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Abstract

The aim of this thesis is to theoretically study geometric, electronic, and optical prop-
erties of one-nanometer sized cluster compounds. The thesis is composed of two parts.
In the first part, the geometric and electronic properties of gold-thiolate cluster com-
pounds, which have recently been studied experimentally, are revealed. I will discuss
how the local geometric structures are related to the electronic properties of the com-
pounds. In the second part, optical response theory that is applicable to the nan-
ocluster compounds is developed. Special emphasis is placed on nonuniform electronic
excitations induced by near-fields.

Let me briefly review history of metal nanoclusters. Research in nanocluster com-
pounds has its root on the study of bare metal clusters in gaseous phase, where size-
dependent physicochemical properties are the main concern. However, most of these
bare clusters are energetically and chemically unstable. In the past few decades,
metal clusters protected by organic molecules have been synthesized in solution, and
some of these cluster compounds were found to be stable even in the air. Although
these nanocluster compounds were expected to be promising candidates for functional
nanomaterials in a wide range of nanotechnologies, it is not trivial to characterize their
detailed structures. Reducing the size of clusters to the 1 nm scale, their geometries
and other properties become much more sensitive to the change in size and chemical
compositions. In such circumstances, sub-nanometer sized gold-cluster compounds
have intensively been synthesized with the definitive determination on the chemical
compositions. Despite the brilliant results, even their geometrical structures have not
sufficiently been characterized. Furthermore, the studies on their optical properties
are still in the juvenile stage. For these reasons, I theoretically study the geometric,
electronic, and optical properties of some representative cluster compounds at the 1
nm scale.

The geometric and electronic structures of a gold-methanethiolate [Au25(SCH3)18]+

are investigated by carrying out the density functional theory (DFT) calculations.
The obtained optimized structure consists of a planar Au7 core cluster and Au-S com-
plexes, where the Au7 plane is enclosed by a Au12(SCH3)12 ring and sandwiched by two
Au3(SCH3)3 ring clusters. This geometry differs in shape and bonding from a gener-
ally accepted geometrical motif of gold-thiolate clusters that a spherical gold cluster is
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superficially ligated by thiolate molecules. This newly optimized gold-methanthiolate
cluster shows a large HOMO-LUMO gap, and calculated X-ray diffraction and absorp-
tion spectra successfully reproduce the experimental results. On another gold cluster
compound [Au25(PH3)10(SCH3)5Cl2]2+, which consists of two icosahedral Au13 clus-
ters bridged by methanethiolates sharing a vertex gold atom and terminated by chlo-
rine atoms, the DFT calculation provides very close structure to the experimentally
obtained gold cluster [Au25(PPh3)10(SC2H5)5Cl2]2+. I further demonstrate that a
vertex-sharing triicosahedral gold cluster [Au37(PH3)10(SCH3)10Cl2]+ is also achieved
by bridging the core Au13 units with the methanethiolates. A comparison between
the absorption spectra of the bi- and triicosahedral clusters shows that the new elec-
tronic levels due to each oligomeric structure appear sequentially, whereas other elec-
tronic properties remain almost unchanged compared to the individual icosahedral
Au13 cluster. These theoretical studies have elucidated the fundamental properties of
the promising building blocks such as geometric structures and stability of real cluster
compounds in terms of the detailed electronic structures. As a next step, I have to gain
a further insight into the dynamical optical properties of cluster compounds. In partic-
ular for discussing photoinduced dynamics in nanoclusters or nanocluster assemblies,
inter-cluster near-field interactions should be understood properly. The conventional
light-matter interaction based on available lasers is quite different from the near-field
interaction. The electric fields of available lasers usually have the wavelength much
longer than the size of the local structure of the cluster compounds. In other words,
the 1-nm-sized cluster compounds feel the almost uniform electromagnetic field and
thus the local structures of the compounds cannot be resolved. In contrast, a near-field
interaction occurs at the same scale of the cluster compounds and is thus expected to
be used to observe the local structure of the 1 nm sized materials. The difficulty in
their theoretical description arises from the fact that the near-field has a non-uniform
local structure. For these reasons, I will develop an optical response theory that is
applicable to 1-nm-sized clusters interacting with the near-field.

The optical response theory is developed in a general form on the basis of the
multipolar Hamiltonian derived from the minimal coupling Hamiltonian by a canon-
ical transformation. The light-matter interaction in the multipolar Hamiltonian is
described in terms of the space integral of inner product of polarization and electric
field, whereas the minimal coupling Hamiltonian uses momentum and vector poten-
tial, which are rather inconvenient for practical computations. Noteworthy is the fact
that the polarization in the integral can be treated entirely without any approxima-
tions. This means an infinite order of multipole moments is taken into account. Thus
the present approach is a generalization of the optical response formulation beyond
the dipole approximation. I have incorporated the optical response theory with the
nonuniform light-matter interaction into an electron-dynamics simulation approach
based on the time-dependent density functional theory (TDDFT) in real space. To
elucidate the electron dynamics of 1 nm-sized molecules induced by the nonuniform
light-matter interaction, the integrated TDDFT approach has been applied to and
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computationally solved for a test molecular system, NC6N, in the dipole radiation
field. Several unprecedented electronic excitation modes were induced owing to the
nonuniform light-matter interaction using the near-field in contrast to the uniform
light-matter interaction that corresponds to the conventional dipole approximation.
For example, high harmonics were generated more easily. It has also been found that
the near-field with different phase and spatial structure promotes or suppresses high
harmonics.

In conclusion, I have revealed the geometric and electronic properties of gold-
thiolate nanocluster compounds and developed optical response theory in an effort
to understand nonuniform light-matter interaction between near-filed and 1nm-sized
cluster compounds.
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Chapter 1

Introduction

1.1 Thesis overview

This thesis is composed of two parts. In the first part (chapter 2), theoretical studies
of the static physicochemical properties of gold cluster compounds, such as geometric
and electronic structures and photoabsorption spectra are presented. The choice of
the gold cluster compounds was due to a series of recent seminal experiments that
succeeded for the first time in synthesizing and isolating gold thiolate clusters at the 1
nm scale with high precision [1–6]. The detailed static properties of some gold cluster
compounds are fully discussed by resorting to the density functional calculations.

In the second part, I theoretically study dynamical optical properties of nanoclus-
ters at the 1 nm scale. Nanoclusters have received much attention due to the potential
applications to molecular-sized quantum devices associated with their unusual physic-
ochemical properties of electronic structures, optical response, magnetism, catalysis
and so forth [7–11]. Among those fascinating properties, this thesis is mostly motivated
by recent appealing experiments that had demonstrated surface plasmon propagation
through an array of nanoparticles [12–22]. The surface plasmon is strongly related
to near-fields, which are observed only around nanostructures [23–44]. Optical near-
field interactions between nanostructures have been studied in various ways [45–61].
Nevertheless, a theory of interaction between the near-field and the 1-nm-sized mate-
rials, particularly in the time domain, has not yet been well established. It is, thus,
highly desired to develop such an optical response theory. In chapters 3-5, the opti-
cal response theory for 1-nm-sized nanoclusters is developed with special emphasis on
understanding a nonuniform light-matter interaction induced by a near-field.

1.2 Nanocluster science

This section explains the interesting and important properties of gold cluster com-
pounds, starting with a brief historical overview.

7



8 CHAPTER 1. INTRODUCTION

1.2.1 Bare metal clusters

Research in nanocluster compounds has its root on the studies of bare metal clus-
ters in gaseous phase, where size-dependent physicochemical properties are the main
concern [62,63]. While most of bare metal clusters are energetically and chemically un-
stable, some clusters with specific size have been found to be unusually stable. These
specific clusters are called magic clusters. Some representative magic gold clusters
of Au13, Au55, · · · have been intensively studied [64–69]. Despite their unusual size-
distribution, it is difficult to prepare size-selective or monodispersed magic clusters.
The magic clusters, even if they are prepared size-selectively, are in general unstable
in the air with room temperature. Furthermore, the bare metal clusters usually have
simple structures close to a spherical symmetry. For these reasons, the bare metal clus-
ters have so far been mainly investigated in the context of basic cluster science and
have not been discussed with the aim of developing cluster-assembled materials. Such
conventional cluster science turned around after the method to prepare and isolate
metal clusters size-selectively by protecting organic molecules had been established.
In the next section, I will explain the importance of metal-molecule, in particular
gold-thiolate, cluster compounds.

1.2.2 Gold cluster compounds

Small gold clusters protected by thiolate molecules have received much attention due
to their unique physicochemical properties such as optical response, catalysis, and
magnetism [70–74]. The thiolated gold clusters are also of increasing importance in
the rapidly growing area of nanotechnology because they are expected to be one of
the prototypes of molecular-sized materials which might function as optical devices,
electrical junctions, and chemical sensors [75–81].

For example, some groups observed giant magnetic moments in thiolated gold
surfaces [82] or thin films [83, 84]. The key ingredient to understand the giant mag-
netic moments is localized electrons transferred from the gold substrate to the thiolate
molecule. Vager and Naaman proposed a theoretical model that the transferred elec-
trons form electron pairs in the triplet state (i.e., boson electron pairs) and these boson
pairs induce the giant magnetic moments [85]. On the other hand, Hernando et al.

explained the unexpected magnetism as due to the blocking of a local magnetic mo-
ment by the giant magnetic anisotropy [83, 84]. They suggested that the transferred
localized electrons induce such giant anisotropy through spin-orbit interaction.

Such unexpected magnetism was observed similarly in thiolated gold nanopar-
ticles [72, 86–88]. Crespo et al. reported that the thiol capped gold nanoparticles,
whose averaged core size is ca. 1.4 nm, showed ferromagnetic hysteresis with mag-
netic moment per Au atom µ = 0.036 µB [72]. However, the value of the magnetic
moment is several orders of magnitude smaller than those of the thiol capped gold thin
films [83,84]. Furthermore, they found that the gold nanoparticles stabilized by weak-
interacted ligands of tetraoctyl ammonium bromide became diamagnetic. In contrast,
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Yamamoto et al. reported that the X-ray magnetic circular dichroism (XMCD) study
revealed the intrinsic magnetism consisting of a superparamagnetic part obeying the
Curie law and of a temperature-independent Pauli-paramagnetic part in gold nanopar-
ticles embedded in weak interacted ligands, poly(N-vinyl-2-pyrrolidone) [88,89]. They
attributed such magnetism to the mixture of ferromagnetism of the surface gold atoms
and the Pauli-paramagnetism of the core atoms. As completely opposite to the result
obtained by Crespo et al., they observed that the strong interacting ligand such as thi-
olates quenched the surface ferromagnetism. The magnetism observed in various types
of gold-thiolate systems, particularly in nanoparticles, is still controversial. These con-
troversial issues concerning the magnetic properties in gold-thiolate systems are partly
raised owing to the fact that the detailed electronic structures of these gold-thiolate
systems were not fully specified. In other words, spin-polarized electronic structures
of these systems have not been clarified.

Since these properties depend on their cluster sizes and structures, progress in the
synthesis of gold-thiolates with well-defined chemical compositions is crucial in not only
fundamental but also applied sciences. A number of methods to prepare and isolate
monodispersed gold-thiolates have so far been developed [71,90–95] and in a recent pa-
per Negishi et al. achieved the size-separated synthesis of glutathione (GSH)-protected
gold clusters, Au-SG [1]. In the paper, they decided the definitive chemical compo-
sition of a series of the clusters, Au10(SG)10, Au15(SG)15, Au18(SG)14, Au22(SG)16,
Au22(SG)17, Au25(SG)18, Au29(SG)20, Au33(SG)22, and Au39(SG)24, with high-resolution
mass spectrometry, although their geometrical structures remain unresolved. There-
fore, it is highly desirable to specify the geometric structures of these cluster com-
pounds. In 2.1, the theoretical investigation on the geometry of one of these Au-SG
clusters will be discussed.

1.2.3 Ordered nanoparticle assembly

As mentioned above, nanometer-sized metal clusters have been under extensive in-
vestigation owing to their novel physicochemical properties, which are known to be
significantly different from those of the corresponding bulk metals. Metal nanoclusters
are also expected to be key ingredients in new materials that function as molecular-
sized quantum devices [75, 81, 96]. There is a rapidly growing understanding of fun-
damental properties of each individual metal nanocluster. However, relatively little
is known about whether these clusters retain their individual properties after assem-
bly as well as produce new collective features due to aggregation. The most direct
approach to this issue is thought to specify a unit cluster that serves as a building
block of cluster-assembled compounds, and then determine how the assembled com-
pounds are constructed from the units. Nevertheless, it is not trivial to construct
such cluster-assembled compounds in a bottom-up approach because each metal clus-
ter easily coalesces into an aggregate through altering their individual geometrical
and electronic structures. In general, the original physicochemical properties become
rather obscure after aggregate formation and then the properties of bulk metals are
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dominant.
To realize the cluster-assembled compounds with electronic properties of each

metal constituent, the ”clusters of clusters” concept proposed by Teo and cowork-
ers [97–99] is suggestive. In a series of extensive investigations, they demonstrated
that oligomeric metal-cluster compounds were systematically synthesized in a step-
wise manner by aggregating icosahedral metal clusters. In such clusters of clus-
ters, the individual icosahedral clusters serve as the basic building blocks and then
form a polyicosahedral cluster through sharing vertex atoms. Khanna and Castleman
and their coworkers have intensively demonstrated that aluminum-based icosahedral
clusters (referred to as ”superatoms” in their studies) form cluster-assembled com-
pounds [100, 101]. The key in both concepts of clusters of clusters and superatoms is
that the assembled compounds are constructed from building units retaining the elec-
tronic properties of the constituent units. Similarly to the polymerized clusters based
on cluster of cluster, very recently a gold cluster-assembled compound was synthe-
sized [6]. This cluster compound is regarded as a Au13 dimeric one in which two Au13

clusters share one vertex gold atoms. For larger assemblies, it is crucial to understand
how the constituent unit clusters are assembled. In 2.2, I will explain the mechanism
of oligomerization of the gold cluster compounds.

1.3 Optical response of nanoclusters

1.3.1 Toward dynamical properties

The first step to achieve cluster-based devices at the nanometer scale is to understand
the static physicochemical properties of the constituent building blocks, in both iso-
lated and assembled states. Once obtained these properties, the next step is to study
their dynamical properties associated with electric current, energy transfer, and chem-
ical reactivity. In particular, for discussing photoinduced dynamics in nanoclusters or
nanocluster assemblies, we should have proper understanding of an inter-cluster near-
field interaction. Several recent appealing experiments concerning near-field excitation
dynamics in nanoparticle systems will be reviewed.

I would like to mention about recent appealing experiments, which motivate the
second part of this thesis, of a propagation of surface plasmon or electromagnetic en-
ergy in weakly-interacting ordered metal nanoparticle systems at the hundred nanome-
ters [12–22]. These experiments are schematically explained in Fig.1.1. The or-
ange and blue spheres represent nanoparticles and near-field interactions, respec-
tively, and the black illustrates the tip of a scanning near-field optical microscopy
(SNOM) [23–44, 102–110]. The leftmost particle is locally irradiated by the tip and
then the electromagnetic energy transfers from the tip to the particle through the
near-field interaction. The electromagnetic energy is subsequently propagated along
the array also through the near-field interaction. Experiments of local excitation of sin-
gle gold nanostructure using SNOM also inspired this thesis [34,37,38,40,103,111–113].
In these experiments, surface plasmon has been induced by the near-field illumination
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near-field interaction

nano particle

near-field 

electromagnetic energy transfer 

propagating light 

Near-field microscope

Figure 1.1: The image of photonic currents, where the orange sphere, the blue circle,
and the black object, respectively represent metallic nanoparticles, near-field interac-
tions, and a SNOM tip. An array of nanoparticles has been excited by a near-field
around the probe tip (left) and then an electromagnetic field is propagated through
the array from the left to the right.

which excites a local part of the wavefunction of the gold nanostructure. The near-field
illumination of the single gold nanostructure can be considered as a local excitation
of a coherent wavefunction. In contrast, the surface plasmon propagation through the
nanoparticle array can be considered as a local excitation of an incoherent system.
The near-field interaction between each nanoparticle introduces a coherency into the
arrayed system.

