地球規模課題対応国際科学技術協力

(環境・エネルギー研究分野「気候変動の適応又は緩和に資する研究」領域)

海面上昇に対するツバル国の生態工学的維持

(ツバル)

平成21年度実施報告書

代表者:茅根 創

東京大学・大学院理学系研究科・教授

<平成20年度採択>

1. プロジェクト全体の実施概要

本国際共同研究の目的(上位目標)は、沿岸生態系の保全・修復および人為支援によって砂の供給・ 運搬・堆積過程を促進し、将来の海面上昇に対して復元力の高い海岸・国土を再生することである. ツ バルはすでに海面上昇によって水没しているという単純な見方を排し、現在起こっている問題は主にロ ーカルな問題であり、それが将来起こるグローバルな環境変動に対してツバルが自然に持っていた復元 力を損ねているという視点に立って、ツバルの復元力を再生して地球温暖化に対応する.

上記目標を達成するために、ツバルの首都があるフナフチ環礁において、ローカルな人為影響とグローバルな温暖化による海面上昇を考慮した砂収支モデルを構築し、生態工学的な砂生産-運搬-堆積を促進する処方箋を立案する. さらに共同研究を通じて、沿岸環境と生態系を継続的にモニタリングする現地の体制を整備し、それを継続的に維持する人材をツバル国内で育成する.

研究初年度の 2009 年は、ツバル国フナフチ環礁において、地形・生態、リモートセンシング、海岸工学調査を行って、サンゴと有孔虫の分布とそれらによる砂の生産、運搬(沿岸漂砂)、堆積を地図上に図示する「ハビタット・砂収支地図」のプロトタイプを作成した。さらに同地図上で、人為活動による生態系の劣化に伴う砂生産の減少や、人工構造物によって運搬・堆積が阻害されている海岸を特定し、その原因を推定した。また、砂生産の増加をはかるため、有孔虫増殖水槽を設計して、国内において試験的に飼育実験を開始した。これまでに、50万個体の有孔虫(ホシズナ)を90日間飼育することに成功した。カウンターパートには、現地における生態調査と有孔虫の飼育実験のための基本的な技術指導を行った。

2010 年度には、「ハビタット・砂収支地図」を現地において検証し、収支の定量化をはかる。また、同地図に基づいて、生態系の修復や養浜、運搬・堆積過程の人為的補助(堤防の建設やコーズウェイの開削)などの施策を実施した場合、砂の堆積量がどのように促進されるか、逆に阻害することがないかを、慎重に検討・評価して、海岸侵食対策や海岸管理計画の策定を支援する。さらに、生態系劣化により砂の生産の場でありながらその低下が著しいサイトを特定して、サンゴと有孔虫の移植・増殖による砂生産の再生と長期的な島の維持の方針を決める。こうした成果の評価と継続的なモニタリングのための体制は、現地カウンターパートとともに、現地において構築する。有孔虫増殖水槽では、カウンターパートとともに有孔虫増殖の最適条件を明らかにして、増殖技術の確立を目指す。海岸地形モニタリングのためのカウンターパートを特定し、養成をはじめる。

2. 研究グループ別の実施内容

(1) 地形・生態グループ

①研究のねらい

ツバル国フナフチ環礁の州島地形形成メカニズムに基づいて、生態工学的再生策を提案する.地形・生態班は、カウンターパートと連携して、地形・生態の基本的な調査を行うとともに、リモートセンシング、海岸工学、有孔虫班の成果と、開発調査のデータをまとめ、再生策に向けて研究全体の方針を定める.

本年度は、ハビタットマップのプロトタイプを作成して、半定量的な砂収支マップを作成して、これ

に基づいて,人口稠密地域での砂生産の劣化,コーズウェイの影響評価,砂浜消失の原因を検討する. さらに,有孔虫増殖水槽の設置準備を進める.

②研究実施方法

ハビタットマップ作成について、先ずリモートセンシング班に衛星画像に基づいてサンゴ、有孔虫、 藻場、砂地の分布図を仮に作成してもらう.次に、これに基づいて有孔虫班、開発調査と連携して、測 線を設定して、実際のハビタットとサンゴ被度、有孔虫分布密度の現地における測線調査を行う.測線 調査の結果をリモートセンシング班にフィードバックして、ハビタットマップを完成させる.

