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We develop a method of simultaneous and independent control of different scattering lengths in

ultracold atomic gases, such as 40K or a 40K-6Li mixture. Our method can be used to engineer

multicomponent quantum phases and Efimov trimer states.
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Introduction.—Recently, multicomponent gases of de-
generate fermions [1–3] or boson-fermion mixtures [4]
have attracted broad interest both theoretically and experi-
mentally. Novel quantum phases [1] and Efimov states
[3,5] have been predicted in three-component Fermi gases.
If interspecies scattering lengths can be altered indepen-
dently, one can engineer Efimov states and the quantum
phases of a three-component Fermi gas, and control an
effective interaction between two-component fermions im-
mersed in a Bose gas [4]. The magnetic Feshbach reso-
nance (MFR) technique [6] can control only one scattering
length, or a few scattering lengths but not independently.
The optical Feshbach resonance technique [7] can be di-
rectly generalized to the independent control of more than
one scattering length [8]. However, it would significantly
shorten the lifetime of the system unless the atom has a
long-lived electronic excited state (e.g., the 3P0 state of the
171Yb or 173Yb atom [9]).

In this Letter, we combine the two ideas of MFR and rf-
field-induced Feshbach resonance [10] to propose a
method for independently controlling two scattering
lengths in three-component atomic gases. In our scheme,
atoms are dressed via couplings between different hyper-
fine states. With a proper magnetic field, the independent
tuning of scattering lengths of atoms in different dressed
states can be achieved by control of the Rabi frequencies
and detunings for different couplings.

Control of a single scattering length.—We first consider
atoms with three ground hyperfine levels [Fig. 1(a)] jf1i,
jf2i, and jgi. In this Letter, we use the Dirac bracket ji to
denote the hyperfine levels of one or two atoms; jÞ to
indicate the spatial states of the relative motion between
two atoms, and jii for the total two-atom state, which
includes both spatial motion and hyperfine state. We as-
sume that jf1i is coupled to jf2i through Rabi frequency�
and detuning �. Such a coupling can be realized with a
two-color stimulated Raman process (TCSRP), i.e., cou-
pling the hyperfine states jf1;2i via a common excited state

jei (not shown in the figure) by two laser beams [11]. The
atomic loss caused by the spontaneous decay of jei can be
suppressed when the laser frequencies are far detuned from
the resonance. We assume the Rabi frequencies to be at
least 1 order of magnitude smaller than the typical depth

(� a few 100 MHz) of optical traps (see, e.g., [12]), so
that the loss due to the decay of the state jei may be
ignored. A stable coupling can also be realized via an rf
field that induces a direct transition between two hyperfine
states. The Rabi frequency caused by the rf field can be
0.1 –1 MHz with the oscillating amplitude of magnetic
field &0:1 G.

FIG. 1 (color online). (a) Schematic hyperfine levels used for
the control of a single scattering length. The states jf1;2i are

coupled to form two dressed states jfh;li. (b) Bare channels with
hyperfine states j1i � jf1ijgi and j2i � jf2ijgi are coupled with
parameters (�, �), and j2i is coupled to the bound state j�resÞ in
the closed channel with hyperfine state jci via interactionW. The
state j1i can decay via a hyperfine relaxation process with two-
body loss rate K1. (c) Dressed channels. alg is resonantly

enhanced when the threshold energy of the channel with
jflijgi crosses the bound state j�resÞ in jci. (d),(e) Hyperfine
states used for the control of two scattering lengths with our first
(d) and second (e) methods. All the levels are plotted in the
rotating frame of reference. In (b) and (c), r indicates the
interatomic distance.
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Without loss of generality, we assume that the scattering
channel with respect to hyperfine state j2i � jf2ijgi is
stable, while the channel with j1i � jf1ijgi can decay to
another channel with hyperfine state jai through a hyper-
fine relaxation (HFR) process. We further assume that a
static magnetic field is tuned to the region of MFR between
the diatomic channel with j2i and a bound state j�resÞ in
a closed diatomic channel with hyperfine state jci
[Fig. 1(b)]. The binding energy EcðBÞ of j�resÞ can be
controlled by magnetic field B. Therefore, in the rotating
frame of reference, the Hamiltonian for the relative motion
of two atoms is given by

Ĥ ¼ ĤðbgÞ þ EcðBÞj�resÞð�resj � jcihcj þ Ŵ þ Ŵy; (1)

where

ĤðbgÞ ¼ �r2
X

i¼1;2;a

jiihij þ V̂ðbgÞ;

