
Eurographics Symposium on Rendering 2012

Fredo Durand and Diego Gutierrez

(Guest Editors)

Volume 31 (2012), Number 4

Tessellation-Independent Smooth Shadow Boundaries

Oliver Mattausch1 Daniel Scherzer2 Michael Wimmer3 Takeo Igarashi4

1 University of Zurich 2 MPI 3 Vienna University of Technology 4University of Tokyo

Abstract

We propose an efficient and light-weight solution for rendering smooth shadow boundaries that do not reveal the
tessellation of the shadow-casting geometry. Our algorithm reconstructs the smooth contours of the underlying
mesh and then extrudes shadow volumes from the smooth silhouettes to render the shadows. For this purpose we
propose an improved silhouette reconstruction using the vertex normals of the underlying smooth mesh. Then our
method subdivides the silhouette loops until the contours are sufficiently smooth and project to smooth shadow
boundaries. This approach decouples the shadow smoothness from the tessellation of the geometry and can be
used to maintain equally high shadow quality for multiple LOD levels. It causes only a minimal change to the fill
rate, which is the well-known bottleneck of shadow volumes, and hence has only small overhead.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—

Keywords: real-time shadows, silhouettes, shadow volumes

1. Introduction

Shading discontinuities due to a coarse mesh, which can be

successfully avoided using vertex normals and Phong shad-

ing, are still revealed in the silhouettes of the mesh and the

projected shadow boundaries. Even worse, for shadows the

size of the shadow projection can vary almost arbitrarily in

screen-space, and results in distracting shadow discontinu-

ities during animation. Imagine for example a sunset sce-

nario or a case where the light source is close to the caster

(as can be seen in Figure 1). The benefits of a finely tuned

distance-based geometric level-of-detail (LOD) system can

be destroyed by an edgy shadow, which will likely pop dur-

ing LOD transitions.

While solutions have been proposed to improve the

smoothness of object silhouettes in screen space [BA08],

to our knowledge no solution has been proposed to address

the tessellation uncovering problem for shadow boundaries

(see Figure 1). The naive solution of finely subdividing the
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whole mesh for shadow casting would cause an unnecessary

overhead and defeat the purpose of using the coarse mesh

in the first place. Another idea, adaptively subdividing the

mesh only at the silhouettes as seen from a light position (us-

ing some subdivision scheme like [CC78,BA08,WTW∗08])

would cause visible artifacts in dynamic scenes, because the

finely tessellated area on the mesh caused by the shadow

silhouette would wander around if the light or the object

moves. Additionally, a practical solution should guarantee

C1 smoothness in the limit and should not depend on user

parameters for convincing results.

Figure 1: Discrete shadows reveal the coarse tessellation
of the underlying mesh due to discontinuities in the shadow
boundaries (left). This can be avoided with our smooth con-
tour reconstruction scheme (right). Also note the improved
self shadows on the ghost.
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In this paper, we propose a solution to this problem that

works directly on the shadow silhouettes without modifying

the mesh, thus avoiding changing tessellations in dynamic

scenes. Our approach creates a Hermite spline approxima-

tion of the shadow boundary contours of the underlying

smooth mesh (see Figure 3). We then employ a fast 1D sub-

division scheme that adaptively subdivides the contour until

a given approximation error in world space is reached. For

rendering shadows from the contours, we construct shadow

volumes in a way that artifacts due to the mismatch of scene

geometry and the smooth contours are avoided.

Note that from the two competing real-time shadow-

ing algorithms, shadow volumes [Cro77] and shadow

maps [Wil78], only shadow volumes are suited for our pur-

pose since they are constructed from the silhouettes of the

shadow caster and are therefore amenable to smooth sub-

division schemes. For shadow maps, the shadow boundary

is created when evaluating the shadow test on the receiver.

Here the geometric information of the caster is not available

and reconstruction is often not feasible, due to undersam-

pling [McC00,SCH03]. Using different LOD levels or more

finely tessellated geometry for shadow-map rendering can

only cause severe self-shadowing artifacts.

2. Related Work

The shadow-volume algorithm [Cro77], and in particular

the GPU-friendly stencil shadow-volume algorithm [Hei91,

EK02], is a well-known method for real-time shadow gen-

eration, and has been used in high-profile games like Doom

3. Shadow volumes are created by extending the silhouette

of an object to infinity with respect to the light source, and

then determining for each receiver point whether it is in-

side (in shadow) or outside this volume (not in shadow).

