体積水素密度)を示すとともに、ヒステリシスフリー(即ち、水素吸蔵・放出反応における外部の水素圧力差が小さく、ほぼ同圧力で両反応が進行)・高速反応(例、10 秒で90%吸蔵)・高耐久性(100 フルサイクル後でも初期と同等の水素吸蔵・放出反応)などの優れた特性を示すことを実証した。さらに、室温で約 21 gH_2/kg および約 35 gH_2/kg (何れも質量水素密度)を示す新たな水素吸着材料の合成にも成功した。

これらの水素吸蔵・吸着材料のハイブリッド化に関しては、2024 年 10 月に設置したシステムグループが、モデル系を用いたプロセス開発を進めた。システムグループでは各種の熱測定も重視しており、中性子透過・イメージング技術を活用した容器内における水素貯蔵反応挙動と温度分布との同時計測のためのシステム開発も継続している。

解析グループでは、材料・DX グループと連携することで、Mn-Al 合金水素化物の解析を通じた 従来技術の延長線上に無い新たな水素貯蔵材料の実現につながる知見を提示するとともに、水 素貯蔵材料用ハイスループット成膜技術の自動化・自律化を目指した装置設計を完了した。

さらに、DX グループが中心となり、水素貯蔵材料専用データプラットフォームの構築を目指す取り組みを進めるとともに、機械学習ポテンシャルを用いたスーパーハイドライド(超化学量論組成水素化物)の合成反応の解明も進めた。

これらのチーム型研究を通じて、また産業界からの最新情報も取り入れながら、2027 年度目標 としての水素貯蔵材料・技術に関する開発指針の確立を目指している。

【代表的な原著論文情報】

- 1) "Interplay of Hydrogen Boride Sheets with Water: an Insight into Edge stability", K. I. M. Rojas, Y. Morikawa, I. Hamada,
- Physical Review Materials, 8(11), 114004 1114004-8 (2024).
- 2) "Synthesis, Crystal Structure, and Hydrogen Storage Properties of an AB₃-Based Alloy Synthesized by Disproportionation Reactions of AB₂-Based Alloys",
- T. Sato, H. Saitoh, R. Utsumi, J. Ito, K. Obana, Y. Nakahira, D. Sheptyakov, T. Honda, H. Sagayama, S. Takagi, T. Kono, H. Yang, W. Luo, L. Lombardo, A. Züttel, S. Orimo, *The Journal of Physical Chemistry C*, **129**(6), 2865 2873 (2025).
- 3) "Effects of Ball Milling on Hydrogen Release Performance of Titanium Dihydride", M. Yuan, N. Noguchi, Z. Kang, S. Ito, M. Hikichi, O. Oki, R. Tsuji, X. Zhang, I. Matsuda, K. Sakaki, S. Orimo, T. Kondo,

The Journal of Physical Chemistry C, 129(13), 6340 - 6351 (2025).