V̂ðbgÞ ¼ X

i¼1;2;a

½VðbgÞ
i ðrÞ þ Ei�jiihij

þ ½�j1ih2j þ V1aðrÞj1ihaj þ H:c:�;
Ŵ ¼ WðrÞj�resÞð�resj � j2ihcj;

where we set @ ¼ 2m� ¼ 1 with m� being the reduced

mass. In Eq. (1), V
ðbgÞ
i ðrÞ (i ¼ 1, 2, a) is the background

scattering potential in the channel jii with r the distance
between the two atoms; WðrÞ is the coupling between j2i
and jci; V1aðrÞ is the coupling between jai and j1i; Ei is the
asymptotic energy of the channel jii in the rotating frame.
Here we choose E2 ¼ 0, which implies E1 ¼ � and Ea ¼
�� � with � being the energy gap between j1i and jai.

Hamiltonian (1) shows that scattering channels j1i and
j2i are coupled via the Rabi frequency �. Since this
coupling is given by the single-atom TCSRP, it does not
vanish in the limit r ! 1. The scattering length is there-
fore not well defined for the bare channels j1i, j2i. To
overcome this problem, we diagonalize the Hamiltonian
by introducing dressed states jfli ¼ �jf1i þ �jf2i and

jfhi ¼ �jf1i � �jf2i with eigenvalues Eh=l ¼ �=2�
ð�2 þ�2=4Þ1=2 and coefficients � ¼ �½�2 þ ðEl �
�Þ2��1=2 and � ¼ ðEl � �Þ½�2 þ ðEl ��Þ2��1=2 which
can be controlled via� and�. Since the effective coupling
between the dressed scattering channels jflijgi and jfhijgi
vanishes in the limit r ! 1, the scattering length alg
between jfli and jgi is well defined [Fig. 1(c)].

In presence of the interchannel coupling Ŵ, both jflijgi
and jfhijgi are coupled with the bound state j�resÞ in the
closed channel jci. When the threshold El of the channel
jflijgi crosses the energy Ec of j�resÞ, the Feshbach reso-
nance between jflijgi and j�resÞ strongly alters the scat-
tering length alg between jfli and jgi. Therefore, for a

given magnetic field, one can control alg by tuning El

through the coupling parameters (�, �). By a straightfor-
ward generalization of the method in Ref. [13], we obtain

alg ¼ a
ðbgÞ
lg � 2�2 �ll � �e2i��al

D� ið2�2Þ�1=2�aa

(2)

with the (�, �, B)-dependent parameters

D ¼ Ec þ hcjð�resjŴyGðPÞ
bg Ŵj�resÞjci � El;

��� ¼ hh�ð�Þ
bg ½0�jŴŴyj�ð�Þ

bg ½0�ii ð�;� ¼ l; aÞ;
� ¼ e2i�hh�ðaÞ

bg ½0�jŴŴyj�ðlÞ
bg½0�ii;

� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im½aðbgÞlg ��

q
:

Here aðbgÞlg is the background scattering length between jfli
and jgi in the absence of MFR with j�resÞ, and � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
El � Ea

p
; j�ðl;aÞ

bg ½0�ii are the background zero-energy scat-
tering states with incident particles in the channels jflijgi
and jai, that is, we have j�ðlÞ

bg½0�ii ¼ ð1þGðþÞ
bg V̂ðbgÞÞ�

ð2�Þ�3=2jflijgi and j�ðaÞ
bg ½0�ii ¼ ð1þGðþÞ

bg V̂ðbgÞÞj�êzÞjai
with the zero-energy background Green’s functions

Gð�Þ
bg ¼ ði0� � ĤðbgÞÞ�1 and GðPÞ

bg ¼ ðGðþÞ
bg þGð�Þ

bg Þ=2;
j�êzÞ satisfying ð~rj�êzÞ ¼ ð2�Þ�3=2ei�z is the eigenstate
of the relative momentum with eigenvalue �êz, and � is

determined by V̂ðbgÞ.
Equation (2) shows that one can control the effective

interaction between atoms in the states jfli and jgi, which
is determined by the real part Re½alg� of alg. Under a given
magnetic field, one can tune Re½alg� by changing the

coupling parameters (�, �) around the resonance point
where D ¼ 0.
Because of the coupling term V1a in the Hamiltonian (1),

the HFR process also occurs from the dressed channel
jflijgi to jai. The two-body loss rate Kl due to this HFR
is proportional to the imaginary part Im½alg� of alg: Kl ¼
�16� Im½alg� [14]. In Eq. (2), the change of Im½alg� due to
(�, �) is described by ið2�2Þ�1=2�aa and i Im½�e2i��al�.
Because of these two terms, the two-body loss is enhanced
in the resonance region. To avoid this difficulty, one should
either use the scattering channels without hyperfine relaxa-
tion for both jf1ijgi and jf2ijgi, or choose the proper
atomic species for which the parameters (j�alj, j�aaj, �)
are sufficiently small, so that the peak of Im½alg� is much

narrower than the resonance of Re½alg�.
The scattering and resonance between atoms in the

dressed ground states have been discussed in the literatures
[10,15]. A new point in our scheme is that we not only
couple the two hyperfine states jf1;2i, but also employ the