Optical properties of metal nanoparticles, especially noble metal nanoparticles,
have been extensively studied both experimentally and theoretically because of their
ability to largely increase the measured signal of the Raman spectroscopy, which
is known as Surface Enhanced Raman Spectroscopy (SERS) [114–120]. One of the
origin of SERS is considered to be a largely enhanced electromagnetic field caused
by a surface plasmon of a metal nanoparticle. Between closely spaced nanostruc-
tures, largely enhanced electromagnetic fields have also been reported and used as a
nonlinear-optical source or chemical reaction field aiming at a new type of chemical
reactions [102,121–124].

1.3.2 Optical response in 1-nm-sized nanoclusters

The above-mentioned experiments clarify the two essences of the near-field; the large
enhancement of an electromagnetic field intensity and the localized character. For the
first one, the intensity of near-fields is enhanced by a surface plasmon induced by an
incident light. The incoming propagating light oscillates electrons in a nanostructure
and this oscillation (the surface plasmon) generates a new electromagnetic field around
the surface of the nanostructure. The electrons then interact with the newly generated
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propagating light 

scattered light 

near-field

=enhanced, nonuniform electromagnetic field

molecule

Figure 1.2: SERS is schematically illustrated. The orange particle and the blue circles
represent a metallic nanoparticle and a near-field interaction, respectively. A molecule
on the surface of the nanoparticle is exposed to the near-field and scatters the light.

field and regenerate an electromagnetic field. This feedback loop continues endlessly.
Thus, theoretically, the field enhancement requires a self consistent solution for light-
matter interactions. The field enhancement for metal particles at the 100 nm scale
has been studied theoretically by solving the Maxwell’s equations using the Green’s
function method [23–25], the Finite Difference Time-Domain (FDTD) method [125–
132], the Multiple MultiPole method [32,133], and/or Discrete Dipole Approximation
(DDA) [51]. The method of Green’s function is also used to analyze the surface
plasmon in gold nanostructures induced by the near-field illumination [34, 37, 38, 40,
103,111–113]. These field enhancement are, however, not necessarily important at the
1 nm scale, because the surface plasmon owes much to the particle size and does not
occur at the 1 nm scale. Therefore, we can concentrate on the nonuniform light-matter
interaction to study near-field interaction of nanoclusters at the 1 nm scale. For the
second property, the localized character can be understood as that a near-field has a
nanoscale spatial structure. As a result, a material in the near-field will interact with
a nonuniform electromagnetic field.

The quantum mechanical treatment is required for the nanoclusters at the 1 nm
scale. Whereas a near-field is still able to be treated as a classical electromagnetic
field as long as the field intensity is rather strong. The strong means that one or
two photon absorption or emission due to a light-matter interaction does not largely
decrease or increase the intensity of the field. An optical response theory based on
this assumption is called the semiclassical theory, that is, the quantum mechanics is
used for matter and the classical electrodynamics for light. Under this semiclassical
approach, the most rigorous treatment is to solve the coupled Schrödinger and the
Maxwell’s equations self consistently [45, 47, 54, 55, 134]. Although this theory can
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be used for considering non-uniformity and field enhancement simultaneously, actual
computations are computationally demanding. On the other hand, near-field inter-
actions between two quantum mechanical particles have been studied [56–61], where
interparticle interaction is reduced to be dipole-dipole or dipole-multipole interactions
using simple metallic particles. However, the effect of the nonuniform electromagnetic
field on electronic excitations was not clearly understood by these studies. Thus, I
establish a suitable theory to reveal the nonuniform electronic excitation.

The theory developed in this thesis is based on a semiclassical treatment that 1-
nm-sized materials are treated quantum mechanically while the electromagnetic fields
are treated classically. Main focus of this study is the nonuniform electronic excitation
of molecules at the 1 nm scale. Thus, the special emphasis is placed on an explicitly
taking account of the spatial distribution of the electromagnetic field.





Chapter 2

Gold cluster compounds

• ”Theoretical Investigation of Optimized Structures of Thiolated Gold Cluster
[Au25(SCH3)18]+”, T. Iwasa, and K. Nobusada, J. Phys. Chem. C, 111, 45-49,
(2007)

• ”Thiolate-Induced Structural Reconstruction of Gold Clusters Probed by 197Au
Mossbauer Spectroscopy”, K. Ikeda, Y. Kobayashi, Y. Negishi, M. Seto, T.
Iwasa, K. Nobusada, T.Tsukuda, and N. Kojima J. Am. Chem. Soc.(communications),
129, 7230, (2007)

• ”Gold-thiolate core-in-cage cluster Au25(SCH3)18 shows localized spins in charged
states”, T. Iwasa and K. Nobusada, Chem. Phys. Lett. 441, 268-272, (2007)

• ”Oligomeric Gold Clusters with Vertex-Sharing Bi- and Triicosahedral Struc-
tures”, K. Nobusada, and T. Iwasa, J. Phys. Chem. C (Communication), 129,
7230, (2007)

Geometric, electronic and optical properties of the unusually stable gold-thiolate
cluster Au25(SCH3)18 and the bi- and triicosahedral clusters are theoretically studied
in this chapter. Ch. 2.1.2 decides the geometrical structure of Au25(SCH3)18 in its
cationic state (1+) with a closed electronic shell structure. In 2.1.3 and 2.1.3, I will
investigate the spin polarization and absorption spectra of the gold-thiolate cluster [
Au25(SCH3)18]n with different charged states n = 3−, 2−, 1−, 0, 1+, and 3+. Ch. 2.2.2
describes the geometrical and electronic structures of bi- and triicosahedral clusters
and the relationship between the geometries and absorption spectra will be discussed
in 2.2.3. To this end, I have performed DFT calculations of the cluster explicitly
taking account of the spin multiplicity.
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16 CHAPTER 2. GOLD CLUSTER COMPOUNDS

2.1 Gold-thiolate cluster: Au25(SCH3)18

Very recently, Negishi and Tsukuda experimentally confirmed that Au25(SG)18 was
unusually thermodynamically [1] and chemically stable in comparison with the other
Au-SG clusters [2]. The report of large-scale synthesis of Au25(SG)18 supports its
extraordinarily high stability [3]. They also found that the pattern of the absorption
spectrum of Au25(SG)18 was rather insensitive to change of the ligand (SG) for other
thiolate molecules, in sharp contrast to the other Au-SG clusters that showed ligand-
sensitive absorption spectra. These experimental observations imply the existence of
a characteristic Au25S18 framework. Concerning the framework, on the basis of the
X-ray diffraction (XRD) spectrum of Au25(SG)18, they have proposed that this cluster
has a Au25 core cluster with a face-centered-cubic based structure. Unfortunately, the
detailed geometrical structure was still unclear. Thus, to study the physicochemical
properties of the Au25(SG)18 cluster, I begin with deciding the geometrical structure.

The XMCD study of a series of the Au-SG clusters was also reported by Negishi
and Tsukuda [4]. This is the first study that the magnetic properties were investigated
for the fully size-specified gold-thiolate clusters. Although they found that the Au-SG
clusters were spin-polarized, the clusters were only paramagnetic with µ = 0.0093µB

per Au-S bond. On the other hand, in metal cluster compounds, it has been known
that their stabilities are strongly affected by the number of electrons. A charging thus
would have a nontrivial impact on its electronic properties such as absorption spec-
trum. However, on Au25(SG)18, change in the charge states unaffects its absorption
spectrum [5]. In 2.1.3, I will discuss the charging effects on the absorption spectrum
of the gold-thiolate cluster.

2.1.1 Computational details

I have carried out DFT calculations for the gold-methanethiolate cluster [Au25(SCH3)18]+,
which is a theoretical model for the glutathione-protected gold cluster Au25(SG)18. I
have adopted such a simplification of ligands frequently used in the previous calcu-
lations [135–140] because the full geometry optimization of Au25(SG)18 requires in-
credibly large computational costs. Furthermore, the above-mentioned experimental
result, i.e. the absorption spectrum of Au25(SL)18 having a lack of dependence on the
ligand L, partly supports this modeling. The present model cluster was calculated in
its cationic state with a closed shell structure to avoid considering explicit spin effects.
Charging effects on the geometric structure are mentioned in Section 3.

The geometry optimization was starting from two types of initial structures with
different Au25 core structures. One of the Au25 cores is based on a face-centered-cubic
(fcc) structure with six Au(111) facets consisting of eight gold atoms as shown in
Figure 2.1(a). The other one is based on a vertex-sharing centered icosahedral Au13

dimer as shown in Figure 2.1(b). In this thesis, I refer to these clusters as FCC-
Au25 and SES-Au25, respectively. FCC-Au25 is chosen following the experimental
result of the XRD spectrum, and SES-Au25 is taken into account by analogy with
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a trimetalic cluster coordinated by triphenylphosphine (Ph3P-) and chlorine (Cl) lig-
ands, [(Ph3P)10Au12Ag12PtCl7]Cl [141]. The initial structures of [Au25(SCH3)18]+

are constructed by passivating each core cluster with 18 methanethiolate molecules
within D3d molecular symmetry for FCC-Au25 and within C2v molecular symmetry
for SES-Au25.

Figure 2.1: Optimized structures of bare Au25 clusters (a)FCC-Au25 and (b) SES-
Au25.

Figure 2.2: Optimized geometry of the gold-methanethiolates (a) FCC1, (b) FCC2,
and (c) SES, respectively.

In this chapter, all the quantum chemical calculations were carried out employ-
ing the TURBOMOLE package of ab initio quantum chemistry programs [142]. The
geometry optimizations based on a quasi-Newton-Raphson method were performed
at the level of Kohn-Sham density functional theory (KS-DFT) employing the Becke
three-parameter hybrid exchange functional with the Lee-Yang-Parr correlation func-
tional (B3LYP) [143,144]. The triple-ζ valence-quality plus polarization (TZVP) basis
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from the TURBOMOLE basis set library has been used in all calculations, along with
a default 60-electron relativistic effective core potential (ECP) [145] for the Au atom.
The absorption spectra were simulated by calculating the oscillator strength within
time-dependent density functional theory (TDDFT). The present TDDFT is based on
time-dependent Kohn-Sham response theory [146–149] Excited state properties were
obtained from a pole analysis of frequency-dependent linear response functions.

The XRD spectra of the optimized structures were calculated by using the Debye
formula [150]. The diffracted intensity I(s) as a function of the diffraction vector
length s = 2 sin θ

λ is given by

I(s) =
N∑

i,j=1

cos θ

(1 + α cos2 2θ)
exp

(
−Bs2

2

)
fifj

sin(2πsrij)
2πsrij

,

where rij is the distance between the i-th and j-th atoms in the optimized gold-
methanethiolates and (fi, fj) are the corresponding atomic scattering factors. θ is the
diffraction angle, and λ is the wavelength of the incident X-ray beam. Angular de-
pendent geometrical and polarization factors are expressed in the form of cos θ

(1+α cos2 2θ)
,

where α is almost equal to unity for the unpolarized incident beam. The damping
factor exp

(
−Bs2

2

)
means thermal effects. Since the charging effect of each atom was

not taken into account, the scattering factor of an i-th atom is equal to its atomic num-
ber. The equipment dependent parameters were set to be α = 1.01 and λ = 0.1051967
nm following the experiments by Negishi and Tsukuda [151]. On the other hand, the
dumping parameter B = 0.005 nm2 was chosen to reproduce the XRD spectrum of
Au25(SG)18 according to what was discussed in ref [152].

2.1.2 Geometrical structures

I have obtained three types of optimized structures for [Au25(SCH3)18]+. Two of
these structures are derived from FCC-Au25, and the other one from SES-Au25. The
three optimized structures are shown in Figure 2 and their structural parameters are
summarized in Table 1. The atoms of Au, S, C and H are shown in gold, green, gray,
and white, respectively. In the following discussion, the two optimized structures
derived from FCC-Au25 are referred to as (a) FCC1 and (b) FCC2, and the other
one from SES-Au25 as (c) SES. FCC1 expands isotropically whereas FCC2 expands
laterally in comparison with the initial structure of FCC-Au25. The structure of SES
is bent compared with that of SES-Au25. As will be discussed later in detail, FCC2
is the most preferred structure of [Au25(SCH3)18]+. In the first place, I fully analyze
the geometric and electronic structure of the FCC2 gold-thiolate cluster. Then, the
obtained properties of FCC2 are compared with those of the other optimized gold-
thiolate clusters, FCC1 and SES.
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Table 2.1: The nearest neighboring interatomic distances of two bare Au25 clusters
(FCC-Au25 and SES-Au25), and of three optimized gold-methanethiolates (FCC1,
FCC2, and SES).

distance(Å) FCC-Au25 SES-Au25 FCC1 FCC2 SES
Au - Au 2.79 - 3.29 2.75 - 3.15 2.83 - 3.37 2.80 - 3.60 2.87 - 3.20
Au - S — — 2.39 - 2.72 2.39 - 2.43 2.38 - 2.41
S - C — — ∼ 1.85 ∼ 1.85 ∼ 1.85
C - H — — ∼ 1.09 ∼ 1.09 ∼ 1.09

Figure 2.3: The top-view (above) and side-view (below) of the FCC2 in space-filling
model (left) and ball&stick model (right).

Figure 2.4: The four sub-systems of FCC2.
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The best optimized geometrical structure of [Au25(SCH3)18]+

Figure 3 shows top and side views of FCC2 in different ways of drawing, ”space-filling”
and ”ball and stick” models. FCC2 has an oblate structure and can be fractionalized
into three subsystems; (i) a Au7 core cluster, (ii) a Au12(SCH3)12 ring, and (iii)
two Au3(SCH3)3 rings. This classification is schematically drawn in Figure 2.4. The
almost planar Au7 core cluster is surrounded by the Au12(SCH3)12 ring. Then, the
structure of FCC2 is completed by capping this core and ring subsystem from both
sides of the top and the bottom with the two Au3(SCH3)3 rings. The structural details
of each fractionalized subsystem are as follows: (i) The Au7 core cluster has a centered
gold atom surrounded by a six-membered gold ring with a chair conformation. The
Au-Au distance between the centered gold atom and each surrounding gold atom is
2.80 Å, and the distance between the nearest neighboring surrounding gold atoms is
2.87 Å. (ii) The Au12(SCH3)12 ring consists of -Au-S- repeated bonds. The Au-S bond
length is alternatively changed to either 2.39 Å or 2.40 Å. The nearest neighboring
Au-Au distance is up to 3.60 Å. This Au-Au distance is significantly larger than that
of usual bare gold clusters. (iii) The Au3(SCH3)3 ring also consists of -Au-S- repeated
bonds whose bond length is 2.43 Å, whereas the Au-Au distance is 3.15 Å. As is clear
from these structural analyses, the present optimized gold-thiolate cluster consists of
the core gold cluster and the (Au-SCH3)n complex-like rings enclosing the core cluster.
This feature is in sharp contrast to the widely known picture of gold-thiolate clusters
that a core gold cluster is superficially protected by thiolate molecules. A similar
finding was reported in a quite recent paper (ref [139]).

I continue the discussion of the stability of this optimized structure. From the
vibrational analysis, it has been found that the structure has only one small imaginary
frequency (= 12.22cm−1). The existence of the imaginary frequency leads to the
structural relaxation, which breaks the D3d molecular symmetry. Thus, I have carried
out geometry optimization again for FCC2 within Cs molecular symmetry to check a
Jahn-Teller effect. As a result, the atomic rearrangements were very small, i.e., the
largest one was only 0.004 Å. Therefore, I reasonably consider FCC2 to be acceptable
for an energetically local minimum structure.