さらに、ハビタットマップから有孔虫の現存量を見積もり、有孔虫班による有孔虫生産量の解析結果をいれて、有孔虫の砂生産ポテンシャルと、実際の生産量を概算する.こうして求められた砂生産を、海岸工学班の漂砂ポテンシャルと比較して、砂の生産-運搬-堆積の過程を、ハビタットマップ上で半定量的に示す.

③当初の計画(全体計画)に対する現在の進捗状況

2008年3月と9月に、地形・生態班、有孔虫班で14測線、開発調査で31測線を調査して、あらかじめリモートセンシング班が作成したハビタットマップ上に測線を投影して検証して、ハビタットマップのプロトタイプを作成した。さらにこれに基づいて、フォンガファレ島の人口集中域の沿岸では、本来有孔虫・サンゴのハビタットでありながら、有孔虫とサンゴがまったく見られないことが明らかになった。これは、人口集中の影響で生態系が劣化して、有孔虫とサンゴの砂生産が劣化しているためであると考えた。また、フォンガファレ島北方のコーズウェイが有孔虫砂の移動を妨げていること、第二次世界大戦時の海岸地形の改変が現在の海岸浸食につながっていることを確認した。

④カウンターパートへの技術移転の状況(日本側および相手国側と相互に交換された技術情報を含む) 有孔虫の分布とその季節的変化について、ツバル側カウンターパートの水産局研究部門長ツプラガ と、同部のパイニューが、定点サンプリングを行っている。3月と9月調査時に、共同で現地調査を行って、サンプリングと記載、室内におけるサンプル処理と観察など、基本的な手法を移転した。またこれらの期間外には、現地において毎月定点サンプリングを行っている。

⑤当初計画では想定されていなかった新たな展開があった場合、その内容と展開状況(あれば)

当初は、有孔虫増殖水槽の設置は現地に資材を送り、現地で組み上げることを予定していた.しかしながら9月調査の際に、現地において資材の調達が困難であることがわかったため、基本的なユニットは日本で組み上げ、現地には完成したユニットを送付して、現地において組み立てるよう計画を変更した.さらに、ツバルにおける増殖技術構築を成功させるため、ツバルと並行して国内でも増殖実験水槽を立ち上げて増殖試験を進めることを決め、福岡に増殖水槽を立ち上げた.ツバルと福岡の増殖実験水槽について、JST、JICAに予算措置をとっていただいた.

ツバル増殖水槽について、2010年4月に立ち上げるが、立ち上げ後の維持経費、とくに電気料金の問題が検討事項として上がっている.これまでに研究に必要な最小限度まで省力化をはかったが、ツバルの支出能力を超えているため、定常的な運転が困難になる可能性があり、対応を検討している.

(2) リモートセンシング・グループ

①研究のねらい

リモートセンシングデータを用いた効率的なマッピングや海岸線変化のモニタリング手法を開発し、 現地に移転することを目的としている。そのために、以下の5つの研究項目を設ける。

- 1) 地形とサンゴや有孔虫などの生息環境のハビタットマップを作成する.
- 2) リモートセンシングによって、過去の地形・生態変化を復元・解析して、海岸工学班の現地調査結果と比較する.
 - 3) リモートセンシングによって、地形・生態変化を監視する手法を開発する.
 - 4) 砂浜再生実験を評価する.
 - 5) リモートセンシングによる砂浜監視手法を、現地の研究者・担当者に移転する.

②研究実施方法

ハビタットや海岸線の広域におけるマッピングとモニタリングには、衛星画像をはじめとするリモートセンシング技術の活用が効果的である。ハビタットマップに関しては、衛星画像を用いて分類を行い、現地データとの照合を行って作成を行う。海岸線に関しては、海岸線の抽出に有効な波長帯を検討するとともに、過去からの変化に関する既存研究のレビューを行う。また、モニタリングには、衛星データを補完するものとして、定点カメラによるモニタリングが可能か検討を行う。こうした技術移転のために、最適なソフトウェア環境を整備する。