MFR between jf2ijgi and jci. As shown above, the en-
hancement of alg usually occurs when the dressed channel

jflijgi is in the resonance region of j�resÞ. Therefore with
the help of the MFR, we can control the location of the
resonance of alg by varying both the dressing parameters

and the magnetic field.

PRL 103, 133202 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

25 SEPTEMBER 2009

133202-2



Independent control of two scattering lengths.—There
are two methods to realize the independent control of two
scattering lengths in a three-component system with our
approach. The first method, illustrated in Fig. 1(d) is to use
the states jgi, jf1;2i, and an additional hyperfine state jdi.
As shown above, the two states jf1;2i are coupled and form
two dressed states jfh;li. We further assume the scattering

length adg between jgi and jdi can be tuned via a MFR

which is close to the one between j2i and jci. Therefore, in
the three-component system with fermionic atoms in the
states (jgi, jdi, jfli) we can control adg by changing the B

field. Once the magnetic field is tuned to an appropriate
value, we can control the scattering length alg by changing

the coupling parameters (�, �) with the approach de-
scribed above.

In the second method, we make use of five hyperfine
states as shown in Fig. 1(e). We assume the static magnetic
field is tuned to an appropriate value so that the bare
channel j2i is near MFR with a bound state in a closed
channel jci, while j20i � jf02ijgi is also in the region of

MFR with another closed channel jc0i. We assume that two
states j1i and j2i are coupled with Rabi frequency � and
detuning �, and form two dressed states jfh;li. Similarly,

the states jf01;2i are coupled with Rabi frequency �0 and
detuning �0, and form dressed states jf0h;li. Then according
to the above discussion, the scattering length alg between

jfli and jgi can be resonantly controlled by (�, �), while
al0g between jf0li and jgi can be resonantly controlled by

(�0, �0). Therefore in the three-component system with
fermionic atoms in the states (jgi, jfli, jf0li), one can

independently control alg and al0g by changing the four

parameters (�, �, �0, �0).
In the above two methods, two conditions are required to

make the independent resonance controls of alg and adg
(al0g) practical. First, the two MFRs for the bare channels

j2i and jdijgi (j20ijgi) should be close to each other (e.g.,
the distance between the two resonance points &10 G).
Second, Rabi frequencies� and�0 should be large enough
(on the order of 10 MHz). Fortunately we can find such
resonances in many systems [12,16–18]. In principle, the
second method can be generalized to the independent
control of n� 1 scattering lengths in an n-component
system. To this end, one should make use of n� 1 MFRs
which are close together.

Possible experimental realizations.—Now we discuss
possible implementations of our method. In a mixture of
40K and 6Li [12], we can realize the three-level system with
the first method in the above section. To this end, we use
the hyperfine state j1=2; 1=2i of 6Li to be jgi and consider
the state j9=2;�9=2i of 40K to be jdi. We also take the
states j9=2;�7=2i and j9=2;�5=2i of 40K as jf2i and jf1i,
and form the dressed states jfli. With the help of the MFR
in the channel jdijgi with B0 ¼ 157:6 G, �B ¼ 0:15 G
[12] and the one of j2i with B0 ¼ 159:5 G, �B ¼ 0:45 G

[12], one can tune adg by changing the magnetic field, and

then tune alg by changing the coupling parameters (�, �).

We note that, since both of the two bare channels j1i and
j2i are stable, there is no hyperfine relaxation in the colli-
sions between atoms in the states jgi and jfli. The unequal
masses of 40K and 6Li can lead to many new phenomena in
such a three-component heteronuclear system (40K atoms
in jdi, jfli and 6Li atoms in jgi), e.g., the appearance of an
Efimov state formed by two heavy atoms and one light
atom when both adg and alg are large enough [5].