Shadow volumes have a certain look-and-feel which is well

suited for certain styles of rendering (e.g., cartoon or NPR

rendering) and have been an active area of research for

over 3 decades [SOA11]. They produce high-quality shad-

ows and avoid the well-known resampling artifacts of the

alternative real-time shadowing technique, shadow map-

ping [Wil78]. We believe that a revival of shadow volume

algorithms is possible due to recent hardware developments:

Memory access is becoming increasingly expensive com-

pared to geometric computations, and hence geometric and

analytic solutions to rendering problems have been revis-

ited [LAC∗11, GBAM11]. As the required sampling rate for

shadow maps is not easily predictable due to the arbitrar-

ily large projective error [LGQ∗08], huge shadow maps and

multiple passes [Eng06] are required to ensure that all parts

of a scene have sufficiently high shadow quality. Shadow

volumes, in comparison, guarantee shadows with equal qual-

ity for all parts of a scene. However, the shadow quality

is still influenced by the tessellation of the shadow caster,

since insufficient tessellation will become apparent at pro-

(a)

(b) (c)

Top view 
(from light source)

Figure 2: (a) Hertzmann and Zorin: The silhouette vertices
(green) as seen from the light source do not approximate the
contours of the underlying smooth mesh (blue) very well. (b)
To get a better approximation, we displace the positions of
the vertices by using the vertex normals. (c) With recursive
subdivision, we approximate the underlying mesh well.

jected shadow boundaries. Using our approach, we can lift

this restriction with a small computational overhead.

Our work is also closely related to silhouette refinement

methods for meshes [CC78, BA08, WTW∗08]) as discussed

before.

3. Smooth Silhouette Reconstruction

In the following, we explain our algorithm for creating

smooth silhouettes from a coarse mesh, which are subse-

quently used to render smooth shadow boundaries (note that

we always talk about the silhouette of an object as seen from

the current light-source position). Our algorithm is inspired

by the simplicity and efficiency of the Phong Tessellation

algorithm [BA08], which creates a smooth mesh using a

subdivision scheme related to the Phong shading technique.

However, that concept can lead to discontinuities which can

only be partly alleviated with a user-defined blending fac-

tor and lead to visible (self-)shadowing artifacts. Instead, as

proposed for meshes by Wang et al. [WTW∗08], we use Her-

mite splines to reconstruct the underlying smooth mesh con-

tours with respect to the vertex normals. However, in con-

trast to Wang et al.’s algorithm, we work on the 1D silhouette

directly and not on the mesh itself, avoiding the remeshing

step. Our algorithm creates smooth silhouette loops using

the following steps (see Figure 2):

a) Find the vertex positions on the accurate silhouette

path [HZ00].

b) Displace the silhouette vertices according to a Hermite

Spline approximation of the underlying smooth mesh con-

tours.

c) Adaptively subdivide each resulting silhouette loop until

it is sufficiently smooth.

3.1. Silhouette Vertex Interpolation

The usual approach for real-time shadows is to create

the silhouettes from the edges of the discrete triangle
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mesh [EK02], which we call discrete silhouettes in the fol-

lowing. However, Hertzmann and Zorin introduced a better

way to reconstruct the silhouettes of the underlying smooth

mesh as defined by the vertex normals [HZ00], which we

call accurate silhouettes in the following. A silhouette ver-

tex of the underlying smooth mesh is lying on an edge where

one of the smooth surface normals of the edge vertices (vi,
vj) is front-facing with respect to the light direction, and

the other normal back-facing. The silhouette vertex posi-

tion is obtained by interpolating between vi and vj so that

n · l = 0. We get the interpolation factor u by solving for

(1− u)ni · (l− vi)+ unj · (l− vj) = 0. l is the light position

and ni the vertex normal of vi.