Before ending this subsection, the charging effect of [Au25(SCH3)18]+ on the geo-
metric structure should be addressed. I have also carried out the geometry optimiza-
tion of FCC2 in its neutral state. The calculated result showed that the structure of
only the Au7 core was slightly changed but the other Au-SCH3 structures were almost
unchanged. This is simply because not more than one or two charge differences are
negligible at least for the geometric structure. Furthermore, I have confirmed that the
charging effect does not have a qualitative influence on the XRD spectra. Although
the explicit treatment of the spin multiplicity is mandatory for revealing magnetism
or spin-dependent energy levels and there might be higher spin states that are lower in
energy than the present closed shell structure, the charged (closed-shell) calculations
provide reasonable results, as far as the geometric structure is concerned.
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Comparison with the other optimized structures

Figure 2.5: The structure of FCC1 and SES in ”ball & stick” model.

In this subsection, I compare the geometric and electronic structures of FCC2 with
those of the other optimized structures, FCC1 and SES. The structures of FCC1 and
SES are shown in Figure 5, (see also Figure 2). As was mentioned in the beginning
of this section, the deformation of the Au25 core structure caused by the coordination
of the methanethiolates is commonly seen in FCC1 and SES. Such deformation is also
found in the previous theoretical studies [137–140, 153] The gold and sulfur atoms in
FCC1 and SES also form a -Au-S- repeated network.

FCC1 consists of fractionalized components of Au core and Au-S ring clusters as
is similar to the structure of FCC2. However, there are two remarkable differences be-
tween the FCC1 and FCC2 structures. First, in FCC1 a methanethiolate coordinates
to a gold atom rather than forming a Au3(SCH3)3 ring. Second, the centered gold
atom of the core cluster in FCC1 is localized markedly apart from the surrounding
gold atoms by 4.60 Å. The result implies that the Au-Au interaction does not work
any more, whereas the centered Au7 core cluster in FCC2 plays an important role in
stabilizing the structure of FCC2 as discussed later.

The structure of SES is more complicated than those of FCC1 and FCC2, and
has a rather different geometric feature. Although it is difficult to fractionalize the
whole structure, SES also consists of Au core and Au-S complex-like ring clusters.
Therefore, the three optimized structures are similar to each other in a sense that
they are constructed from a gold core cluster and Au-S complex-like ring clusters
enclosing the core. However, FCC2 only provides the Au-S ring cluster with the ideal
ratio of Au and SCH3 being 1:1.

Figure 2.6 shows Kohn-Sham orbital energy levels of FCC1, FCC2, and SES as
well as two core clusters of FCC-Au25 and SES-Au25. The energies are indicated in
units of eV relative to the energy of HOMO. I specify each component of the atomic
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Figure 2.6: Kohn-Sham orbital energy levels of FCC-Au25, FCC1, FCC2, SES, and
SES-Au25. The energies are indicated in the unit of eV relative to the HOMO ener-
gies. The orbitals colored in green, blue, yellow, red and light-blue represent Au(6sp),
Au(5d), S(3s), S(3p), and CH3 orbitals ,respectively. The broken line separate the
occupied orbitals and the unoccupied orbitals. HOMO and LUMO are just under the
line and just above the line, respectively.

orbitals contributing to the KS orbital energy levels by using different colors. The
colors blue and green indicate Au 5d and 6sp orbitals, respectively, and the colors
yellow, red and light blue S 3s, 3p, and methyl group orbitals, respectively.

The KS orbitals near HOMO and LUMO of the bare FCC-Au25 and SES-Au25

clusters are constructed mainly from the Au 6sp orbitals with small hybridizations of
the Au 5d orbitals. The Au 5d band ranging from ca. −6 to ca. −2 eV is below the
Au 6sp band. From the Mulliken population analysis, the central gold atoms of the
bare clusters are negatively charged. The HOMO-LUMO gaps of both clusters are
∼1.2 eV.

Global features of the KS orbital energy levels of the three gold-methanethiolates
can be classified into four groups from higher to lower in energy as follows: (i) the Au
6sp band, (ii) the Au (5d) - S (3p) bonding orbitals, (iii) the Au 5d band, and (iv)
localized orbitals of the methanethiolate. The energy levels of HOMO, LUMO and
the low-lying unoccupied orbitals belong to group (i). As is the case with the bare
Au25 clusters mentioned above, the inside of the gold-methanethiolates is negatively
charged. However, the negative charges in the gold-methanethiolates are smaller than
those in the bare clusters. This is attributed to the charge transfer from the gold core
to the thiolate molecule. This charge transfer was found to be the electronic transition
from the Au(6s)-Au(6s) bonding orbital to the Au(5d6s)-S(3p) bonding orbital. The
observed elongation of the Au-Au distance can be explained in terms of this charge
transfer.

Table 2.2 shows the total energies and the HOMO-LUMO gaps of FCC1, FCC2 and
SES. We can see that the total energy of FCC2 is lowest among these three energies.
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Table 2.2: Total energies and HOMO-LUMO gaps of three optimized gold-
methanethiolates, FCC1, FCC2 and SES.

FCC1 FCC2 SES
Etot(eV) -306905.6 -306913.6 -306909.0

HOMO-LUMO gap(eV) 1.05 2.19 1.11

A surprisingly large HOMO-LUMO gap (2.19 eV) is found in FCC2. This energy gap
is about twice as large as those of the other gold-methanethiolate clusters. From the
orbital analysis, it has been found that HOMO, LUMO and LUMO+1 of FCC2 mainly
consist of the atomic orbitals of the Au7 core cluster. HOMO is composed of the 6s
orbitals of the surrounding gold atoms and the 6p orbitals of the centered gold atom.
These atomic orbitals interact with each other and split into bonding and antibonding
orbitals. This strong interaction leads to the large HOMO-LUMO gap of FCC2.

Comparison with experimental data:

XRD and absorption spectra

Figure 2.7: Experimental diffraction spectrum ( below, labelled ”EXP”) and diffrac-
tion spectra calculated from optimized geometry of the gold-methanethiolates: FCC1,
FCC2 and SES. The diffraction spectra in each case are displaced along the vertical
axis for clarity of exposition.

Figure 2.7 shows the XRD spectra of the present three optimized structures in com-
parison with the experimental data [151]. The global features of the spectra of FCC2
and SES are qualitatively in good agreement with the experimental data. Furthermore,
the spectrum of FCC2 provides two major peaks (∼4 and ∼7 nm−1) which reasonably
coincide with the experimental ones (see, the vertical dotted lines). Here, I should
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stress that Au25(SG)18 was highly purified, so that the experimental XRD spectrum
reflects only this size of the cluster. Thus, it is not necessary to take account of the
size distribution of the clusters depending on the experimental conditions. Although
the qualitative agreement of the calculated FCC2 XRD spectrum with the experimen-
tal one should not be taken as a final proof of the existence of the FCC2 structure,
this result will be utilized when totally judging the most probable [Au25(SCH3)18]+

structure.

Figure 2.8: Absorption spectra of FCC1, FCC2, SES, and experiment( below, labelled
”EXP”). The solid lines are obtained by convoluting each absorption peak with the
Lorenz function for FCC1, FCC2 and SES. For convenience, the broken line is drawn
to comparison for the absorption peaks.

Figure 2.8 shows the comparison of the calculated absorption spectra with the
experimental data [151]. The solid lines are obtained by convoluting each absorption
peak with the Lorentz function. The first major peaks of the spectra are indicated by
arrows. As is clearly seen from the figure, the absorption spectrum of FCC2 sufficiently
reproduces the experimental data. The first peak at 689 nm and the shoulder at 534
nm are assigned to the electronic transitions that occurred within the Au7 core cluster.
The first peak corresponds to the electronic excitation from HOMO to LUMO, and
the shoulder from HOMO to LUMO+1.

Brief summary

FCC2 was decided to be the most plausible geometry for the Au25(SCH3)18 by the
careful investigations on the electronic structure, total energy, and comparisons be-
tween experiments. The following sections study further the electronic and optical
properties of FCC2 by using unrestricted DFT calculations.
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2.1.3 Electronic properties

Let me briefly review the unique geometrical structure of [Au25(SCH3)18]+ obtained in
the previous section. The cluster consists of a Au7 core and a (AuSCH3)12[(AuSCH3)3]2
cage structure as shown in Fig. 2.9. The Au25 cluster is effectively reduced to the
Au7 core owing to a coordination of the eighteen thiolates. Then, the Au7 core takes
a nearly planar structure and the remaining outer gold atoms together with the thi-
olates form a robust complex-like cage composed of one Au12(SCH3)12 ring with a
zig-zag (-Au-S-) framework and two planar Au3(SCH3)3 rings. As will be numerically
confirmed later, this structure is almost unchanged in the different charged states
and these unique structural features play a very important role in realizing the spin
polarization localized at the Au7 core.

Magnetism

Figure 2.9: The optimized geometry of [Au25(SCH3)18]+ consisting of Au7 core and
(AuSCH3)12[(AuSCH3)3]2 cage structure: Au (gold) and S (green). For simplicity, the
methyl groups are not shown in this figure.

I started from the geometry optimization of the neutral cluster, Au25(SCH3)18 by
resorting to unrestricted DFT calculations. The ground state of the cluster was found
to be the doublet state. Figure 2.10(a) shows the density of state (DOS) for the up [red
lines] and down [blue lines] electron spins. The short vertical line denotes the Fermi
energy level. As shown in the figure, the KS orbital analysis indicates that the curves of
DOS are classified into three regimes contributed mainly from (i) the Au(5d) orbitals,
(ii) the Au(5d)-S(3p) bonding orbitals, and (iii) the Au(6s, 6p) orbitals of the Au7 core.
The figure shows that the one unpaired electron (up spin in this figure) is localized at
the Au7 core, and the red and blue curves of DOS for Au(5d) and Au(5d)-S(3p) are
almost symmetrical. The highest occupied molecular orbital (HOMO), containing one
up-spin electron in the present unrestricted DFT calculations, of the neutral (n=0)
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Figure 2.10: Density of States for the up (red) and down (blue) spins of the charged
clusters [Au25(SCH3)18]n. For comparison purposes, the absolute values of the orbital
energies are conveniently shifted in each figure. The short vertical lines denote the
Fermi energy level. All the DOSs were obtained by convoluting each KS energy level
(indicated by the red and blue vertical lines) with the Lorentz function.



2.1. GOLD-THIOLATE CLUSTER: AU25(SCH3)18 27

cluster depicted in Figure 2.11 schematically demonstrates that the unpaired electron
is indeed localized at the Au7 core and almost no electron density exists around the
Au-S cage. For these reasons, it is not expected that the magnetic moment is induced
at the surface of the gold-thiolate cluster. This is a sharp contrast to the observations
in gold-thiolated surfaces or thin films in which the giant magnetic moments were
induced by the localized electrons transferred from the gold substrate to the sulfur
atom, but is consistent with what was obtained by Yamamoto et al. If we consider
the electrons confined in the Au7 core as ”trapped electrons” proposed by Hernando
et al., their explanation also seems to be consistent with the present result. Negishi
et al. reported that the magnetic moments in the Au-SG clusters were induced by the
localized electrons in the Au-S bonds and estimated them to be 0.0093 µB. Such a
small value is consistent with the above calculated result that the significant magnetic
properties are not induced at the surface of the small gold-thiolate cluster.

I have carried out geometry optimizations of the cluster in n = 3−, 2−, 1−, 1+ and
3+ charged states. It has been confirmed that these optimized structures are very
similar to that of the neutral cluster except that the structure of the Au7 core slightly
winds depending on the charged states. This is because the Au-S cage enclosing the
Au7 core forms a rather rigid framework as described in the previous section. The
HOMO-LUMO (lowest unoccupied molecular orbital) gaps and the spin multiplicities
of all the charged gold-thiolate clusters are summarized in Table 1. It should be
noted that these HOMO-LUMO gaps do not necessarily correspond to an absorption
edge because LUMO may have a different spin against to HOMO. It is worth noting
that spin polarization is realized in the higher charged states. To analyze each spin-
polarized state, I will compare DOSs of the charged clusters with each other in Figs.
2.10(b)-(f). As in DOS of the neutral cluster (Fig. 2.10(a)), the red and blue curves of
the Au(5d) and Au(5d)-S(3p) regimes are almost symmetrical indicating that the up
and down spins form a pair. In contrast, DOSs associated with the Au7 core depend
on the charged states and particularly DOSs for the up and down spins in the charged
states of 3−, 2−, and 3+ are asymmetrical. These spectral patterns show that the spin
polarization is realized in such charged states. Furthermore, the unpaired electrons
contributing to these spin-polarized states are localized at the Au7 core. Figure 2.11
shows the KS orbitals related to the spin-polarized states. This figure schematically
demonstrates that the unpaired electrons are localized at the core but not distributed
around the Au-S cage.

Table 2.3: The HOMO-LUMO gaps and the spin multiplicities of Au25(SCH3)18 in
different charged states. The spin multiplicities are given in terms of (2S + 1) with S
being the total spin quantum number.

charge 3− 2− 1− 0 1+ 3+
HOMO-LUMO gap (eV) 0.6 0.5 0.7 0.4 2.2 0.8

2S + 1 3 4 1 2 1 3
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HOMO

HOMO-1

3- 2- 0 3+

Figure 2.11: The top views of the KS orbitals associated with the unpaired electron.
The orbitals are either HOMO or HOMO-1. The orbitals for n = 3- (HOMO-1), n =
2- (HOMO-1), and n = 3+ (HOMO) are doubly degenerate.

To illustrate the magnetic properties of the gold-thiolate cluster more clearly, I
show in Figure 2.12 contour plots of the spin densities of the different charged states
of 3−, 2−, 0, and 3+. The spin densities in the figure are given as difference between
the up (red) and down (blue) electron spin densities. All the up spin densities (red)
associated with the Au(6s) orbital are localized in the outer part of the Au7 core. Very
small (almost negligible) spin densities (ρ = -0.004e) mainly consisting of the down
spin distribute around the Au7 core. The contour plots for the charged states of 3-,
2-, and 3+ clearly show that the inhomogeneous spin distributions are localized in the
Au7 core. In particular, in the charged state of 2-, the up spin densities associated
with the Au(6s) orbital distribute around the Au7 core ring whereas the down spin
densities are localized at the core. In contrast, in the contour plot of the neutral
state, the spin density distribution becomes very subtle. All these spin density maps
completely reflect the results described above, that is, the high-spin polarizability is
realized in the charged state of 2- and the corresponding inhomogeneous spin densities
distribute in the Au7 core.

Following the explanations by Vager and Naaman, and Hernando et al., the key in-
gredient to understand the magnetism is the giant magnetic moments. Such magnetic
moments can be induced under the conditions that spin-polarized electrons are local-
ized and magnetic anisotropy exists. These conditions are also satisfied in the present
gold-thiolate cluster. The spin-polarized electrons are localized at the Au7 core and
the anisotropy is expected because the Au7 core has an almost planar structure. Fur-
thermore, since the Au7 core is enclosed by the robust Au-S cage, the spin-polarized
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Figure 2.12: The top views of contour plots of the spin densities given as difference
between the up and down electron spin densities. The charged states are 3-, 2-, 0, and
3+, respectively.

electrons will still be localized when the gold-thiolate cluster condenses to form larger
compounds. The charged states of the gold-thiolate cluster are changed by introducing
positive or negative counter ions. Therefore, the gold-thiolate compounds with unusual
magnetism can be constructed by building up the gold-thiolate cluster Au25(SCH3)18

through controlling the charged states.

