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We consider the Efimov trimer theory as a possible framework to explain recently observed losses by

inelastic three-body collisions in a three-hyperfine-component ultracold mixture of lithium 6. Within this

framework, these losses would arise chiefly from the existence of an Efimov trimer bound state below the

continuum of free triplets of atoms, and the loss maxima (at certain values of an applied magnetic field)

would correspond to zero-energy resonances where the trimer dissociates into three free atoms. Our

results show that such a trimer state is indeed possible given the two-body scattering lengths in the three-

component lithium mixture and gives rise to two zero-energy resonances. The locations of these

resonances appear to be consistent with observed losses.

DOI: 10.1103/PhysRevLett.103.073203 PACS numbers: 34.50.�s

The experimental realization of ultracold Fermi gases
has let us explore many fundamental aspects of few- and
many-body physics. In particular, the study of mixtures of
fermionic atoms in two different spin components has led
to the observation of superfluid paired phases such as
molecular Bose-Einstein condensates, Bardeen-Cooper-
Schrieffer superfluids, and their crossover [1–5].
Recently, there has been some theoretical interest in
Fermi systems with three different spin components [6–
10], which can present analogies with color superfluidity in
QCD [11]. Recent experiments [12,13] have been per-
formed with ultracold mixtures of lithium-6 atoms pre-
pared in the lowest three hyperfine states j1i, j2i, and j3i.
They indicated that, when an external magnetic field is
applied, strong losses due to three-body inelastic collisions
occur over a wide range of magnetic-field intensities. On
the other hand, such losses are not observed when only two
of the three hyperfine components are mixed. Therefore,
the observed inelastic collisions are related to the specific
scattering channel involving three atoms in the three differ-
ent hyperfine components. The magnitude of the inelastic
collisions is characterized by a loss rate coefficient K,
defined by the rate equation

dni
dt

¼ �Kninjnk; for ði; j; kÞ ¼ ð1; 2; 3Þ;

where n1, n2, and n3 are the densities of each kind of
atoms. The variation of the measured loss rate coefficient
with respect to the intensity B of the applied magnetic field
is shown in the bottom panel of Fig. 1. It reveals a peak
around B ¼ 130 G which suggests an enhancement due to
a resonance of three colliding atoms with a three-body
bound state. We can envisage two kinds of resonance,
depending on the origin of such a three-body bound state.

First, the three-body bound state may originate from
another hyperfine channel and couple by hyperfine inter-
action to the three-body scattering continuum in the hy-
perfine channel j1ij2ij3i. Since the bound state and

scattering state belong to different hyperfine channels,
they have different magnetic moments and become reso-
nant only around a particular intensity of the magnetic field
which brings them to the same energy. This situation would
correspond to a ‘‘three-body Feshbach resonance’’ [14], a
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FIG. 1 (color online). Top panel: Variation of the two-body
scattering lengths a12, a13, and a23 for the lowest three hyperfine
components of lithium 6 as a function of magnetic field. These
curves were calculated by P. S. Julienne and taken from
Ref. [12]. Middle panel: Energy of the Efimov trimer (solid
curve) just below the three-body threshold as a function of
magnetic field with �0 ¼ ð0:42a0Þ�1. The shaded area corre-
sponds to the width of the Efimov state, i.e., the imaginary part of
its energy, for � ¼ 0:115. The estimated energy of possible
resonant trimers from all other spin channels with the same total
projection mF ¼ �3=2 is indicated by dashed curves. Bottom
panel: Experimental (dots, taken from Ref. [12]) and theoretical
(curves) three-body inelastic collision loss rate coefficient as a
function of magnetic field. The dashed curve is obtained by
adjusting the short-range loss parameter � to fit the experimental
data (� ¼ 0:157), and the solid curve by adjusting it to fit the
shape of the left peak (� ¼ 0:115).
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generalization of the now well-known two-body Feshbach
resonances which occur for two scattering atoms around
certain magnetic-field values [15].

As a matter of fact, wide two-body Feshbach resonances
are present in lithium 6 over the range of magnetic-field
intensities where the three-body losses are observed. As a
result, the two-body scattering lengths between two atoms
in different states, namely, j1ij2i, j1ij3i, and j2ij3i, are
modified by the applied magnetic field. The dependence of
these three scattering lengths on the magnetic-field inten-
sity is shown in the top panel of Fig. 1. Because of this
dependence, the interactions among three atoms colliding
in the hyperfine channel j1ij2ij3i are also modified by the
magnetic field, and it may happen that a three-body bound
state supported by these interactions within the same hy-
perfine channel is brought to the threshold of its three-body
scattering continuum at a certain magnetic-field value,
causing a ‘‘shape resonance.’’ This constitutes the second
possible kind of resonance.