The method of Hertzmann and Zorin already has some

benefit for shadowing, e.g., that it partly eliminates the self-

shadowing artifacts caused by the discrete silhouettes, and

a similar silhouette-generation algorithm was used for shad-

owing subdivision surfaces [TDC06]. We use their method

of computing the accurate silhouette position (as given by u)

as basis for our contour reconstruction method. Note that we

only adapted the accurate vertex interpolation from the pa-

per of Hertzmann and Zorin, while we did not use their 4D

hypercube method for silhouette detection. Instead, we loop

over all edges to find an edge which contains a silhouette

vertex, and then follow each contour line until we obtain a

connected loop of silhouette edges. These connected loops

serve then as the input to our subdivision algorithm.

Front view (silhouette in green)

Side view

use Hermite splines to

displace vertex position

smooth 

mesh

accurate silhouette vertex

(i.e., where n.l=0)

Figure 3: The vertex positions of the accurate silhouette
path on the smooth mesh can be reconstructed using the
vertex normals [HZ00]. Using Hermite splines, we displace
each silhouette vertex to lie on the smooth surface.

3.2. Silhouette Vertex Displacement

However, accurate silhouettes do not avoid the tessellation

artifacts that appear at the shadow boundaries when pro-

jecting the silhouette onto the receiver. The reconstructed

smooth mesh contours can be significantly improved as

shown in Figure 3. Once we found the accurate silhouette

position (i.e., the interpolation factor u between the edge

vertices), we displace each silhouette vertex from its posi-

tion on the discrete mesh by using cubic Hermite splines. A

cubic Hermite spline of u in [0..1] is defined in matrix form

Figure 4: Silhouette reconstruction on a coarsely tessellated
sphere. (left) Hertzmann and Zorin [HZ00]. (middle) Using
the interpolation formula from Phong Tessellation [BA08]
instead of Hermite splines to generate the 1D shadow sil-
houette leads to discontinuities. (right) Our reconstruction
scheme using Hermite splines.

as:
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p0 and p1 are the start and the end point of the segment,

respectively, and n0 and n1 are the associated interpolated

normals. t0 and t1 denote the tangent vectors at the start

and at the end point. To compute a tangent t0 from normal

n0, we first project the silhouette edge e = p1 −p0 onto n0,

and then subtract the result from e to get the tangential part

t = e − (n0 · e)n. To use t in equation 1, it has to be nor-

malized and scaled with respect to the length of e (Wang

et al. suggest to assume a curved silhouette segment for the

length [WTW∗08]).

3.3. Adaptive Silhouette Subdivision

In the final step (c) of the algorithm, we successively im-

prove the contour reconstruction by recursively subdividing

the silhouette loop. Starting with a silhouette loop from step

(b), a new intermediate silhouette vertex p is obtained by

evaluating Equation 1 at position u = 0.5. We adaptively

subdivide with respect to an approximation error ε, which

is measured by the distance to the smooth mesh given by

the length of the displacement of p. Hence the termination

criterion is given by:

|p1 +p0
2

−p|< ε. (2)

The pseudo-code for creating a smooth silhouette segment

using our adaptive subdivision scheme is shown in Listing 1.

This function has to be called for each silhouette edge in a

loop. With this method, all contours in the scene have an ap-

proximation error less than ε in world space. Note that giv-

ing an error measurement of the shadow boundary in screen
space (which would be the ideal) is difficult since the size

of the shadow projection is not known. However, choosing
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1 ComputeVertex(loop,p0,p1,t0,t1) {
2 // new silhouette vertex
3 p=HermiteInterpolate(p0,p1,t0,t1,u=0.5);
4 if (|p,(p0,p1)/2| > eps) {
5 t=(t0+t1)/2; // interpolate tangent
6 // recursion
7 ComputeVertex(loop,p0,p,t0,t);
8 ComputeVertex(loop,p,p1,t,t1);
9 }

10 else loop.append(p0); // teminate
11 }

Listing 1: Adaptive silhouette loop subdivision taking ver-
tices p0, p1, and tangents t0, t1 as input

a small enough value for ε will usually make all shadow

boundaries visually smooth. A visual example of the smooth

contours resulting from our reconstruction scheme can be

seen in Figure 4.

Our subdivision algorithm can handle crease edges, where

a different surface normal is used on either side, as can be

seen in Figure 5, left. When such an edge is encountered dur-

ing step (a) of our algorithm (the edge interpolation), we add

two silhouette vertices with either surface normal to the sil-

houette segment (which effectively results in a zero-length

silhouette edge). Then the Hermite interpolation automati-

cally adapts for the non-smooth normal as a discontinuity

is introduced if the vertices at the segment end points differ

from each other.