Absorption spectra

Figure 2.13 shows absorption spectra of 1, 2, and 3 to the left and the corresponding
experimental spectra to the right. The calculated absorption peaks were convoluted
by the Lorentz function with a width of 40 nm. The first peak appears at ∼ 680 nm,
irrespective of the charged state, whereas there is a glimpse of peaks around 800 nm
both in the spectra of 2 and 3. The spectral patterns are in good accord with the
experimental one. Peak patterns of 1 and 3 are relatively similar, and of 3 shows peak
splitting around 680 nm. To analyze these spectral patterns, KS-orbitals concerning
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Figure 2.13: Absorption spectra of Au25(SCH3)18 of calculated (left) and experimental
(right) in the charged states are shown.

to the first peaks will be analyzed below.
Although, KS-orbital is just a mathematical tool and has little physical meanings,

it is not so bad to use them for qualitative interpretation of molecular orbitals if we
restrict ourselves to the discussion near the Fermi level [154]. To confirm this, I have
performed HF/TZVP calculation on 1+ cationic state in closed shell model and com-
pared the result with that of B3LYP/TZVP. Moreover, the MP2 calculation following
to the HF/TZVP calculation shows the largest changes in occupation numbers of 5.79
%. This suggests that the HF occupations are acceptable in this gold-thiolate sys-
tem and the comparison between HF and DFT calculations can make a sense. From
the comparisons, I have obtained that the orbital orders around the Fermi levels are
the same and the orbital shapes are indistinguishable. The HOMO-LUMO gaps and
energy differences between HOMO(= HOMO-1) and HOMO-2 in HF calculation are
larger than B3LYP one. Thus, the KS-orbital analyses on the absorption spectra
provide good qualitative and intuitive pictures.

Figure 2.14 shows the KS orbital diagrams concerning to the first peaks. Some
representative electronic transitions associated with the absorption peaks in Fig.2.13
are assigned. All the charged states have the same KS orbital characters with minor
relaxations thorough varying the charges as reported experimentally [5, 91]. In 2 and
3, the frontier electrons occupy LUMO of 1 which is doubly degenerated in nature.
While such occupation breaks the closed shell structure of 1, the electronic structure
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Figure 2.14: HOMO-LUMO

of 3 has quasi-closed shell character. The electronic transitions of the first peak of 1 is
attributed to the HOMO-LUMO transitions, both HOMO and LUMO are composed
mainly of Au7. In the spectra of 2 and 3, the first peaks are attributed to the transition
from KS orbitals of Au7 to Au(6s) of the Au-S cages, and the small peaks around 800
nm correspond to the first peak of 1. The peak splitting observed around 680 nm in 2
can be explained by the disordered electronic structure compared to the other charged
states, but having minor effects on the spectral curve. Thus, it can be concluded that
the similarity in the peak positions between the spectra of 1, and 2 and 3 are just a
coincidence, which arise from the similarity of the relative spacing of the energy levels
concerned. In contrast, the similarity between 2- and 3- spectra results from the same
nature in the electronic configurations and transitions.

2.1.4 Short summary

I have presented the DFT study of the model cluster [Au25(SCH3)18]+ mimicking
the extraordinarily stable glutathione(GSH)-protected gold cluster Au25(SG)18 ex-
perimentally observed very recently [1–3]. Three types of optimized structures were
derived from the different core clusters of the fcc Au25 and of the vertex-sharing cen-
tered icosahedral Au13 dimer. The most preferred optimized structure, FCC2, which
is based on the truncated fcc Au25 cluster, shows the unusually large HOMO-LUMO
gap and sufficiently reproduces the experimental data of the XRD and absorption
spectra. I have found that FCC2 can be partitioned into three types of subsystems,
the Au7 core cluster, the Au12(SCH3)12 complex-like ring, and the two Au3(SCH3)3
rings. This classification leads to a novel structural picture that the bare gold cluster
is enclosed by the -Au-S- repeated network. Such a structural understanding reveals
the physicochemical properties of small thiolated gold clusters in a new and different
way.

The unrestricted DFT calculations have been performed to investigate the spin-
polarized electronic structures of the core-in-cage geometry, Au7(AuSCH3)12[(AuSCH3)3]2,
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with different charged states from 3− to 3+. While the spin multiplicity (2S+1) of the
neutral cluster is 2, the higher-spin polarization is realized in the charged states. Fur-
thermore, the unpaired electrons associated with these high spin-polarized states are
always localized at the Au7 core that is encapsulated by the robust Au-S cage. There-
fore, we can control the degree of spin polarization by changing the charged states of
the gold-thiolate cluster by introducing counter ions. The cluster will induce magnetic
anisotropy due to the planar geometry of the Au7 core even when integrated. Such
controllable magnetic moments localized at the core cluster can be utilized to develop
single molecule magnets and also magnetic storages by building up the gold-thiolate
clusters. Optical absorption spectra of the charged states reproduce the experimental
spectral curve in a good manner. Analysis of the absorption spectra with the elec-
tronic structure classifies the similarity of the peak position between cationic and the
other states a coincidence. On the other hand, the anionic and neutral state have
same electronic configurations leading the similar absorption spectral patterns having
same peak positions and shoulders over the first peak. From the total energy differ-
ences, IP, EA, and VDE are estimated, from which I conclude that the anionic state
can also be observed in a gas phase. Beyond the structural motif discovered at large
gold-thiolate cluster, the cluster around 1 nm shows distinct geometrical feature and
electronic properties and this suggests a need for more detailed analysis by experi-
mental and theoretical works. These fabricated gold-thiolate clusters open up the new
class of functional cluster material science.
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2.2 Au13 oligomeric clusters

Tsukuda and coworkers made significant progress toward realizing the cluster-assembled
compounds in a bottom-up approach [6]. They synthesized a gold cluster compound
[Au25(PPh3)10(SC2H5)5Cl2]2+ (1) and characterized its geometric structure through
single X-ray crystal analysis. The cluster has a unique structure in the sense that the
Au25 core is constructed by bridging two icosahedral Au13 clusters with thiolates shar-
ing a vertex gold atom and is terminated by two chlorine atoms. This biicosahedral
structure is conceptually close to the clusters of clusters by Teo et al., and thus it is
considered to be a dimer consisting of the two icosahedral Au13 units. The absorption
spectrum showed that such dimerization gives rise to a new electronic level retaining
the electronic properties of the individual Au13 constituents. Therefore, the icosahe-
dral Au13 cluster incorporating with thiolates will be a typical prototype of building
blocks of assembled gold clusters.

In this section, characterization of geometric and electronic structures of a dimer
cluster [Au25(PH3)10(SCH3)5Cl2]2+ (2) mimicking the cluster 1 will be discussed.
Then, the mechanism of the dimerization will be studied theoretically. I will further
discuss polymerization, as an example, the trimerized gold cluster [Au37(PH3)10(SCH3)10Cl2]+.

2.2.1 Method of computation

Density functional theory (DFT) calculations have been carried out for the gold
cluster 2. In this model cluster, the triphenylphosphines of 1 were replaced with
the phosphines, and the alkanethiolates were replaced with the methanethiolates. I
have adopted such a simplification of the ligands frequently used in previous calcula-
tions [135,137,139,140,155,156]. Geometry optimization of the cluster 2 was performed
starting from the initial guess structure taken from the single-crystal X-ray data of
1. This initial structure is closed to C5h molecular symmetry. I did not assume such
a high molecular symmetry but performed the geometry optimization of the cluster
within Cs molecular symmetry.

I should refer to the accuracy of the present DFT calculations with the B3LYP
functional. The determination of the most preferable functional, particularly for het-
erogeneous clusters such as the present metal-molecule compounds, is beyond the
scope of the present work. I have confirmed that at least for the present gold cluster
compounds, the calculations with B3LYP compared with the PBE functional [157]
reasonably reproduced the experimental results. Although the optimized structure
based on the calculation with PBE is in slightly better accord with the experimental
result, the calculation failed to reproduce the detailed absorption spectral patterns of
the experiment. For references of comparison of functionals in gold-thiolate compound
systems, see [139] and the following papers [153,158]
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Figure 2.15: Side and top views of the optimized dimer structure of 2. The colored balls
represent constituent atoms: Au (gold), S (yellow), C (gray), H (blue), P (magenta),
Cl (green).

2.2.2 Geometrical structures

Figure 1 shows side and top views of the optimized structure of 2. In addition to
this optimized structure, I have obtained other local minimum structures where the
bond directions of the ligands (SCH3 and PH3) to the gold atoms are slightly differ-
ent. This optimized structure has been computationally confirmed to be energetically
most stable and has negligible imaginary frequencies with magnitudes less than 20
cm−1, which are primarily associated with the vibrational motion of the C-H or P-H
bonds. Although the geometry optimization has been carried out within Cs molecular
symmetry, the optimized structure was close to C5h molecular symmetry. This result
implies that the optimized structure can still have high molecular symmetry and a
lower energy minimum cannot be achieved even when the geometry optimization is
carried out without the use of symmetry. For convenience, the four layers (I-IV de-
noted in Figure 1) of the gold pentagonal rings were labeled. The two icosahedral Au13

clusters are clearly bridged (between II and III layers) by the methanethiolates sharing
a vertex gold atom and are terminated by the chlorine atoms. This structure is in
good agreement with the experimental X-ray data of 1. The methyl groups are bound
to the sulfur atoms in an orientation similar to blades of a rotary fan. The top view
in Figure 1 shows that the methyl groups (yellow-gray-blue balls) are aligned coun-
terclockwise. Although this feature was not discussed in the experimental study [6],
the illustration of the X-ray data of 1 also shows that the alkyl groups are aligned
clockwise or counterclockwise.
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Table 2.4: Structural and electronic properties of the calculated dimer and trimer
clusters in comparison with the experimental data of 1.

dimer trimer expt. [6]
Au-Au (Å) 2.86 - 3.04 2.84]3.06 2.70 - 3.00

layer II - III (Å) 3.35 3.35 2.94 - 3.11
Au-S (Å) 2.47 2.47 2.36 - 2.43
Au-P (Å) 2.4 2.4 2.28 - 2.35
Au-Cl (Å) 2.37 2.37 2.38 - 2.42

Au-S-Au (deg) 85.4 85.1 75.7 - 80.9
Au-S-C (deg) 105.5 105.2 99.4 - 107.1

HOMO-LUMO gap (eV) 2.13 1.362

Table 1 summarizes representative structural and electronic properties of 2 in com-
parison with the experimental ones. The theoretical structural properties are in good
agreement with the experimental values, with the exception of a small difference in the
Au-Au distance between the layers II and III. The bulky ligands of the triphenylphos-
phine in the cluster 1significantly twist the Au13 icosahedral structure [6] compared
with the methanethiolate ligands in the model cluster 2. The distortion partly makes
the Au-Au distance shorter in the cluster 1.

The stability of the +2 cationic state of 2 is substantially based on closed-shell
requirements. The calculated HOMO−LUMO gap of the cluster is large (2.13 eV)
as shown in Table 1, whereas the electronic energy levels adjacent to HOMO are
degenerate or close to each other because of high molecular symmetry of 2. This is
also true for the energy levels adjacent to LUMO. Just enough electrons in the +2
cationic state form a closed-shell structure, and therefore the +2 cation is more stable
than other charged states. The stability can be also understood by using Mingos’s
electron counting rule [159]. This rule explains stability of clusters in terms of closed-
shell requirements based on a jellium model. More specifically, the total number of
valence electrons in a cluster consisting of vertex-sharing icosahedrons is given by 8np,
where np is the number of icosahedrons [159, 160]. The 16 valence electrons in the
present cluster 2 fulfill the counting rule, and thus the cluster can be regarded as a
dimer of a closed-shell, 8-electron system.

2.2.3 Optical properties

Figure 2.16a shows the absorption spectrum of the cluster 2 in comparison with (b)
the experimental spectrum of 1. The calculated spectrum was obtained by convolut-
ing each absorption peak (vertical lines) with the Lorentz function. The calculation
reasonably reproduces the peak positions and the shoulder structures observed in the
experiment. The first peak on the theoretical absorption spectrum appears at 702 nm,
well apart from other absorption peaks in the higher energy region (< 600 nm). This
peak was found to be assigned to an electronic transition between the HOMO−LUMO
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Figure 2.16: Absorption spectrum of (a) the dimer cluster 2 in comparison with (b)
the experimental measurement of 1. (c) Absorption spectrum of the trimer cluster 3.

energy levels due to the vertex-sharing biicosahedral structure. The icosahedral Au13

cluster is spherically symmetric in origin, and thus its atomic orbitals along the x, y,
and z axes are triply degenerate. In the biicosahedral structure, however, the symme-
try breaks and then the atomic orbitals along the long molecular axis, such as the z

axis, are lower in energy whereas those along x and y axes are higher in energy. Be-
cause the spherically symmetric s-orbitals are not affected by the symmetry breaking,
their orbital energies do not change. Figure 2.17a shows the HOMO and LUMO of
cluster 2. The HOMO is constructed mainly from atomic orbitals along the z axis,
and the LUMO consists of primarily s orbitals localized around the vertex gold atom
at the center. Both electronic states of the HOMO and LUMO are attributed to the
interaction between the two vertex-sharing Au13 icosahedrons induced by the symme-
try breaking. Therefore, the absorption peak at 702 nm is assigned to a new electronic
transition due to the dimeric structure. The absorption peaks in the higher energy
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d
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Figure 2.17: Schematic diagrams of the KS orbitals and main atomic orbital com-
ponents contributing to each KS orbital: (a) the dimer cluster 2 and (b) the trimer
cluster 3. The atomic orbital components of HOMO-1 in the trimer partly cancel each
other owing to their opposite phase (dotted orbitals).

region (< 600 nm) were, however, assigned to the electronic transitions within the
individual Au13 cluster unit.

The present cluster 2 has a peculiar structure that the Au25 core seems to be a
dimer of the vertex-sharing Au13 icosahedron bridged by the methanethiolates. A nat-
ural question then arises whether oligomeric structures of more than the dimer can be
achieved. To answer this question, I have further carried out geometry optimization of
a trimeric structure within Ci molecular symmetry in the same way as in the biicosa-
hedral cluster. The triicosahedral gold cluster of [ Au37(PH3)10(SCH3)10Cl2]+ (3) was
obtained successfully with only one negligible imaginary frequency, with a magnitude
of ∼10 cm−1. The optimized structure was close to S10 molecular symmetry. At the
present level of calculation, the +1 cationic structure was well-converged. The stabil-
ity of the +1 cationic state is explained in terms of closed-shell requirements as in the
case of the biicosahedral cluster mentioned above. In addition, the total number of va-
lence electrons (=24) in the +1 cationic state also satisfies Mingos’s electron counting
rule (24 = 8 × 3 (the number of icosahedrons)). In other words, the +1 triicosahedral
cluster can be regarded as a trimer of a closed-shell, 8-electron system.
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Figure 2.18: Same as Figure 1 but for the trimer structure of 3.

Figure 2.18 shows side and top views of the optimized structure of 3. Similar to the
structure of 2, the three icosahedral Au13 clusters are bridged by the methanethiolates
sharing vertex gold atoms at two different sites and terminated by the chlorine atoms.
The top view in Figure 2.18 shows that the methanethiolates are also aligned coun-
terclockwise. The structural properties of 3 summarized in Table 1 are very similar to
those of 2. This suggests that the triicosahedral gold cluster is also constructed from
the vertex-sharing Au13 icosahedrons and their individual properties remain almost
unchanged.

In Figure 2.16c, the absorption spectrum of 3 is plotted. The spectral pattern in
the range less than 600 nm resembles that of 2 except that the spectrum is shifted
toward higher wavelength. Alternatively, two peaks appear at 761 and 1238 nm. The
second peak at 761 nm seems to correspond to the red-shift of the first peak at 702 nm
in the spectrum of 2. However, this peak is assigned to a new electronic transition due
to the trimeric structure. Figure 2.17b shows the HOMO, HOMO-1, and LUMO of 3.
As described for the biicosahedral cluster, the HOMO and HOMO-1 consist of atomic
orbitals along the z axis, and the LUMO is constructed primarily from the s orbitals
at two different sites on the vertex gold atoms. In particular, the HOMO extends
along a quasi-one-dimensional gold chain aligned along the z axis. The first peak at
1238 nm is assigned to the HOMO−LUMO electronic transition, and the second one
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at 761 nm is assigned to the HOMO-1 - LUMO electronic transition. Therefore, the
two peaks in the triicosahedral structure appear because the three vertex-sharing Au13

icosahedrons interact with each other through two different vertexes.