With a multichannel calculation based on the realistic
40K-6Li interaction potential, one can determine the scat-
tering length alg as a function of � and �. For simplicity,

we use a square-well model [19] for the 40K-6Li interac-

tion: V
ðbgÞ
i ðrÞ ¼ �v

ðbgÞ
i 	ð �a� rÞ, WðrÞ ¼ w	ð �a� rÞ and

V1aðrÞ ¼ 0, where 	ðxÞ is the unit step function and �a is
defined as �a ¼ 4��ð1=4Þ�2RvdW with �ðxÞ being the
Gamma function and RvdW the van der Waals length [19].

v
ðbgÞ
i , w, v1a and � are determined by the experimental

scattering parameters. In the absence of the coupling be-
tween jf1i and jgi, our model gives the background scat-
tering lengths in the channels jf1ijgi and jf2ijgi, and the
correct resonance point and width for the MFR between
jf2ijgi and jci. Although the square-well model cannot
provide a quantitatively accurate result for alg, it can give a

qualitative and intuitive illustration of our method. The
results of our calculation are shown in Fig. 2(a). It is clear
that, for every given value of the magnetic field (or the
scattering length adg), alg can be resonantly controlled via

the laser induced coupling (�, �).
It is also possible to implement our method in ultracold

40K atoms with the second method described above. We
can utilize five hyperfine states to construct the five-level
structure as schematically illustrated in Fig. 1(e). The
ground hyperfine state j9=2;�9=2i is used for jgi, while
four other states j7=2;�5=2i, j9=2;�7=2i, j9=2;�3=2i
and j9=2;�5=2i, respectively, are taken as jf1i, jf2i, jf01i
and jf02i. To utilize the MFR in the channel j2i with B0 ¼
202:1 G, �B ¼ 8 G [16] and the one in the channel j20i
with B0 ¼ 224:2 G, �B ¼ 10 G [17], we choose B ¼
200 G. As shown above, dressed state jflðfl0 Þi can be
formed by the couplings between jf1ðf01Þi and jf2ðf02Þi,
and one can independently tune alg and al0g by choosing

different dressing parameters in the three-component gas
of atoms in the states jgi and jfli, jfl0 i.
In this scheme, the upper hyperfine states jf1ðf01Þi can

induce the HFR processes of both bare channels j1i, j10i �
jf01i and dressed channels jflðfl0 Þijgi. The values of the

loss rates of the bare channels j1ð10Þijgi of 40K are not
available. However, the loss rate of the process
j9=2; 5=2ij9=2; 7=2i ! j9=2; 9=2ij9=2; 3=2i has been
measured to be as low as 10�14 cm3=s [20]. We take this
value to be the loss rate of j1ð10Þi in our calculation with the
square-well model, where V1að10a0ÞðrÞ is assumed to be
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v1að10a0Þ	ð �a� rÞ. Both intrachannel scattering lengths

(Re½alg�, Re½al0g�) and the two-body loss rate (Kl, K
0
l) of

jflðf0lÞijgi are shown in Fig. 2(b). We find that, around the

resonance point where the loss rates (Kl,K
0
l) peak, there are

broad regions with large absolute values of (Re½alg�,
Re½al0g�) and small (Kl, K

0
l). Although we do not perform

the calculation with realistic interaction potential between
40K atoms, our result based on the square-well model also
shows the feasibility of our scheme in a gas of 40K.

Conclusion and discussion.—In this Letter we propose a
method for the independent control of (at least) two scat-
tering lengths in three-component gases by preparing
atoms in dressed states and via independent tuning of the
couplings among the hyperfine states. Under suitable con-
ditions, our method can be generalized to the control of
n� 1 (n > 3) scattering lengths in an n-component sys-
tem. This would be a powerful technique for engineering
different types of homonuclear or heternuclear Efimov
states and for control of quantum phases. We have shown
that our scheme can be implemented in cold gases of 40K or
a 40K-6Limixture. It is also possible to apply our method to

bosonic systems, such as the 40K-87Rb mixture, where two
close Feshbach resonances at B ¼ 464 G and 467.8 G [18]
are available.
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FIG. 2 (color online). (a) Independent control of two scattering
lengths in the three-component gases of a 40K-6Li mixture. The
scattering length alg is plotted in units of the Bohr radius a0 as a

function of � with � ¼ 40 MHz and B ¼ 157:3 (blue dashed
curve), 157.6 (black solid curve), and 157.9 G (red dash-dotted
curve). (b) Independent control of two scattering lengths in the
three-component gases of 40K with B ¼ 200 G and � ¼
2 MHz, �0 ¼ 9 MHz. Re½alg� (blue solid curve) and Kl (green

dash-dotted curve) are plotted as functions of �; Re½al0g� (red
dashed curve) and Kl0 (black dotted curve) are plotted as func-
tions of �0. Since the scattering lengths between jf1ðf01Þi and jgi
are not available, we take the values to be the same as those
between jf2ðf02Þi and jgi, which are given in Refs. [12,16,17].
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