③当初の計画(全体計画)に対する現在の進捗状況

1) に関しては、フナフチ環礁フォンガファレ島において、2003年に取得された IKONOS 衛星画像を用いて、教師無し分類を行い、ハビタットマップのプロトタイプを作成した。2)に関しては、文献のレビューを行い。 1984年と 2003年の海岸線変化に関する結果を得た (Webb, 2006, SOPAC 報告書)。3) に関しては、文献のレビューを行い、衛星データの近赤外画像を用いて海岸線を抽出できることを明らかにした (Yamano et al., 2006, Geomorphology 誌)。また、定点カメラのテストを行い、カメラの近赤外画像を用いた海岸線変化監視手法を検討した。4)及び5)に関しては、3)の結果に基づき、衛星データと定点カメラを用いた砂浜再生実験評価システムを考案し、技術移転を行うことを検討している。

④カウンターパートへの技術移転の状況(日本側および相手国側と相互に交換された技術情報を含む) GIS やリモートセンシングを用いた解析やモニタリングに関して、カウンターパートを問い合わせ中である。カウンターパートには、衛星データやカメラデータ等を用いた海岸線抽出結果を GIS 上で整理する手法を伝達し、このプロジェクトでの調査の分担と、将来の海岸地形モニタリングを行うことを期待している。

⑤当初計画では想定されていなかった新たな展開があった場合、その内容と展開状況(あれば) 特になし。

(3)海岸工学グループ

①研究のねらい

海岸工学的な観点からツバル海岸の侵食・堆積過程の解明し、その結果からツバルの海岸での砂浜を再生する方策を提案することを目的としている。主に通常波浪・高波浪による沿岸漂砂とそれによって生じる地形変化(汀線変化)に注目する。さらに、漂砂の捕捉機構としての海岸植生の役割や、海岸植生環境としての地下水および海岸水の水質の解析も行う。

②研究実施方法

フナフチ環礁フォンガファレ島において,島の北端, 南端および中央部(ラグーン側)の海岸において代表 的な地点の断面地形を毎年8月期と3月期に測量する.

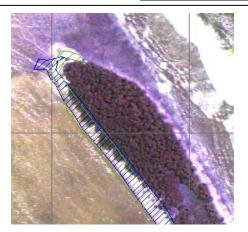


図: フォンガファレ北端での砂浜域の変化(赤: 2009年3月, 青:2009年9月)

これらの結果を比較することにより、地形変化の状況を把握することができる。また、北端および中央部の主な砂浜の領域を踏査により抽出し、砂浜域の移動状況を把握する。

ツバルの気象観測所やその他で収集された気象データを用いてフォンガファレ島周辺の波浪場環境を推定し、沿岸漂砂量(地形変化量)を推定するモデルを構築する. その際、地形の局所的な変化や人工構造物の影響を考慮できる解像度になるようにする. 断面地形測量を行う海岸、およびその周辺において、海岸植生の状況や水質調査を行い、現状での侵食・堆積状況との比較を行う.

以上の調査解析結果と、リモートセンシング班による過去の地形変化結果や地形・生態班による有孔 虫による底質供給量をもとに、フォンガファレ島海岸の地形変化予測モデルを開発する.それにより将 来的な底質供給・運搬・堆積のバランスを評価する.そして、侵食域に対する適切な対策を検討し、提案する.また、同時に進行する開発調査プロジェクトとも調査データなどを共有し、侵食対策効果などを評価する.

③当初の計画(全体計画)に対する現在の進捗状況

2009年3月および8月に現地調査を行い、砂浜地形の変化を検出できた. 図には、フォンガファレ島 北端部の砂浜域が変化した様子を示す. この変化が季節的なものなのか高波浪イベントによるものなの かは今後の検討課題である. また、ECMWF による波浪データを解析して、ツバル周辺での波浪場および 風の場の年間変動を解析した. 年間通じて南東の風が多いが、時折北または北西からやや強い風が吹く イベントがあり、それらと地形変化との関連が重要であると推察される.

今後,土地被覆や水質調査を行い,侵食域・堆積域に関する詳細な情報を収集する予定である.

④カウンターパートへの技術移転の状況(日本側および相手国側と相互に交換された技術情報を含む) 簡易な測量調査や海岸域踏査を分担してもらうカウンターパートを問い合わせ中である. 2010 年 3 月の調査で、面接し決定する予定である. カウンターパートには、測量技術と結果を GIS 上で整理する 手法を伝達し、このプロジェクトでの調査の分担と、将来の海岸地形モニタリングを行うことを期待し ている.