2.2.4 Short summary

I have presented the DFT study of geometric and electronic structures of a gold clus-
ter compound [ Au25(PH3)10(SCH3)5Cl2]2+. The optimized structure is considered
to be a biicosahedral cluster consisting of two icosahedral Au13 clusters bridged by
methanethiolates sharing a vertex gold atom and terminated by chlorine atoms. This
geometrical structure is in good agreement with the experimental observation. I have
further demonstrated that a triicosahedral structure [ Au37(PH3)10(SCH3)10Cl2]+ was
achieved. The geometric properties of the bi- and the triicosahedral gold clusters are
very similar to each other. Furthermore, a comparison between the absorption spectra
of the two structures has revealed that the new electronic levels due to each oligomeric
structure appear sequentially, whereas other electronic properties remain almost un-
changed compared to the individual icosahedral Au13 cluster. The cluster-assembled
compounds are expected to be derived as an extension of the present oligomeric gold
clusters.





Chapter 3

Development of optical response

theory

This chapter focuses on the development of optical response theory of nanoclusters in
a nonuniform electric field, with the aim of studying near-field electronic excitations.
At first, I will make clear the problems to be addressed when we study optical response
of clusters at the 1 nm scale.

3.1 Problems to be addressed

I have obtained the static properties of the constituent building blocks, in both isolated
and assembled states, such as geometric and electronic structures, and photoabsorption
spectra using the gold cluster compounds. To achieve cluster-based devices at the 1 nm
scale, the next step is to gain a further insight into the dynamical optical properties of
cluster compounds, in particular for discussing photoinduced dynamics in nanoclusters
or nanocluster assemblies, we should have proper understanding of an inter-cluster
near-field interaction. The conventional light-matter interaction based on available
lasers is quite different from the near-field interaction because the wavelength is much
longer than the size of the local structure of the cluster compounds. In other words,
the 1-nm-sized cluster compounds feel the almost uniform electromagnetic field and
thus the local structures of the compounds cannot be resolved in space. In contrast,
a near-field interaction is a nonuniform light-matter interaction and this is not well
described by the conventional optical response theory. For these reasons, I will develop
optical response theory applicable to 1-nm-sized clusters beyond the diffraction limit
of wavelengths of the available visible lasers.

41
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3.2 Multipolar Hamiltonian

The multipolar Hamiltonian can be derived from the minimal-coupling Hamiltonian
by performing a canonical transformation [161–163] and has an advantage over the
minimal-coupling one in the sense that the light-matter interaction is described in
terms of the scalar product of a polarization P and an electric field E with a compact
analytical expression. In the multipolar Hamiltonian form, we can utilize an electric
field, which can be directly observed, instead of using vector potential and momen-
tum as in the case of the minimal-coupling Hamiltonian. It should be noted that
in this study the electric field is considered to be a classical value and any magnetic
interactions are neglected. According to Ref. [163] and Appendix A, the multipolar
Hamiltonian of molecules interacting with an electric field is obtained as

Ĥ = Ĥmol + V̂inter −
∫

drP̂ (r) ·E⊥(r), (3.1)

where Ĥmol is the Hamiltonian of the molecules and V̂inter is the static intermolecular
Coulomb interaction. P̂ (r) =

∑
i P̂i(r) is the total polarization operator of the system

with P̂i(r) being the polarization operator of the molecule i. E⊥(r) is the transverse
part of the electric field written in the form of

E⊥(r) = E⊥
laser(r) +

∑

j

E⊥
j (r), (3.2)

where E⊥
laser is an incident laser field and E⊥

j is the induced electric field due to the
response of the j-th molecule to the incident laser field. The static intermolecular
Coulomb interaction is given by

V̂inter =
1
ε0

∑

i<j

∫
drP̂

‖
i (r) · P̂ ‖

j (r), (3.3)

where P̂
‖
i (r) is the longitudinal part of P̂i(r). Then, Eq.(3.1) is rewritten as

Ĥ = Ĥmol +
1
ε0

∑

i<j

∫
drP̂

‖
i (r) · P̂ ‖

j (r)

−
∑

i

∫
drP̂i(r) ·E⊥(r). (3.4)

The explicit form of P̂i(r) is [161–163]

P̂i(r) =
∑
α

eα(q̂α −Ri)
∫ 1

0
dλδ(r −Ri − λ(q̂α −Ri)), (3.5)

where eα and q̂α are the charge and the position operator of the α-th electron in the
molecule i, respectively, and Ri is the center of mass of the molecule. The integration
in Eq. (3.5) with respect to λ is introduced to express the polarization in such a
compact form, instead of using multipoles explicitly.



3.3. A MOLECULE INTERACTING WITH A NEAR-FIELD 43

I address here the relation between the present optical response formula and the
conventional approach based on a multipole expansion method. Eq. (3.5) can be ex-
panded in a Taylor series leading to the dipole, quadrupole, octapole, and higher-order
multipole terms. The present formulation is thus a generalization of the conventional
optical response theory with the dipole approximation. Applying the Taylor expansion
to Eq. (3.5) and integrating the resulting equation with respect to λ, we obtain

∫
drP̂ (r) ·E⊥(r)

=

(∑
α

eα(q̂α −R)i

)
· E⊥

i (R)

−
(

1
2!

∑
α

eα(q̂α −R)i(q̂α −R)j

)
∇iE

⊥
j (R)

+

(
1
3!

∑
α

eα(q̂α −R)i(q̂α −R)j(q̂α −R)k

)

×∇i∇jE
⊥
k (R)

· · ·
≡ µ̂iE

⊥
i + Q̂ij∇iE

⊥
j + Ôijk∇i∇jE

⊥
k · · · , (3.6)

where µ̂i, Q̂ij , and Ôijk represent the dipole, quadrupole, and octapole moments of
a molecule, respectively, and the indexes denote their (x, y, z) tensorial components.
These moments are defined at the molecular center R. ∇i is the gradient operator
along the i-th direction and acts on the electric field. Here a contraction of xiyi =∑

i xiyi is used. The dipole moment couples with the field itself, the quadrupole with
the first derivative of the field, and the octapole with the second derivative of the field,
and so forth. If an electric field varies slowly over a whole spatial region, the optical
response can be reasonably described by only the first term of this expansion (i.e., the
dipole approximation). However, the near-field interaction requires an infinite number
of terms in the expansion because of its nonuniform spatial structure. Therefore, I use
Eq. (3.5) as is, without performing the Taylor expansion of the polarization.

3.3 A molecule interacting with a near-field

This subsection derives a compact expression of the Hamiltonian for a molecule in-
teracting with a near-field. In contrast to the conventional optical response theory
for molecules in which electromagnetic fields are uniform external fields, nano-optics
concerns nonuniform electric fields and these fields will be modified by a feedback from
an excited molecule. The first problem requires one to go beyond the dipole approx-
imation. The second one requires a self-consistent treatment on light and matter at
the nanometer scale. This study focuses on the first problem, and the second one will
be studied in the future.
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3.3.1 Nonuniform light-matter interaction model

incident laser field

molecule radiation source

oscillating dipole model 

near-field

molecule 1

molecule 2

(b)

(a)

scattered light

x

y

Figure 3.1: (a) Schematic diagram of near-field and scattered light radiation from
distant molecules 1 and 2 in the presence of an incident laser field. (b) Nonuniform
light-matter interaction model derived from the above molecular system. The molecule
2 is considered to be a radiation source approximated by an oscillating dipole (a
blue bold arrow). The near-fields, i.e., nonuniform electric fields, radiated from the
oscillating dipole are shown in the blue curves.

To demonstrate the electron dynamics in molecules interacting with a near-field,
I first introduce a theoretical model consisting of two molecules irradiated by a laser
light. Fig. 3.1(a) schematically shows the model. The multipolar Hamiltonian Eq.
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(3.4) is rewritten for such a model system by

Ĥmol +
1
ε0

∫
drP̂

‖
1 (r) · P̂ ‖

2 (r)

−
∫

dr
(
P̂1(r) + P̂2(r)

)
·E⊥(r). (3.7)

As mentioned in the introduction, the near-field is a non-propagating local field around
nanostructures, generated in the presence of laser irradiation. Although the near-
field should be given by solving the Maxwell’s equations (or by resorting to quantum
electrodynamics theory in a narrow sense), it is reasonably approximated by the short-
range term of an oscillating dipole radiation [133, 164]. Then, the theoretical model
given by Eq. (3.7) can be further simplified as follows. I discuss here optical response
of the molecule 1 interacting only with the near-field radiated from the molecule 2,
in which the molecule 2 is considered to be an oscillating dipole as shown in Fig.
3.1(b). This approximation means that the material Hamiltonian of the molecule 1
is solved quantum mechanically, whereas the molecule 2 is assumed to be a classical
dielectric merely as a radiation source. Furthermore, I neglect the near-field induced
around the molecule 1, which might affect the dielectric molecule 2 (i.e., the self-
consistent effect). Since I focus on roles of the nonuniform electric field in electronic
excitation of a molecule, the self-consistent effect is left for the future investigation.
The incident laser field E⊥

laser in the third term of Eq. (3.7) is required to induce
the polarization associated with the oscillating dipole in the molecule 2. From my
preliminary calculations, however, the incident field was found to be less important
for the light-matter interaction in the near-field region because the intensity of the
induced near-field is larger than that of the incident field. As a result, the electron
dynamics in this region is qualitatively unaffected even if the incident laser field is
neglected.

Under these conditions, Eq. (3.7) can be reduced to the form of

Ĥmol −
∫

drP̂
‖
1 (r) · Ẽ‖

2(r)

−
∫

dr
(
P̂1(r) + P̂2(r)

)
·
(
Ẽ⊥

1 (r) + Ẽ⊥
2 (r)

)
, (3.8)

where the longitudinal part of the polarization operator P̂
‖
2 is replaced with the expec-

tation (or c-number) value −ε0Ẽ
‖
2 . Ẽ represents the near-field part of E. Although

the far-field part of E can also be included in this derivation, I only use the near-field
part for simplicity. Eq. (3.8) is rewritten in a more compact form of

Ĥmol −
∫

drP̂1(r) · Ẽ2(r)

−
∫

dr
[
P̂1(r) · Ẽ⊥

1 (r) + P̂2(r) ·
(
Ẽ⊥

1 (r) + Ẽ⊥
2 (r)

)]
, (3.9)

where I used the relations of P̂
‖
1 · Ẽ‖

2 = P̂1 · Ẽ‖
2 and Ẽ

‖
2 + Ẽ⊥

2 = Ẽ2. Since the self-
interaction term P̂1 · Ẽ⊥

1 is not important in this work and P̂2(r) · (Ẽ⊥
1 (r) + Ẽ⊥

2 (r))



46 CHAPTER 3. DEVELOPMENT OF OPTICAL RESPONSE THEORY

does not act on the molecule 1, these terms can be omitted. Finally, the Hamiltonian
of a molecule interacting with the near-field becomes

Ĥ ≡ Ĥmol + Ĥint

= Ĥmol −
∫

drP̂1(r) · Ẽ2(r), (3.10)

This nonuniform light-matter interaction Hamiltonian is used throughout this study.
The present computational model is rather oversimplified. However, it is computation-
ally demanding (might be practically impossible) to fully solved coupled Schrödinger−Maxwell
equations, taking account of the properties of the self-consistency and the nonunifor-
mity due to the light-matter interaction at the 1 nm scale. This derivation can also be
applied to three or more particle systems, where only the dynamics of the molecule 1
interacting with the near-fields generated by the molecules 2, 3, · · · is solved quantum
mechanically in a similar way as in the two-particle system.

3.3.2 Near-field radiated from an oscillating dipole

Next, I have to model the near-field. The near-field is known to be a localized, non-
propagating part of the light generated from a molecule when irradiated by an incident
laser field (see Fig.3.1(a)). I describe the near-field in this thesis as the near-part of the
electric field generated from an oscillating dipole, the simplest model for a radiation.
In Fig. 3.1(b), the electric lines of the dipole radiation are depicted as the blue curves,
the directions of which are shown by the arrows on the lines.

The analytical expression of the dipole radiation field Edip(r, t) generated by the
oscillating dipole is given by [164]

Edip(r, t) =
k3

4πε0

( [3n(n · µ)− µ]
(kr)3

(3.11a)

− i
[3n(n · µ)− µ]

(kr)2
(3.11b)

+
[(n× µ)× n]

(kr)

)
e−iωt+ikr (3.11c)

where k is a wavenumber, ε0 is the vacuum permittivity, n is the unit vector of r/r,
µ is a dipole moment of the source placed at the origin, and ω is a frequency of the
oscillation, where ω = kc with c being the velocity of light. The radiation field is
classified into three parts in terms of the radial dependencies, r−3, r−2, and r−1. I
set the distance between the target molecule and the radiation source to be several
angstroms, which is comparable in size with the molecule. In this region, the dipole
radiation field is dominated by the local electric field depending on r−3 given by Eq.
(3.11a). This local field is referred to as the near-field Ẽ used in the nonuniform light-
matter interaction in Eq. (3.10). I can then neglect the magnetic interacting terms
because the magnetic field from the oscillating dipole, not shown here, has the r−2

and r−1 dependent terms. This will be discussed in more detail in Appendix B.
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3.4 Light-matter interaction in the Kohn-Sham equation

For computational applications of the present formal theory, I will derive the light-
matter interaction Hint in the Kohn-Sham (KS) DFT form. In the following deriva-
tions, I take eα = 1 for simplicity. Although the KS Hamiltonian is obtained by
functional derivative of the expectation value of the total energy, it is enough to con-
sider here only the light-matter interaction term of Eq.(3.10). The expectation value
of Ĥint is expressed by

〈
Ĥint

〉
=

∫
drΨ∗(r)ĤintΨ(r)

= −
∫

drdr′Ψ∗(r)P̂ (r′)Ψ(r) · Ẽ(r′)

= −
∫

drdr′Ψ∗(r)(r −R)

×
∫ 1

0
dλδ(r′ −R− λ(r −R))Ψ(r) · Ẽ(r′)

= −
∫

dr [Ψ∗(r)Ψ(r)] (r −R)
∫ 1

0
dλ

×
∫

dr′δ(r′ −R− λ(r −R))Ẽ(r′)

≡ −
∫

drρ(r)(r −R) ·
∫ 1

0
dλẼ(R + λ(r −R))

≡ −
∫

drρ(r)(r −R) ·Eeff(r)

≡
∫

drρ(r)Veff(r) (3.12)

where Ψ is the ground state wavefunction of the molecule, and the electron density
ρ(r), the effective electric field Eeff, and the effective potential Veff are given by

ρ(r) ≡ Ψ∗(r)Ψ(r), (3.13)

Eeff(r) ≡
∫ 1

0
dλẼ(R + λ(r −R)), (3.14)

Veff(r) ≡ −(r −R) ·Eeff(r). (3.15)

The λ-integration of Ẽ includes all the contributions of the spatial variation of the
electric field. As is clearly seen from Eq.(3.12), the nonuniform light-matter interaction
is straightforwardly calculated in the conventional KS-DFT approach if the effective
potential Veff is added to the external potential term in the KS equation. In the next
chapter, the KS-DFT computational approach will be explained to demonstrate the
electron dynamics of nanoclusters interacting with a near-field.





Chapter 4

Computational applications and

system details

This chapter describes the computational applications of the present formal theory.
Numerical computation is based on the time-dependent density functional theory
(TDDFT) with the effective potential that is obtained from a near-field modeled by
the dipole-radiation field. As a computational system, I adopt a linear-chain molecule
NC6N in the near-field.