Studying both kinds of resonance theoretically is in-
volved and requires an extremely accurate knowledge of
the interactions between atoms. However, in the case
where the two-body scattering lengths are much larger
than the range of the interatomic interactions, it is possible
to predict the structure of the three-body bound states near
threshold and their shape resonance simply in terms of the
scattering lengths and a short-range three-body parameter.
This was pointed out by Efimov [16], and the correspond-
ing three-body bound states, known as ‘‘Efimov trimers,’’
are purely quantum-mechanical states which enjoy special
properties such as discrete scale invariance as the scatter-
ing lengths are varied. In particular, their energy spectrum
forms an infinite series with a point of accumulation just
below the continuum threshold when the scattering lengths
become infinite. So far, signatures of Efimov trimers of
identical bosons have been observed in helium 4 [17],
cesium 133 [18,19], and potassium 39 [20] and have
been assigned in the first two cases to the ground state of
the Efimov series [21,22] and to the ground and first
excited states in the case of potassium. Similar signatures
of heteronuclear bosonic Efimov trimers of potassium and
rubidium were recently reported in Ref. [23], while the
evidence of fermionic Efimov trimers is yet to be found. It
was suggested by the authors of Refs. [12,13] that their
observations in three-component lithium 6 might be the
manifestation of an Efimov trimer of distinguishable fer-
mions. The purpose of this Letter is to test this hypothesis
using the Efimov theory.

First, it should be noted that the two-body scattering
lengths in the experimental conditions are indeed quite
large, from about�100 to�1000a0 (where a0 ¼ 5:292�
10�11 m is the Bohr radius), but not always much larger
than the range of the atomic interactions, typically given by

the van der Waals length ‘vdW ¼ ðmC6=@Þ1=4 � 60a0,
where C6 is the van der Waals dispersive coefficient, m is
the mass of lithium 6, and @ is the reduced Planck’s

constant. Therefore, the applicability of Efimov theory is
questionable, especially at low (around 100 G) and high
(around 500 G) magnetic-field values where one or two of
the scattering lengths become small. However, in the in-
termediate region, the necessary conditions for the exis-
tence of Efimov trimers are met.
The details of the Efimov theory can be found in

Refs. [16,21]. It essentially treats the free three-body prob-
lem with boundary conditions at short distance imposing
the known two-body scattering lengths between each pair
of atoms. The three-body wave function �ðR;�; �Þ is ex-
pressed in terms of the hyperradius R of the three-body
system (a measure of the global distance among the three
atoms) and the two angles � and � describing the geomet-
rical configuration of the atoms. More precisely, if we
denote by ~r the relative vector between atoms 1 and 2
and by ~� the relative vector between atom 3 and the center
of mass of atoms 1 and 2, then R2 ¼ r2 þ 4

3�
2, � is the

angle between ~r and ~�, and tan� ¼ ffiffiffi
3

p
r=ð2�Þ. By using

the Faddeev decomposition [24] and restricting ourselves
to the case of zero total angular momentum which is the
most favorable for the Efimov effect to occur [16], the
wave function can be written as

�ðR;�;�Þ¼ 2

R2

�
~�ð1ÞðR;�þÞ
sin2�þ

þ ~�ð2ÞðR;��Þ
sin2��

þ ~�ð3ÞðR;�Þ
sin2�

�
;

where sin2�� ¼ f1� ½12 cos�� ð ffiffiffi
3

p
=2Þ sin� cos��2g1=2.

Note that the functions ~�ðiÞ depend on only one hyper-
angle, because we assumed that the total angular momen-
tum is zero. They satisfy the free Schrödinger equations

�
@2

@R2
þ 1

R

@

@R
þ 1

R2

@2

@�2
þmE

@
2

�
~�ðiÞðR;�Þ ¼ 0 (1)

for a given energy E, with the boundary conditions

@~�ðiÞ

@�
ðR; 0Þ

þ 4ffiffiffi
3

p
�
~�ðjÞ

�
R;

�

3

�
þ ~�ðkÞ

�
R;

�

3

��
¼ � R

ajk
~�ðiÞðR; 0Þ; (2)

~� ðiÞ
�
R;