⑤当初計画では想定されていなかった新たな展開があった場合、その内容と展開状況(あれば)

特になし。

(4) 有孔虫グループ

①研究のねらい

フォンガファレ島周辺における有孔虫の分布と棲息密度を明らかにして、その規定要因と年間生産量を求める.

②研究実施方法

測線調査法によって有孔虫の分布と棲息密度を調べる.衛星写真による礁原の底質判別結果の情報を基に調査測線位置を決定した. 各調査位置の外洋側と礁湖側の海岸に基点を設け、そこから沖に向けて海岸線に垂直に測線を引き、測線上の底質の種類と水深を記録しながら底質帯を区分した後、各底質帯で有孔虫分析用試料を採取した. ねじ蓋式円筒形プラスチック瓶とへらを用いて、有孔虫が付着する主要な海藻を各底質帯で4試料採取した. 採取した試料をホルマリン固定して、研究室に持ち帰った. その後、生死判別のため染色処理を行い、0.5 mm 以上の染色した生体有孔虫個体を計数した. そのデータを基に1 m³あたりの個体数に換算した.

また沿岸海水の栄養塩濃度を明らかにするため、水質分析用の採水も行った. 各調査測線上の岸側と沖側で濾過した海水を 10 mL 採水した. また海水中の窒素の供給源を調べるため、海藻の窒素同位体比分析用の海藻を採取した. 採取した海藻をソーティングした後、濾過海水で洗浄し、一定量の海藻を試料とした.

③当初の計画(全体計画)に対する現在の進捗状況

調査は、2009年3月と9月に実施した. 外洋側礁原では、Baculogypsina sphaerulata が最も優勢であり、Amphistegina lobifera、Sorites orbiculus などを伴う。Baculogypsina の棲息密度が最も高いのは3月に調査した TN 測線(フォンガファレ島北端付近)の沿岸で、1 ㎡あたり 100 万個体以上である。反対に最も低いのは、9月に調査した集落北側に位置する3番測線と4番測線で、1 ㎡あたり 1000 個体以下である。

また、3月と9月の結果とも、集落付近では Baculogypsina の棲息密度が低い傾向がみられる。最も集落に近い SM 測線(3月に調査)では $1 \, \mathrm{m}^2$ あたりに $1 \, \mathrm{T}$ 個体であるが、同じ時期の TN 測線と比較すると $2 \, \mathrm{m}^2$ 析も低い。これらの結果は、人為的要因が有孔虫の分布を規定している可能性を示唆する.

その他,9月の棲息密度は3月のそれと比べて全体的に低かった.このことは時期的に小さい個体が多いためと想定され,0.5 mm 以下の有孔虫の棲息密度も検討したが,特に9月に小さい個体が多い傾向はなかった.このことから,雨季(3月)と乾季(9月)の違いに伴う環境要因の変化(波浪条件や地下水流出量など)に原因がある可能性が考えられる.

礁湖側礁原では、 $Amphistegina\ lessonii\$ が優勢であり、 $Sorites\ orbiculus\$ などを伴う。3 月と 9 月 の結果とも、 $Amphistegina\ lessonii\$ の棲息密度が沖側で高くなる傾向がみられる。最も高い地点では 1 ㎡ あたりに 10 万個体である。沖側に多いためか、外洋側でみられたような集落付近での棲息密度の低下は特に認められない。

また、棲息密度は3月より9月に高い傾向がある.このことも外洋側と同様、雨季(3月)と乾季(9月)の違いに伴う環境要因の変化(波浪条件や地下水流出など)に原因がある可能性が考えられる.

Amphistegina lessonii の棲息密度は、外洋側の Baculogypsina のそれと比べても決して無視できない. しかし、礁湖の沖側にいるためか、礁湖側の海浜の堆積物にはその殻はほとんど含まれていない. そのため、フォンガファレ島や海浜堆積物形成への寄与は小さいと考えられる.

その他,フォンガファレ島の北端付近(TN 測線)では、外洋側に多い有孔虫 Baculogypsina がわずかに分布する(1 ㎡あたりに 1 万個体)が,他の測線ではみられない.このことは,今後コーズウェイに水路を造るときに,礁湖側に外洋側に分布する有孔虫が流れ込み,礁湖側に棲息域を広げる可能性を示唆する.