4.1 Time-dependent Kohn-Sham approach in real space

The time-dependent Kohn-Sham (TD-KS) approach in real space and time to electron
dynamics has so far been explained elsewhere [165–168]. I review the approach with
particular emphasis on extending it to the optical response to a nonuniform electric
field. A time-dependent N -electron interacting system is solved through a set of
electronic wave functions ψj(r, t) satisfying the following TD-KS equation

i~
∂

∂t
ψj(r, t) =

[
− ~

2

2m
∇2 + VKS[ρ](r, t)

]
ψj(r, t), (4.1)

where m is the electron mass and ρ is the electron density given by

ρ(r, t) = 2
N/2∑

j=1

|ψj(r, t)|2. (4.2)

The factor of 2 indicates that each KS orbital is fully occupied (i.e., a closed shell
system). The KS potential VKS[ρ](r, t) is a functional of ρ, and it consists of four terms
of an ion-electron interaction potential Vion(r), a time-dependent Hartree potential,
an exchange-correlation (XC) potential Vxc[ρ](r, t), and an external potential Veff as
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follows:

VKS[ρ](r, t) = Vion(r) +
1

4πε0

∫
ρ(r′, t)
|r − r′|dr′

+Vxc[ρ](r, t) + Veff(r, t). (4.3)

The ion-electron interaction potential Vion(r) is constructed from norm-conserving
pseudopotentials of each atomic component of the system considered. Following the
Troullier and Martins procedure [169], the pseudopotentials are numerically generated
so that the pseudowavefunctions can imitate the all-electron atomic wave functions.
The potentials depend on the angular momentum components. In this thesis, I use the
Kleinman-Bylander separable form to represent the nonlocal (i.e., angular momentum
depending) potential terms [170].

To represent the XC potential, I use the following adiabatic local density approxi-
mation (ALDA)

Vxc[ρ](r, t) ≈ V LDA
xc [ρ](r, t) = V LDA

xc [ρ0](r)
∣∣
ρ0(r)=ρ(r,t)

, (4.4)

where V LDA
xc [ρ0](r) is the ground-state LDA XC potential given by Perdew and Zunger

[171]. In ALDA, the XC potential at r and t is approximated by that of the ground-
state uniform electron gas having the density ρ(r, t). Although the ALDA XC po-
tential does not take account of the nonlocality in both r and t and more accurate
exchange-correlation functionals have been developed lately, the ALDA has practically
provided reasonable results for single-electron excitation processes sufficiently below
the lowest ionization threshold of systems [172–174]. Furthermore, it is reasonable to
use such a simple functional at this early stage of development prior to performing
highly accurate calculations towards material science.

In the present theoretical model of the nonuniform light-matter interaction, the
external potential Veff is given by Eqs. (3.14) and (3.15). As mentioned above, Ẽ

in Eq. (3.14) is approximated as the oscillating dipole radiation Eq. (3.11), the
main contribution of which is given by the r−3 dependent term of Eq. (3.11a). For
convenience of computation, setting the center of mass of a molecule to be at the
origin and giving the external electric field in the form of a pulsed field, the effective
potential Eq. (3.15) is rewritten by

Veff(r, t) = −r ·Eeff(r) sin(ωt) sin2

(
πt

T

)
(0 < t < T ), (4.5)

where ω is the frequency of the oscillating dipole, and T determines the pulse duration.
The pulse profile is approximated by sin2

(
πt
T

)
in which a few cycles of the electric fields

are included. The field intensity is related to the field strength by I = 1
2ε0cE

2.

4.2 Molecular system and computational details

A linear chain molecule is one of the better choices to demonstrate the nonuniform
light-matter interaction, in particular for such an electric field proportional to r−3.
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I choose a dicyanodiacetylene (NC6N) molecule [175] shown in Figure 4.1(a) as an
example of a real molecule. The geometric structure has been optimized by using the
TURBOMOLE V5.10 [142, 176] package of quantum chemistry programs, employing
the LDA exchange functional developed by Perdew and Wang [177] with the basis
set of def-SV(P) [178] from the TURBOMOLE basis set library, which corresponds
to the basis set of 6-31G*. The simplest functional LDA was chosen for consistency
with the functional used in the TD-KS equation. The vibrational analysis showed no
imaginary frequency. The interatomic distances of the molecule are N1−C2 = 1.176
Å, C2−C3 = 1.354 Å, C3−C4 = 1.239 Å, and C4−C5 = 1.340 Å [179].
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Figure 4.1: (a) Geometrical structure of NC6N and the position of the radiation
source. (b) The effective electric field intensities on the molecular axis. The near-
fields are generated by the oscillating dipole with its absolute value of the dipole
moment being 4 D (red line) and 5 D (black line), respectively.

The TDKS equation (4.1) for NC6N is solved numerically by a grid-based method
[165,180] in a three-dimensional Cartesian-coordinate rectangular box, the lengths of
which are 30 Å along the molecular (x-) axis and 20 Å along the y- and z-axes, utilizing
uniform grids with a mesh spacing of 0.3 Å. The Laplacian operator is evaluated by a
nine-point difference formula [181]. The time-propagation of the KS orbitals is carried
out with a fourth-order Taylor expansion by using a constant time step of 0.002 fs.
The inner shell structures of the carbon and nitrogen atoms are approximated by
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effective core pseudopotentials, and then the remaining four electrons (2s22p2) for C
and five electrons (2s22p3) for N are explicitly treated. In other words, I have carried
out 34-electron dynamics calculations for NC6N.

The effective potential for the dipole radiation on each grid is computed combining
Eqs. (3.11), (3.14), and (3.15), where the main contribution in (3.11) is its near-field
part (3.11a). A point dipole µ is placed at x = 8.0 Å (i.e., the value of 3.56 Å is the
distance between the rightmost nitrogen atom N(8) and the dipole as shown in Fig.
4.1(a)) so that the nonuniform electronic excitation due to the near-field is clearly
demonstrated. The dipole is assumed to be y-polarized, that is µ = (0.0, µ, 0.0)
debye (D), where µ is the absolute value of the dipole moment. The dipole fields
generated from µ = 4.0 D and 5.0 D are used in this study. The integral of Eq. (3.14)
is calculated numerically with a constant step of ∆λ = 0.0423 Å. The contribution of
the dipole radiation field at its origin to the integration is evaluated by 4πµ/3 [163].
Edip is also replaced with 4πµ/3 if |Edip| is larger than |4πµ/3|. This is done for a few
points very close to the dipole, i.e., |r| ∼ 0.2 Å. The intensity of the nonuniform electric
field varies largely as indicated in Fig. 4.1(b). The effective electric field intensity at
the right end of the NC6N molecule is two orders of magnitude larger than that at
the left end (i.e., 1011 and 109 W/cm2 at the right and the left ends, respectively).
Thus, the molecule is nonuniformly excited by the oscillating dipole field. All the
electric fields used in this study have the field frequency ω of 1 eV (the off-resonance
condition). The pulse duration (T = 30 fs) is short enough to avoid considering the
nuclear dynamics.



Chapter 5

Nonuniform electronic excitation

induced by the near-field

This chapter discusses mechanisms of the nonuniform excitations induced by the near-
field. To this end, the computational approach to the electron dynamics under the
nonuniform light-matter interaction, developed in the last two chapters, is applied to
a NC6N molecular system as an example. The excitations are analyzed by visualizing
the electron densities and by calculating the induced dipole and quadrupole moments
of the NC6N molecule in the time- and frequency-domains. The nonuniform excitation
processes are also analyzed on the basis of the perturbation theory. Finally, a control
of high-harmonics is demonstrated in the nonuniform excitation by using two-radiation
sources.

5.1 Nonuniform electronic excitation

Let me first demonstrate the electron density motions in the uniform and the nonuni-
form electric fields. Figure 5.1 shows four snapshots of differences of the electron
densities at t = 6, 12, 18, 24, and 30 fs from the initial (t = 0) electron density. The
red and the blue colors indicate an increase and a decrease in the electron density,
respectively. Each column of the snapshots illustrates the different time evolution of
the electron density depending on the ways of electronic excitation. Four schematic
illustrations at the top of the figure display how the light-matter interaction works.
The uniform oscillating-electric-field with its intensity of 1012 W/cm2 is applied to the
molecule along the (a) x- or (b) y-axis, whereas the nonuniform fields radiated from
the oscillating dipoles (the black bold arrows) with their dipole moments being (c) 4
D and (d) 5 D are applied to the molecule.

The electron densities in Figs. 5.1(a) and (b) oscillate uniformly and regularly
along the applied field directions, keeping the molecular symmetry. However, as shown
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Figure 5.1: Snapshots of difference of the electron density at t=6, 12, 18, 24, and 30
fs from the initial (t = 0 fs) static electron density. The uniform fields ((a), (b)) and
the nonuniform (oscillating dipole) fields with their dipole moments being (c) 4 D and
(d) 5 D are applied to the molecule. The red and blue colors represent an increase and
a decrease in the electron density, respectively. Four schematic illustrations at the top
of each snapshot display the ways of electronic excitation.

in Figs. 5.1(c) and (d), the nonuniform electric field apparently induces the symmetry-
breaking time-evolution of the electron density. Such inhomogeneous electron dynam-
ics clearly reflects the spatial distribution of the dipole field. Since the oscillating
dipole is y-polarized, the generated electric field on the x-axis is also y-polarized, but
its intensity sharply falls as r increases (i.e., ∝ r−3), where r is the distance from
the oscillating dipole. Furthermore, only the x-component of the dipole field Ex is
antisymmetric with respect to the x-axis (i.e., Ex(x, y, z) = −Ex(x,−y, z)), whereas
Ey and Ez are symmetric. For these reasons, the time-evolved densities in Figs. 5.1(c)
and (d) regularly oscillate to some extent along the y-axis, whereas those are distorted
along the x-axis. The electron density distributions at 12 and 18 fs, for example, rep-
resent the antisymmetric motion along the x-axis. Specifically, the upper and lower
half parts of the densities with respect to the x-axis move toward the opposite di-
rections. These irregular motions are really due to the electronic excitation by the
symmetry-breaking, nonuniform electric field. The electron density distribution at 30
fs in Fig. 5.1(d) looks rather different from the others. The electron-density-differences
in Figs. 5.1(a)-(c) almost disappear at the end of the pulse of the external electric
fields because the applied laser frequency considered is not in tune with any resonance
frequencies. In contrast, the electron density distribution in Fig. 5.1(d), under the
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condition of the stronger nonuniform electric field, still persists even after the end of
the external field.
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Figure 5.2: Induced dipole moments along the x- and y-axes, di (i = x, y). The
dipole moments, respectively, correspond to the time-evolutions of the density in Figs.
5.1(a)-(d). Insets in (a) and (b) are schemes of the applied field direction.
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Figure 5.3: Magnification of dx in Fig. 5.2(d).

Figures 5.2(a)-(d) show the induced dipole moments along the x- and y-axes, di (i =
x, y), corresponding to the time evolutions of the electron densities in Figs. 3(a)-
(d), respectively. The red and the black curves represent dx and dy. The insets in
Figs. 5.2(a) and (b) schematically draw the applied field directions. Similar overall
time-profiles have been observed in dx (Fig. 5.2(a)) and dy (Fig. 5.2(b)) induced
by the uniform field and in dy induced by the nonuniform field. In sharp contrast,
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nonuniformly induced dxs do not follow the time-profile of the applied field. To see
this more clearly, I pick up dx in Fig. 5.2(d) and plot it in Fig. 5.3. In the early times
until about 20 fs, dx takes negative values owing to the sharp gradient in the field
intensity. The oscillation frequency becomes much faster than that of the applied field
after ∼ 20 fs. Such an irregular oscillation of dx is a consequence of the antisymmetric
Ex of the dipole field that acts strongly in the right part of NC6N. Thus, the irregular
time-evolutions of the density along the x-axis in Figs. 5.1(c) and (d) were induced by
the nonuniform, antisymmetric dipole radiation field. I have further confirmed that
such an irregular motion cannot be induced even if I use either an electric field having
a similar sharp gradient in the field intensity or an antisymmetric electric field.

I next calculate the emission spectra for each electron dynamics to analyze the
uniform and nonuniform electronic excitations in an energy domain. Since the emis-
sion spectrum is associated with the dipole acceleration [182, 183], I take the second
derivative of the induced dipole moments and then perform a Fourier transform. Fig.
5.4 shows the power spectra of the dipole acceleration |d̈i(ω)|2 (i = x, y) in the unit of
Å2 fs−2 as a function of energy. I refer to the power spectra of the dipole acceleration
as harmonic-generation (HG) spectra. The HG spectra in Figs. 5.4(a)-(d) correspond
to the induced dipole moments in Figs. 5.2(a)-(d), respectively. The red and the black
curves represent |d̈x(ω)|2 and |d̈y(ω)|2. Comparing Figs. 5.4(a) and (b), the harmonics
along the x-axis (d̈x) seem relatively easier to generate than that along the y-axis (d̈y).
A comparatively large peak appears at around 6 eV in Fig.5.4(a). Since the NC6N
molecule has a dipole resonance frequency at 5.75 eV, this large peak is related to the
resonance state. Despite the inversion symmetry of NC6N, the nonuniform electric
field, in contrast to the uniform one, causes the even harmonics in addition to the odd
harmonics as shown in Figs. 5.4 (c) and (d). Interestingly, the even and odd harmon-
ics are respectively due to the induced dipole moments along the x- and y-axes. The
even harmonics, therefore, have proved to be generated by the nonuniform electric
field breaking the symmetry along the x-axis. Furthermore, in comparison with the
HG spectra by the uniform electric field, relatively higher harmonics are clearly seen
in the HG spectra by the nonuniform electric field. In addition, their peak intensities
do not decay linearly against the order of the harmonics.

Before ending this section, I demonstrate that the nonuniform electronic excitation
also induces the quadrupole moment, which is never induced by the uniform electric
field, as one of the phenomena beyond the dipole approximation. The xy component
of the quadrupole moment (Qxy) for the time-evolution of Fig. 5.1(d) and its HG
power spectrum are shown in Figs. 5.5(a) and (b), respectively. The quadrupole
moments both in the time and the energy domains provide the structural patterns
quite similar to those of the dipole ones. To verify that Qxy is non-negligible in
the nonuniform excitation, I consider the charge distribution that causes dipole and
quadrupole moments. The calculated value of the quadrupole moment in the unit
of Å2 is about an order of magnitude larger than that of the dipole moment in the
unit of Å. The dipole moment of two charges q and −q with the intercharge distance
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Figure 5.4: Power spectra of the dipole acceleration. The ways of electronic excitation
correspond to those in Figs. 5.1(a)-(d) and also in Figs. 5.2(a)-(d), respectively.
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Figure 5.5: (a) xy-component of the induced quadrupole moment as a result of the
nonuniform excitation with µ = 5 D and (b) its power spectrum.

a is qa Å, whereas the quadrupole moment of two positive q′ and two negative −q′

charges disposed at the corners of a square with its side being a is q′a2 Å2. Then,
|Qxy| ∼ 10|dy| (see Figs. 5.2(d) and 5.5(a)) and a is ∼ 10 Å for NC6N. Thus, we have
q ∼ q′ because q′a2 ∼ 10 × qa → q′a ∼ 10 × q → q′ ∼ q. This indicates that the
dipole-like and quadrupole-like charge distributions have been induced in almost the
same amount as a consequence of the nonuniform light-matter interaction.

5.2 Even and Odd Harmonics

Let me next carry out a perturbation analysis of the HG power spectra generated
through the nonuniform light-matter interaction. As shown in Figs. 5.4(c) and 5.4(d),
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the even harmonics appear despite the inversion symmetry of NC6N. The even and odd
harmonics are due to the induced dipole moments dx and dy, respectively. This even
and odd alteration is easily understood in terms of the symmetries of the molecular
wave functions and the external field.