�

2

�
¼ 0 (3)

for any R> R0 and

@ ln~�ðiÞ

@R
ðR0; �Þ ¼ �ðR0Þ; for any � 2

�
0;
�

2

�
; (4)

where i; j; k is any permutation of 1; 2; 3.
The first boundary condition (2) imposes the form of the

wave function in the two-body sectors consistent with the
known two-body scattering lengths a12, a13, and a23
among the three kinds of atoms. The last boundary condi-
tion (4) fixes the logarithmic derivative of the wave func-
tion at short hyperradius R0 � aij to some value �ðR0Þ
independent of the energy E. In this region, the last term of
Eq. (2) is negligible, and one can show that the solution of
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Eqs. (1) takes the separable form ~�ðiÞðR;�Þ �
sin½js0j lnðKRÞ þ �� sin½s0ð�=2� �Þ�, where K ¼ffiffiffiffiffiffiffiffi
mE

p
=@, � is a phase shift, and s0 � 1:006 24i is the

imaginary solution of the equation �s0 cosðs0�=2Þ þ
8=

ffiffiffi
3

p
sinðs0�=6Þ ¼ 0, which follows from applying the

boundary condition Eq. (2). In order for � to be energy
independent, the phase shift � must be of the form
�js0j lnðK=�0Þ, where �0 is some fixed wave number.
This sets

�ðR0Þ ¼ js0j
R0

cot½js0j logðR0�0Þ�:

This way, the choice of R0 is arbitrary. The only require-
ment is that R0 should be much smaller than the scattering
lengths. In our calculation, we fixed R0 to 1a0. Thus, the
only free parameter of the theory is �0. It captures the
effects of the unknown short-range three-body physics on
the wave function at larger hyperradii.

We solve these equations by discretizing the arguments

ðR;�Þ of the functions ~�ðiÞ on a two-dimensional grid,
evaluating the derivatives by finite differences, and diago-
nalizing the resulting matrix. The maximal value of R is set
to 50 000a0, which is on the order of the particle spacing in
the experiments. At each value of the magnetic field, the
three scattering lengths a12, a13, and a23 are obtained from
the top panel of Fig. 1. The only unknown quantity is �0.
First, we make the assumption that it does not depend on
the magnetic field. In reality, it may actually depend on it,
but, provided that no accidental resonance occurs, it is
reasonable to assume that its variations are less pronounced
than that of the scattering lengths. Second, we make the
fundamental assumption that the observed three-body
losses are due to a shape resonance with an Efimov trimer.
The measured three-body loss rate coefficient as a function
of the magnetic field shows a distinctive peak around
B ¼ 130 G—see the bottom panel of Fig. 1. Assuming
that this is the point where an Efimov state reaches the
continuum threshold, we find that we should adjust �0 to
about ð0:42a0Þ�1. Once �0 is fixed, we can obtain the
eigenstates and their energy around the threshold.

In the middle panel of Fig. 1, we plotted the energy of
the Efimov trimer just below threshold as a function of
magnetic field. By construction, the trimer appears at B ¼
130 G. Interestingly, its binding energy increases untilB ¼
350 G and then decreases until the trimer reaches the
continuum again, causing a second zero-energy resonance
around B ¼ 500 G. This simply results from the magnetic-
field dependence of the scattering lengths.

Since the two-body scattering lengths are all negative in
this range of magnetic field, there are no two-body bound
states just below the two-body continuum. As a result,
when inelastic three-body collisions occur, two of the three
atoms have to form a deeply bound dimer. A direct calcu-
lation of the rate for such processes would require a de-
tailed analysis of the deeply bound dimers. However, we
can easily calculate its enhancement by the Efimov reso-

nance. Indeed, by assigning a complex value j�0jei� to the
three-body parameter�0, and therefore a complex value to
the logarithmic derivative �, one can impose a probability
loss at short hyperradius (R ¼ R0) in order to model the
overall effect of losses by recombination to deeply bound
dimers [21]. This makes any scattering state � quasista-
tionary, and, by calculating the time variation of the total

probability
R j�j2d3 ~Rd3 ~r, one can derive the following

three-body loss rate coefficient:

K ¼ 2@

m
jIm�j�ðR0Þ: (5)

As one would expect, this coefficient is proportional to the
imposed velocity V ¼ 2@

m jIm�j at R ¼ R0 and the proba-

bility density �ðR0Þ of finding three atoms at that hyper-
radius, defined by the hyperangular average

�ðRÞ¼33=2�2R5
Z �=2

0
ðsin2�Þ2d�

Z �

0
sin�d�j�ðR;�;�Þj2;