今後これらの結果と水質(栄養塩)分析結果とを比較し、分布と棲息密度の規定要因を特定したい。 また、得られた棲息密度のデータから年間生産量を現在計算中である。

- ④カウンターパートへの技術移転の状況(日本側および相手国側と相互に交換された技術情報を含む) カウンターパートには、毎月有孔虫の定点サンプリングを依頼し、採取試料の同定法、分析方法を教 えた。
- ⑤当初計画では想定されていなかった新たな展開があった場合、その内容と展開状況(あれば) 特になし。

3. 成果発表等

(1) 原著論文:国内0件、国際 1件

Fujita, K., Osawa, Y., Kayanne, H., Ide, Y. and Yamano, H.: Distribution and sediment production of large benthic foraminifers on reef flats of the Majuro Atoll, Marshall Islands. *Coral Reefs*, **28**, 29-45 (2009).

(2) 特許出願:0件

4. プロジェクト実施体制

- (1)「地形・生態」グループ
- (ツバル海岸の生態的維持機構の解明)
- ①研究グループリーダー: 茅根 創 (東京大学大学院理学系研究科・教授)
- ②研究項目
 - 1) ツバル海岸の地形・生態調査に基づいて、サンゴや有孔虫などの分布、現存量、生産量を求め、砂の供給ポテンシャルを求める.
 - 2) リモートセンシング班,海岸工学班と共同で、砂収支マップを作成する.
 - 3) 砂収支マップに基づいて、砂浜形成の阻害要因を特定する.
 - 4) 砂収支ポテンシャルに基づいて、有孔虫班の成果に基づいて砂の供給促進を現場に適用して、

砂浜の再生をはかる.

- 5) 地形・生態調査の手法と砂浜の再生策を、現地の研究者・担当者に移転する.
- (2)「リモートセンシング」グループ
- (リモートセンシングによるツバル海岸環境マッピングと維持機構の解明)
- ① 研究グループリーダー:山野 博哉 (国立環境研究所地球環境研究センター・主任研究員)
- ② 研究項目
 - 1) リモートセンシングと地形・生態班の現地調査結果に基づいて、地形とサンゴや有孔虫などの生息環境のハビタットマップを作成する.
 - 2) リモートセンシングによって、過去の地形・生態変化を復元・解析して、海岸工学班の現地調査結果と比較する.
 - 3) リモートセンシングによって、地形・生態変化を監視する手法を開発する.
 - 4) 砂浜再生実験を評価する.
 - 5) リモートセンシングによる砂浜監視手法を、現地の研究者・担当者に移転する.
- (3)「海岸工学」グループ

(海岸工学的なツバル海岸の浸食・堆積過程の解明)

- ① 研究グループリーダー:横木 裕宗 (茨城大学 広域水圏環境科学教育研究センター・准教授)
- ② 研究項目
 - 1) 海岸沿いの沿岸流と、それによる砂の運搬過程を解析し、砂の運搬・堆積モデルを構築する.
 - 2)海岸沿いの被覆・土地利用、および海岸域の水質環境の解析を行い、海岸地域の土地被覆変遷および水質環境と海岸侵食・堆積域との関連を明らかにする.
 - 3) 砂の運搬・堆積モデルと、地形・生態班による砂供給量見積もり、リモートセンシング班による過去の地形変化結果に基づいて、砂浜の地形変化の要因を明らかにする.
 - 4) 砂の運搬・堆積過程への人工構築物(堤防,護岸,橋など)および海岸地域の土地被覆変遷・水質環境などの影響を評価する.
 - 5) 砂浜再生に必要な支援策を定量的に見積もる.
 - 6) 砂浜再生実験を評価する.
 - 7) 海岸工学的手法による砂浜再生策とその評価方法を, 現地研究者・担当者に移転する.
- (4)「有孔虫」グループ(有孔虫増殖の基礎的研究)
- ① 研究グループリーダー:藤田 和彦 (琉球大学理学部物質地球科学科・助教)
- ② 研究項目
 - 1) 有孔虫の基本的な生態と生活史を、現地と実験室において明らかにする.
 - 2) 有孔虫による砂の生産速度を見積もる.
 - 3) 有孔虫の生息と砂の生産の最適条件を、現地と実験室において決定する.
 - 4) 最適条件の創成による、砂浜再生の方策を提案し、その成果を評価する.
 - 5) 生態系再生による砂浜再生手法を, 現地の研究者・担当者に移転する.

以上