Table 5.1: Matrix elements of the second-order dipole moments along the x- and y-
axes in the power of Veff. e and o denote even and odd symmetries, respectively. The
symmetries of the ground state and Veff are indicated by bold characters.

d
(2)
x 〈0|x|i〉 〈i|Veff|j〉 〈j|Veff|0〉∫

dx 〈e|o|o〉 〈o|eo|eo〉 〈eo|eo|e〉 6= 0∫
dy 〈e| |e〉 〈e|o|o〉 〈o|o|e〉 6= 0∫
dz 〈e| |e〉 〈e|e|e〉 〈e|e|e〉 6= 0

d
(2)
y 〈0|y|i〉 〈i|Veff|j〉 〈j|Veff|0〉∫

dx 〈e| |e〉 〈e|eo|eo〉 〈eo|eo|e〉 6= 0∫
dy 〈e|o|o〉 〈o|o|e〉 〈e|o|e〉 = 0∫
dz 〈e| |e〉 〈e|e|e〉 〈e|e|e〉 6= 0

Table 5.2: Same as Table 5.1 but for the third-order dipole moments. As in the case
of Table 5.1,

∫
dxdz is always nonzero, and thus only

∫
dy is summarized here.

d
(3)
x 〈0|x|i〉 〈i|Veff|j〉 〈j|Veff|k〉 〈k|Veff|0〉∫

dy 〈e| |e〉 〈e|o|o〉 〈o|o|e〉 〈e|o|e〉 = 0
d

(3)
y 〈0|y|i〉 〈i|Veff|j〉 〈j|Veff|k〉 〈k|Veff|0〉∫

dy 〈e|o|o〉 〈o|o|e〉 〈e|o|e〉 〈o|o|e〉 6= 0

According to the time-dependent perturbation theory [184, 185], n-th dipole mo-
ment d

(n)
α (n = 1, 2, · · · and α = x, y, z) in powers of the perturbation Veff can be

evaluated by the following matrix elements,

〈0 |α| i〉 〈i |Veff| j〉 〈j |Veff| k〉 · · · 〈l |Veff| 0〉︸ ︷︷ ︸
n brackets

, (5.1)

where |0〉 and |i〉 are the ground and the excited eigen states of the nonperturbative
Hamiltonian of the molecule, respectively. As typical examples, d

(2)
x , d

(2)
y , d

(3)
x , and

d
(3)
y are considered. Table 5.1 summarizes the evaluation of the matrix elements of

d
(2)
x and d

(2)
y . The symmetries of the eigen states and the applied field are labeled

as ”e” for the even symmetry and ”o” for the odd one. Since NC6N has mirror
symmetries in every direction, the eigen state {|i〉} is either even or odd with respect
to x-, y-, or z-axis, namely, ψ(x, y, z) = ±ψ(−x, y, z), ψ(x, y, z) = ±ψ(x,−y, z), or
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ψ(x, y, z) = ±ψ(x, y,−z). The effective potential Veff given by Eq.(3.15) is neither
an even nor an odd function of x, an odd function of y, and an even function of
z, i.e., Veff(x, y, z) 6= Veff(−x, y, z), Veff(x, y, z) = −Veff(x,−y, z), and Veff(x, y, z) =
Veff(x, y,−z). Thus, the brackets can be estimated by decomposing them into the
integrations with respect to the x-, y-, and z-coordinates.

∫
dα (α = x, y, z) in Table

5.1 denotes each component of the integrations. The symmetries of the ground state
|0〉, the operators (x and y), and the potential Veff are specified in bold characters.
The symmetries of |i〉 and |j〉 are then specified so that the matrix elements have
nonzero values. As a result, d

(2)
x becomes nonzero, but d

(2)
y must be zero because the

integral of 〈j|Veff|0〉 with respect to the y-coordinate vanishes. The same analysis can
be applied to d

(3)
α (see, Table 5.2). Then, d

(3)
x must be zero but d

(3)
y becomes nonzero.

The above analysis clearly explains the even-odd alteration appears in the HG power
spectra obtained by the nonuniform excitation.

5.3 Control of harmonic generation

Finally, it is demonstrated that the harmonics induced by the near-field can be con-
trolled. Fig. 5.6 shows the HG power spectra obtained when both ends of the NC6N
molecule are excited by the near-fields radiated from two oscillating dipoles with dif-
ferent phases by π/2. The inset illustrates the schematic diagram of the near-field
excitation by two radiation sources. It is clearly seen from the figure that harmonics
selectively appear every 4ωin starting from the second harmonics (2ωin). The forth
and eighth harmonics (4ωin and 8ωin) completely disappear as a result of the inter-
ference between the two near-fields having different phases. I expect that this idea of
the near-field excitation with different phases can control intensities and orders of HG
spectra.
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Figure 5.6: Power spectra of the dipole acceleration along the x- and y-axes. Two
oscillating dipole fields with different phases disposed at both ends of the molecule are
applied.



Chapter 6

Conclusion

This thesis has presented theoretical studies of the geometric, electronic, and opti-
cal properties of one-nanometer sized materials. I have revealed the geometric and
electronic properties of gold-thiolate nanocluster compounds and developed optical
response theory in an effort to understand nonuniform light-matter interaction be-
tween near-filed and nanometer-sized cluster compounds.

The geometric and electronic structures of a gold-methanethiolate [Au25(SCH3)18]+

have been investigated by carrying out the density functional theory (DFT) calcula-
tions. The obtained optimized structure consists of a planar Au7 core cluster and Au-S
complexes, where the Au7 plane is enclosed by a Au12(SCH3)12 ring and sandwiched
by two Au3(SCH3)3 ring clusters. This sharply contrasted geometry to a generally
accepted geometrical motif of gold-thiolate clusters that a spherical gold cluster is
superficially ligated by thiolate molecules provides a large HOMO-LUMO gap, and its
X-ray diffraction and photoabsorption spectra successfully reproduce the experimental
results. On another gold cluster compound [Au25(PH3)10(SCH3)5Cl2]2+, which con-
sists of two icosahedral Au13 clusters bridged by methanethiolates sharing a vertex gold
atom and terminated by chlorine atoms, the DFT calculations have provided very close
structure to the experimentally obtained gold cluster [Au25(PPh3)10(SC2H5)5Cl2]2+.
A vertex-sharing triicosahedral gold cluster [Au37(PH3)10(SCH3)10Cl2]+ has also been
achieved by bridging the core Au13 units with the methanethiolates. A comparison be-
tween the absorption spectra of the bi- and triicosahedral clusters shows that the new
electronic levels due to each oligomeric structure appear sequentially, whereas other
electronic properties remain almost unchanged compared to the individual icosahedral
Au13 cluster. These theoretical studies have elucidated the fundamental properties of
the promising building blocks such as geometric structures and stability of real cluster
compounds in terms of the detailed electronic structures.

To study dynamical near-field interactions at the 1 nm scale, I have developed
a generalized theoretical description of optical response in an effort to understand
a nonuniform light-matter interaction between a near-field and a 1-nm-sized cluster
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compound. The light-matter interaction based on the multipolar Hamiltonian was
described in terms of a space integral of the inner product of the total polarization
of a molecule and an external electric field. Noteworthy is the fact that the polariza-
tion in the integral can be treated entirely without invoking any approximation such
as the dipole approximation. Therefore, the present light-matter interaction theory
allows us to understand the inhomogeneous electron dynamics associated with local
electronic structures of a cluster compound at the 1 nm scale, although the wave-
length of an incident laser pulse is much longer than the size of the molecule. For
a computational application, I have studied the near-field-induced electron dynamics
of NC6N by using the TD-KS approach incorporated with the present nonuniform
interaction theory. The electron dynamics induced by the nonuniform light-matter
interaction has been completely different from that by the conventional uniform in-
teraction under the dipole approximation. Specifically, in the nonuniform electronic
excitation high harmonics have been generated more easily and much more interest-
ingly the even harmonics have been also generated in addition to the odd ones despite
the inversion symmetry of NC6N. Perturbation theory has clearly explained that the
even harmonics were generated owing to the symmetry-breaking (nonuniform) electric
field along the x-axis radiated from the oscillating dipole. It has also been found that
the nonuniform fields with different phases control harmonic generation though their
interference effect. It is expected that the nonuniform electronic excitation can induce
unprecedented electron dynamics giving information about local electronic structures,
electronic transitions beyond the dipole approximation, and high-order nonlinear opti-
cal phenomena. Furthermore, the present nonuniform light-matter interaction/TD-KS
approach incorporated with the Maxwell’s equation will enable us to elucidate electron
and electromagnetic field dynamics in nanostructures.
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Appendix A

Quantum electrodynamics

The multipolar Hamiltonian (3.1) is derived from the minimal coupling Hamiltonian
by the canonical transformation. Before the transformation, the longitudinal and
transverse vector fields are explained first. The minimal coupling Hamiltonian is ex-
pressed using the polarization and then transformed into the multipolar Hamiltonian.
Finally, the semiclassical equation of motion is derived by considering the Heisenberg
equation of motion and treating the electromagnetic field classically.

A.1 Longitudinal and Transverse vector fields

The Coulomb gauges is defined as the divergent of the vector potential A is zero,
i.e. ∇ ·A = 0. An intermolecular interaction then can be decomposed into a static
instantaneous Coulomb interaction and a dynamical retarded interaction. The former
and the latter are described with a longitudinal and a transverse vector fields. The
longitudinal and transverse vectors are, in other words, the curl-free and divergence-
free. The geometrical explanation of these vectors will be provided.

By definition, longitudinal and transverse vector fields A‖ and A⊥ satisfy the next
relations:

∇×A‖ = 0, (A.1)

∇ ·A⊥ = 0. (A.2)

Their geometrical meanings can be clearly seen in reciprocal space. Let A be the
Fourier spatial transform of a vector A. Then A and A are related through the
following equations:

A(k) =
1

(2π)3/2

∫
drA(r)e−ik·r, (A.3)

A(r) =
1

(2π)3/2

∫
dkA(k)eik·r. (A.4)
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Defining A‖ and A⊥ as the Fourier transform of A‖ and A⊥, eqs. A.1 and A.2 can
be rewritten as

∇×A‖ =
1

(2π)3/2

∫
dr(−ik)×A‖e−ik·r = 0, (A.5)

∇ ·A⊥ =
1

(2π)3/2

∫
dr(−ik) ·A⊥e−ik·r = 0. (A.6)

These results mean that A‖(k) is parallel to k and A⊥(k) is perpendicular to k. Let
k̂ be the unit vector parallel to k, these vectors can be written as

A‖ ≡ (A · k̂)k̂ (A.7)

A⊥ ≡ A−A‖ (A.8)

and therefore we can decompose A as

A = A‖ + A⊥, (A.9)

with

A‖ ·A⊥ = 0. (A.10)

Recalling that the inner product of two vectors A and B is irrelevant to the basis, we
have

A‖ ·A⊥ = 0 (A.11)

and thus

A = A‖ + A⊥. (A.12)

Rewriting A.7 and A.8 as

A‖i = k̂ik̂jAj (A.13)

A⊥i = (δij − k̂ik̂j)Aj (A.14)

where the relation AiBi =
∑

i AiBi is used. A
‖
i and A⊥i can be related to Aj by

performing the Fourier spatial transform twice as

A
‖
i (r) =

1
(2π)3/2

∫
dkk̂ik̂jAj(k)eik·r (A.15)

=
1

(2π)3

∫∫
dkdr′k̂ik̂jAj(r′)eik·(r−r′) (A.16)

A⊥i (r) =
1

(2π)3/2

∫
dk(δij − k̂ik̂j)Aj(k)eik·r (A.17)

=
1

(2π)3

∫∫
dkdr′(δij − k̂ik̂j)Aj(r′)eik·(r−r′). (A.18)
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Here, the relations can be written in a more compact form if the δ-dyadics are defined
as follows:

δ
‖
ij(r) ≡ 1

(2π)3

∫
k̂ik̂je

ik·rdk (A.19)

δ⊥ij(r) ≡ 1
(2π)3

∫
(δij − k̂ik̂j)eik·rdk (A.20)

then with them,

A
‖
i (r) =

∫
dr′Aj(r′)δ

‖
ij(r − r′) (A.21)

A⊥i (r) =
∫

dr′Aj(r′)δ⊥ij(r − r′). (A.22)

In short, the longitudinal and the transverse component vectors of a vector field
are curl-free and divergence-free, respectively, in a real space. In reciprocal space, the
longitudinal and the transverse vectors are the vectors parallel and perpendicular to
its wavenumber vector k, respectively. In the Coulomb gauge, the vector potential is
taken to be divergence-free. From the above discussion, then the vector potential is a
transverse vector field

∇ ·A = 0 → A = A⊥ (A.23)

A.2 Minimal coupling Hamiltonian in the Coulomb gauge

The minimal coupling Hamiltonian of a system of charged particles interacting with
an electromagnetic field in the Coulomb gauge is given by

Hmin =
∑
α

~2

2mα
(pα − eαA(qα))2 +

1
8πε0

∑

α 6=β

eαeβ

|qα − qβ| + Hrad (A.24)

where mα, eα, and qα are the mass, charge, and coordinate of a particle α, respectively,
and

Hrad =
1
2

∫
dr

(
Π⊥2

ε0
+ c2ε0(∇×A)2

)
(A.25)

where the canonical momenta of the field is given by Π = ε0Ȧ(r) = −ε0E
⊥ with E

being the electric field. Here, Hrad is purely transverse, because A is always transverse
in the Coulomb gauge.
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For a system which consists of molecules, the charged particles can be assigned
into each molecule m, then the Hamiltonian becomes

Hmin =
∑
m

{∑

i∈m

p2
i

2mi
+ Vm

}
+ Hrad

+
∑
m

{∑

i∈m

(
−eipi ·A(qi)

mi
+

e2
i A

2(qi)
2mi

)}
+ Vinter (A.26)

≡
∑
m

Hmol(m) + Hrad +
∑
m

{
H

(1)
int (m) + H

(2)
int (m)

}
+ Vinter (A.27)

≡ Hmol + Hrad + Hint (A.28)

where

Hmol(m) ≡
∑

i∈m

p2
i

2mi
+ Vm, (A.29)

Vm ≡ 1
8πε0

∑

i 6=j∈m

eiej

|qi − qj | , (A.30)

H
(1)
int (m) ≡

∑

i∈m

ei

mi
pi ·A(qi) (A.31)

H
(2)
int (m) ≡

∑

i∈m

e2
i

2mi
A2(qi) (A.32)

Vinter ≡ 1
8πε0

∑

i∈m,j∈m′

eiej

|qi − qj | . (A.33)

A.2.1 Density and polarization operators

Introducing the polarization operator into the minimal coupling Hamiltonian makes
the Coulomb interaction terms more physically clear. Let ρm(r) be the density oper-
ator of the molecule m given by

ρm(r) ≡
∑

i∈m

eiδ(r − qi). (A.34)

This can be rewritten by expanding the delta function in a Taylor series using Rm,
the center of mass of the molecule m, as follows:

ρm(r) =
∑

i∈m

eiδ( (r −Rm)− (qi −Rm) )

=
∑

i∈m

ei

[
1− (qi −Rm) ·∇

+
1
2!
{(qi −Rm) ·∇}2

+
1
3!
{(qi −Rm) ·∇}3 − · · ·

]
δ(r −Rm)

≡ ρtrue
m (r)−∇ · Pm(r) (A.35)
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where ρtrue
m (r) is the net charge of the molecule m given by

ρtrue
m (r) ≡

(∑

i∈m

ei

)
δ(r −Rm) (A.36)

and for a neutral molecule it is zero. Pm(r) is the polarization of the molecule m given
by

Pm(r) =
∑

i∈m

ei(qi −Rm)
[
1− 1

2!
(qi −Rm) ·∇ +

1
3!
{(qi −Rm) ·∇}2 − · · ·

]
δ(r −Rm).

(A.37)

Using 1/n =
∫ 1
0 λn−1dλ and recalling the Taylor expansion of the delta function, it

can be written as

Pm(r) =
∑

i∈m

ei(qi −Rm)
∫ 1

0
dλ

[
1− λ(qi −Rm) ·∇ +

1
2!
{λ(qi −Rm) ·∇}2 − · · ·

]
δ(r −Rm)

=
∑

i∈m

ei(qi −Rm)
∫ 1

0
dλδ(r −R− λ(qi −Rm)) (A.38)

which is the polarization operator I use in the chapter three.