(6)

where � is normalized to be asymptotically equal to the
noninteracting limit 8J2ðKRÞ=ðKRÞ2, J2 being the Bessel
function. This probability density, and thus the inelastic
processes, is strongly increased at short distance by the
presence of an Efimov trimer just below threshold.
Physically, this is due to the fact that the three atoms almost
bind during their collision and therefore spend more time
together. One can see in Fig. 2 that, while �ðRÞ is unaf-
fected at a large distance, it changes significantly at a short
distance when the magnetic field is varied around the zero-
energy resonance.
The calculated loss rate coefficient of Eq. (5) is plotted

in the bottom panel of Fig. 1. We obtain a profile delimited
by two peaks. In between the two peaks, we observe a
plateau due to the presence of the Efimov state below
threshold. Outside, the probability becomes very low, due
to the absence of a near-threshold Efimov trimer. From the
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FIG. 2 (color online). Probability density �ðRÞ—defined by
Eq. (6)—of the lowest three-body scattering state for different
values of the magnetic field. In all cases, the wave function � is
normalized to be asymptotically equal to the noninteracting limit
8J2ðKRÞ=ðKRÞ2, where J2 is the Bessel function and K is the
wave number. This limit is indicated by the dashed curve. Here
K is set by the size of the numerical grid.
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energy spectrum, it is clear that the second peak around
500 G is related to the second zero-energy resonance with
the Efimov state. We can then adjust the value of� to fit the
experimental data. It should be noted that � has two
effects: It sets the overall magnitude of the loss rate coef-
ficient, as can be seen from (5), and it also smooths the
peaks (because they are naturally broadened by the losses).
It turns out that there exists a range of values for � which
can approximately fit both the overall magnitude of the rate
coefficient and its shape. Using a least-square minimiza-
tion method, we found that the best fit to the experimental
data is obtained for � ¼ 0:157, while fitting only the first
peak gives � ¼ 0:115.

The behavior of the calculated three-body decay rate
coefficient is very reminiscent of the measured one, which
has a similar profile between 130 and 500 G. This suggests
that the local maximum near B ¼ 500 G found in the
experiment is caused by a second resonance. The agree-
ment with the observations is only approximate, however,
as the experimental data show a much more diffuse local
maximum. As we noted earlier, the Efimov theory is not
strictly applicable to the present system, and it is expected
that short-range corrections are needed for a better agree-
ment. A magnetic-field dependence of�0 might also play a
role. These effects may very well explain the remaining
discrepancies. Yet, it is quite remarkable that the Efimov
theory already provides a basic description which qualita-
tively explains the experimental observations. In this inter-
pretation, a relatively ‘‘pure’’ Efimov trimer state is
expected around 300 G (where the scattering lengths are
largest) and connects continuously to trimer states which
are partly affected by short-range physics (‘‘impure’’
Efimov trimer) and eventually dissociate in the continuum
at both resonances. We find that the pure Efimov trimer at
B ¼ 300 G has a binding energy of about 2�@� 10 MHz
and a width (imaginary part of the energy) of about 2�@�
3 MHz, corresponding to a lifetime of about 50 ns.
However, these values result from an adjustment near B ¼
130 G, where the Efimov theory may need corrections.
Thus, the actual values might be slightly different.

The present interpretation may be confirmed or refuted
by further experimental investigation, in particular, direct
observation of the trimers below threshold—for example,
by radio frequency spectroscopy. For comparison with the
first interpretation discussed in the introduction, we calcu-
lated the expected energy of possible resonant trimers
coming from other channels, assuming that their magnetic
moment is simply the sum of the magnetic moments of the
three separated atoms. Since the interaction conserves the
projection of the total spin, we considered only the chan-
nels with the same projectionmF ¼ �3=2 as the incoming
channel j1ij2ij3i and shifted the energy of the possible
resonant trimers such that it crosses the three-body thresh-
old of the incoming channel at B ¼ 130 G. The resulting
energies as a function of magnetic field are plotted in Fig. 1
as dashed curves. One can see that they have a monotonic
behavior and depart steeply from the continuum threshold.

On the other hand, if the Efimov interpretation is correct,
the trimer is expected to follow a different and rather
unusual behavior: It connects to the continuum via two
zero-energy resonances, resulting in an energy minimum
as a function of magnetic field. Thus we have provided a
significant difference between the two scenarios, which
may serve as a test in future experiments.
We are grateful to S. Jochim for providing the experi-

mental data shown in Fig. 1.
Note added.—Upon finishing this Letter, we became

aware of the work by Braaten et al. [25], which uses the
Skorniakov–Ter-Martirosian equations to directly calcu-
late the loss rate. After this Letter was submitted, similar
results were reported in Ref. [26], using a different model
involving the formation of a trimer. Both of these works
yield results consistent with the loss rate coefficient given
in Fig. 1.
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[15] T. Köhler, K. Góral, and P. S. Julienne, Rev. Mod. Phys.

78, 1311 (2006).
[16] V. N. Efimov, Sov. J. Nucl. Phys. 12, 589 (1970); Nucl.

Phys. A210, 157 (1973).
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