A.2.2 Intermolecular Coulomb interaction

All the discussion in the thesis is restricted to the neutral system, and hence we can
write the density as

ρm(r) = −∇ · Pm(r) (A.39)

Using the density operator, the intermolecular Coulomb interaction terms can be writ-
ten as

Vinter =
∑

m6=m′

1
8πε0

∫∫
drdr′

∇ · Pm(r)∇′ · Pm′(r′)
|r − r′| . (A.40)

Integrating this by parts twice and then using the fact that ∇′f(|r− r′|) = −∇f(|r−
r′|), we have

Vinter =
∑

m6=m′

1
8πε0

∫∫
drdr′∇∇

(
1

|r − r′|
)
· Pm(r)Pm′(r′)

=
1

8πε0

∫∫
drdr′∂i∂j

(
1

|r − r′|
)

(Pm(r))i

(
Pm′(r′)

)
j
. (A.41)

Performing the Fourier transform as 1
(|r−r′|) → 4π

(2π)3/2k2 , we obtain

∂i∂j
1

|r − r′| = ∂i∂j
1

(2π)3

∫
dk

4πeik·(r−r′)

k2
(A.42)

= − 4π

(2π)3

∫
dk

kikj

k2
eik·(r−r′) (A.43)

= −4πδ
‖
ij(r − r′), (A.44)
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where the definition of (A.19) is used at the last equal. Finally, Vinter becomes

Vinter =
1
2

∑

m6=m′

1
ε0

∫
drdr′δ‖ij(r − r′) (Pm(r))i

(
Pm′(r′)

)
j

(A.45)

=
∑

m<m′

1
ε0

∫
drP ‖

m(r) · P ‖
m′(r) (A.46)

where the fact that A‖ · B = A‖ · B‖ is used. Here the inter-molecular interaction
is expressed as the interaction between longitudinal polarizations of molecules m and
m′.

A.3 Canonical transformation and multipolar Hamiltonian

Hint in the minimal coupling Hamiltonian (A.28) is transformed using next function:

S =
1
~

∫
drP⊥(r) ·A(r). (A.47)

S is the function of q and A and thus these variables remain unchanged by the
transformation. Only the momenta p and Π will change. As a result, the interaction is
described with the polarization and electric field, instead of the momentum of particles
and vector potential.

Our strategy here is to obtain new variables by

Anew = eiSAe−iS (A.48)

then express the old variables by the new ones as

A = A(Anew) (A.49)

and using the relation that

Hnew(pnew, qnew) = H(p(pnew, qnew), q(pnew, qnew)) (A.50)

where the old variables p, q are expressed with the new variables and substitute them
into the old Hamiltonian.

In the calculation I use the next relations that

eiGλAe−iGλ = A + iλ[G,A] +
(

i2λ2

2!

)
[G, [G,A]]+ (A.51)

· · ·+
(

inλn

n!

)
[G, [G, [G, · · · [G,A]]] · · · ] + · · · , (A.52)
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which is known as Baker-Hausdorff lemma [184], and

[S(q), p] = [S(0), p] + [∂qSq, p] +

[
∂2

qS

2!
q2, p

]
+

[
∂3

qS

3!
q3, p

]
· · · (A.53)

= ∂qS[q, p] +
∂2

qS

2!
[q2, p] +

∂3
qS

3!
[q3, p] · · · (A.54)

= (i~)
[
(∂qS) + ∂q(∂qS)q +

∂q

2!
(∂qS)q2 + · · ·

]
(A.55)

= i~∂qS (A.56)

where ∂q ≡ ∂/∂q and the next relation is used

[qn, p] = ni~qn−1. (A.57)

The proof is given by the method of induction. For n = 1 and 2,

[q, p] = i~ (A.58)

[q2, p] = q[q, p] + [q, p]q = 2i~q (A.59)

then assume that the relation for n = k holds, then

[qn, p] = q[qn−1, p] + [q, p]qn−1

= q(n− 1)i~qn−2 + i~qn−1 = ni~qn−1 (A.60)

thus the relation is true for all n. Now, [S, p] = i~∂qS is the function of q then this
commutes with S(q), thus we have

pnew = eiSpe−iS

= p + i[S, p] +
i2

2!
[S, [S, p]] + · · · (A.61)

= p− ~∂qS (A.62)

Bearing in mind these relations, we have

Πmult = eiSΠmine
−iS

= Πmin − ~ ∂S

∂A
(A.63)

= Πmin − P⊥ (A.64)

= −ε0E
⊥ − P⊥ (A.65)

≡ −D⊥ (A.66)

where the displacement field D is defined. Then the momentum becomes

pmult = pmin − ~∂S

∂q
(A.67)
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where

∂S

∂q
= ∂q

(
1
~

∫
drP⊥ ·A

)

= ∂q

(
1
~

∫
dre(q −R)

∫ 1

0
dλδ(r −R− λ(q −R))A

)

=
1
~

∫∫
drdλeδ(r −R− λ(q −R))A

+
1
~

∫∫
drdλe(q −R)∂qδ(r −R− λ(q −R))A (A.68)

For a while, I hide R for clarity. The following derivations are complicated and
technically. The important part can be written as

∫∫
drdλδ(r − λq)A +

∫∫
qi (∂qδ(r − λq))Ai (A.69)

+
∫∫

[q · ∂q] δ(r − λq)A−
∫∫

[q · ∂q] δ(r − λq)A (A.70)

in the second line, the same term is added and subtracted. Applying the first of the
next relations (A.71) to the first term of (A.70), and (A.72) into the seconds of (A.69)
and (A.70)

(q · ∂q)δ(r − λq) = λ
d

dλ
δ(r − λq) (A.71)

∂qδ(r − λq) = −λ∇δ(r − λq), (A.72)

the first terms of eq.(A.69) and (A.70) become

∫∫
drdλδ(r − λq)A +

∫∫
drdλλ

d

dλ
δ(r − λq)A

=
∫∫

drdλ
d

dλ
[λδ(r − λq)]A

=
∫

dr

∫ λ=1

λ=0
d[λδ(r −R− λ(q −R))]A

=
∫

drδ(r − q)A(r)

= A(q) (A.73)

where I recalled R in the third line. Next, the second terms of (A.69) and (A.70) can
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be written as
∫∫

drdλ qj∂qiδ(r − λq)Aj −
∫∫

drdλ(qj∂qj )δ(r − λq)Ai

=−
∫∫

drdλ qj∂iλδ(r − λq)Aj +
∫∫

drdλ(qj∂j)λδ(r − λq)Ai

(integrate by parts with respect to dr)

=
∫

drqj

∫ 1

0
dλ λδ(r − λq) (∂jAi − ∂iAj)

=
∫

drqj

∫ 1

0
dλλδ(r − λq)εijkBk, (A.74)

where ∂j ≡ ∂/∂rj and εijk is the Levi-Civita symbol. Finally, defining n as follows

ni ≡ ei(qi −Rm)
∫ 1

0
λδ(r −Rm − λ(qi −Rm))dλ (A.75)

and applying this to eq.(A.74) and together with (A.67), (A.68), and (A.73), the
multipolar momentum is

pmult = pmin + eA−
∫

drn×B (A.76)

Thus,

Πmin = Πmult + P⊥ (A.77)

pmin = pmult − eA +
∫

drn×B (A.78)

and substituting them into eq. (A.26) with omitting the summation and related
subscriptions for clarity, we have

Hmult =

[
1

2m

(
p− eA +

∫
drn×B

)2

+ V

]
+

1
2

∫
dr

[(
Π + P ⊥)2

ε0
+ c2ε0B

2

]

+
e

m

(
p− eA +

∫
drn×B

)
·A +

e2

2m
A2 + Vinter

=

[
1

2m

(
p +

∫
drn×B

)2

+
e2

2m
A2 − (p +

∫
drn×B)
m

·A + V

]

+ Hrad +
e

m

(
p +

∫
drn×B

)
·A− e2

m
A2 +

e2

2m
A2 + Vinter

=

[
1

2m

(
p +

∫
drn×B

)2

+ V

]
+

1
2

∫
dr

[
ε−1
0

(
Π + P⊥

)2
+ c2ε0B

2

]
+ Vinter

(A.79)
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where the subscription mult is omitted from pmult and Πmult. Expanding and regroup-
ing this equation further, we have

Hmult =
(

p2

2m
+ V

)
+

1
2

∫
dr

{
Π2

ε0
+ c2ε0B

2

}

+
1
ε0

∫
drP⊥ ·Π + Vinter +

1
2ε0

∫
dr|P⊥|2 (A.80)

+
p

m
·
∫

dr n×B +
1

2m

(∫
drn×B

)2

(A.81)

= Hmol + Hrad + Hint + Vinter + Hself + Hmagn (A.82)

where

Hmol =
p2

2m
+ V (A.83)

Hrad =
1
2

∫
dr

Π2

ε0
+ c2ε0B

2 (A.84)

Hint =
1
ε0

∫
drP⊥ ·Π (A.85)

Hself =
1

2ε0

∫
dr|P⊥|2 (A.86)

(A.87)

and Hmagn is the remaining terms as in (A.81). It should be noted that Hint is not
the same as appeared in chapter 3.

A.4 Semiclassical equation of motion

The equation of motion of an operator of material can be written as

~
i

dQ

dt
= [Hmol + Hint + Vinter + Hself, Q] (A.88)

where the field operators and magnetic terms are omitted. The field operator Hrad

commutes with any material operators. Magnetic terms are negligible in the present
study as discussed in chapter 4.

To derivate the equation the basis of this thesis, Hint + Hself are focused. The
Poisson bracket we focus on becomes

[Hint + Hself, Q] =
1

2ε0

∫
dr

[
2P⊥ ·Π + P⊥2, Q

]
. (A.89)

Writing 2P⊥ · Π = P⊥ · Π + Π · P , the Poisson bracket concerning Hint can be
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written as
[
2P⊥ ·Π, Q

]
=

[
P⊥ ·Π, Q

]
+

[
Π · P⊥, Q

]

= Π [Π, Q] +
[
P⊥, Q

]
Π + Π

[
P⊥, Q

]
+ [Π, Q] P⊥

=
[
P⊥, Q

]
Π + Π

[
P⊥, Q

]
(A.90)

=
[
P⊥, Q

] (
−ε0E

⊥ − P⊥
)

+
(
−ε0E

⊥ − P⊥
) [

P⊥, Q
]

= −ε0

[[
P⊥, Q

]
, E⊥

]
+
−

[
P⊥2, Q

]
(A.91)

where using the fact that the pure-field operator Π commutes with any material op-
erator. The anticommutation relation is defined as [A,B]+ ≡ AB + BA. Substituting
this into (A.89), we have

[Hint + Hself, Q] = −1
2

∫
dr

[[
P⊥, Q

]
, E⊥

]
+

. (A.92)

Finally, taking expectation value of E⊥ and expressing the expectation value as
〈
E⊥〉

,
we have

[Hint + Hself, Q] = −
∫

dr
[
P⊥ ·

〈
E⊥

〉
, Q

]
(A.93)

Therefore, the effective Multipolar Hamiltonian can be written as follows:

Heff
mult = Hmol + Vinter −

∫
drP⊥ ·

〈
E⊥

〉
. (A.94)

This is the starting point Hamiltonian for the present study, where P⊥·〈E⊥〉
is written

as P̂ · E⊥ using the fact that A · B⊥ = A⊥ · B⊥ and the operator is distinguished
from the classical values by wearing the hat.





Appendix B

About magnetic interactions

The validation in neglecting the magnetic interactions in the near-field interaction
based on the dipole radiation is discussed. As derived in Appendix A, the exact
light-matter interaction term Ĥint which acts on a molecule is given by

Ĥint = −
∫

P̂ (r) ·E(r)dr −
∫

M̂(r) ·B(r)dr

+
1
2

∫
Ôij(r, r′)Bi(r)Bj(r)drdr′, (B.1)

where the magnetization field M̂ and the diamagnetization field Oij are given by

M̂(r) = −e
∑
α

[
(q̂α −R)× ˙̂qα

]

×
∫ 1

0
λδ(r −R− λ(q̂α −R))dλ (B.2)

Oij =
(

e2

m

)
εiklεjml

∑

αβ

(q̂α −R)k(q̂β −R)m

×
∫

λδ(r −R− λ(q̂α −R))

× λ′δ(r′ −R− λ′(q̂β −R))dλdλ′. (B.3)

In (B.2), ˙̂q is the time derivative of q̂, used later as the electron velocity v. In (B.3),
m is electron mass and εijk is the Levi-Civita symbol. In the dipole radiation, the
electric field is given by (3.11) and the magnetic field is

B =
ωµ0k

2

4π
[n× µ]

(
i

(kr)2
+

1
(kr)

)
eikr, (B.4)

where n ≡ r/r. ω = ck is the angular velocity of the field, where k is the wavenumber.
µ0 is magnetic permeability of space. In the near field zone where (kr)−3 À (kr)−2 À

77
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(kr)−1, the leading contributions are (3.11a) for the electric field and the first term in
(B.4) for the magnetic field. It is, thus, sometimes claimed that the main component of
the near-field is (3.11a) [133]. Rigorously speaking, however, the electric and magnetic
coupling terms that appear in the multipolar Hamiltonian should be compared, in
addition to the simple comparison of these electric and magnetic fields. The absolute
values of the coupling terms are estimated as follows:

PiEi ∼ er · µ

4πε0r3
=

eµ

4πε0r2
(B.5)

MiBi ∼ erv · ωµ0µ

4πr2
=

eµvωµ0

4πr
(B.6)

OijBiBj ∼ e2

m
r2 ·

(ωµ0µ

4πr2

)2
=

e2µ2ω2µ2
0

16π2r2m
, (B.7)

where r represents the electron coordinate, and that is also used as the distance be-
tween the molecule and the radiating dipole. This is because these two length scales
are set to be in the same order. µ is the absolute value of the dipole moment of
the source. To compare the coupling terms, I will calculate α ≡ MiBi/PiEi and
β ≡ OijB

2/PiEi.
The right hand side of (B.5) is obtained as follows. According to the definition of

the polarization, it can be written as P ∼ er, where r is the size of a molecule. Since
I consider the distance between the molecule and the radiation source to be the same
order as the molecular size, (3.11a) can be approximate as E ∼ µ/4πε0r

3. In (B.6),
the velocity of electron v = q̇ in (B.2) is estimated as follows. In the present model,
the electron is forced to oscillate by the near field. However, the electrons are always
bounded by the molecule in this study, thus it travels no more than the molecular size
of about 1 nm. The electrons move at most from one side of the molecule to the other
side in a half of the laser cycle T = 2π/ω = λ/c, where λ is the wavelength of the
dipole radiation which is about 1000 nm for UV-vis light used in this study. Thus v

can be rewritten as v ∼ r/(T/2) ∼ rc/λ. Now, α becomes much simple by inserting
(B.5) and (B.6):

α ≡ MiBi

PiEi
∼ rvωε0µ0 ∼ r · rc

λ
· c

λ
· 1
c2

=
( r

λ

)2
(B.8)

where I used ω ∼ c/λ and ε0µ0 = 1/c2. In the present study, I have set the molecular
size to be r ∼ 1 nm, and wavelength λ ∼ 1000 nm. Thus we have α ∼ 10−6, that is,
MiBi is much smaller than PiEi by the order of 10−6. This is enough to discard the
MiBi terms in studying the near field interactions.

Next β becomes

β ≡ OijB
2

PiEi
∼ eµω2ε0µ

2
0

4πm
=

eµµ0π

mλ2
∼ e2rµ0

mλ2
(B.9)

where I use ω = 2πc/λ and ε0µ0 = 1/c2. The dipole moment of the source is set to
be in the same scale as the molecule, namely, µ ∼ er. We can estimate β by using the
present parameters in SI units, such as e ∼ 10−19 [C], r ∼ 10−9 [m], µ0 ∼ 10−7 [N/A2],
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m ∼ 10−30 [kg], and λ ∼ 10−6 [m]. Finally, β is found to be in the order of 10−37. This
is quite small compared to the other two terms in the multipolar Hamiltonian. From
the above estimations, it is adequate to discard the magnetic interactions to study the
electron dynamics interacting with the dipole radiation in such a short distances.
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