4. Smooth Shadow Volume Construction

In this section we describe how to use the smooth silhou-

ettes for shadow casting. We observe that naively extruding

shadow volumes from the newly computed smooth bound-

aries instead of the original silhouette creates artifacts. For

example, gaps will appear between the shadow volume faces

extruded from the smooth contours and the discrete mesh.

This causes wrongly classified shadows and subsequently

leads to inverted shadows near the silhouette, as shown in

Figure 5: (Left) Our subdivision algorithm correctly ac-
counts for crease edges like those between the top and the
side of the cylinder. (Middle) Shadows may appear inverted
if the shadow volume is not properly closed after the subdi-
vision process (smooth contour shown in light gray). (Right)
Our smooth shadow volumes cleanly close the gaps.
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Figure 6: Triangulation closes the gaps between the smooth
contour and the original silhouettes. Note that the offsets
from the accurate silhouettes in blue stem from the Hermite
interpolation.

Figure 5, left. We construct the shadow volumes so that these

gaps are cleanly closed (Figure 5, right).

Our approach is depicted in Figure 6. We use the standard

shadow-volume algorithm to extrude the smooth contour

edges from pi to pi+1 to infinity (Figure 6). Further, we close

the gaps that appear between the smooth shadow-volume

faces and the discrete mesh contours. For each smooth sil-

houette vertex p, we keep track of the discrete mesh posi-

tion p′ on the original accurate silhouette (i.e., the silhouette

from algorithm step (a)). This means that whenever a sil-

houette edge is subdivided to obtain a new vertex p from

pi and pi+1 using Equation 1, a vertex p′ is calculated as

p′ = (1 − u)p′i + up′i+1 and stored along with p. Finally

we triangulate the area between consecutive vertex pairs pi,
pi+1, and p′i, p′i+1 (Figure 6) to close the gaps.

5. Implementation and Results

Currently, still both the silhouette extraction methods as well

as the extrusion of the shadow volumes are implemented in

software, leaving a GPU implementation to future work. To

extract the discrete silhouettes, we simply loop over all edges

and compare the adjacent face normals. In order to avoid

self shadowing artifacts (light leaks) due to the difference

of the accurate silhouettes of Hertzmann and Zorin to the

actual silhouettes of the discrete mesh, we use a small offset

of 0.15 along the negative normal direction of the accurate

silhouettes.

In order to efficiently find the silhouettes, we require to

know the mesh connectivity. Hence for each edge, we store

the indices of the 2 triangles that are adjacent to this edge,

and for each vertex a list of adjacent edges (used to trace the

silhouette loops for the accurate silhouettes). For the Dragon

model (100K triangles), these additional data structures re-

quire about 1 MB. Please note that similar structures are re-

quired by most efficient silhouette detection algorithms.

c© 2012 The Author(s)
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Scene tris discrete accurate smooth

Dragon 100k 11.1 (8.3) 10.0 (8.4) 13.1 (8.8)

Paolo 30k 5.0 (4.9) 5.5( 4.9) 5.4 (4.9)

Paolo l. 6k 4.8 (4.5) 4.4 (4.3) 4.6 (4.4)

Ghost 1k 4.3 (4.1) 4.1 (4.1) 4.1 (4.1)

Table 1: This table shows typical render timings (in millisec-
onds) using different silhouette algorithms for the shadow
volumes, i.e., the commonly used discrete mesh silhouettes,
accurate silhouettes, and our smooth silhouette reconstruc-
tion scheme with subdivision until the maximal error is 0.01.
In brackets: Timings without regenerating the silhouettes.

Table 1 compares the render times of discrete mesh sil-

houettes (as they are most commonly used in real-time ren-

dering) to our smooth silhouette reconstruction algorithm us-

ing subdivision until a threshold ε = .01 is reached (result-

ing in visually completely smooth shadow boundaries). The

results were generated on a laptop with a GeForce Quadro

2000M GPU and an Intel Core i7-2820QM (using a single

core). The shadows are rendered with stencil shadow vol-

umes [EK02], using 3 16bit render targets with a resolu-

tion of 1024 × 768 in a deferred rendering pipeline. Note

that stencil shadow volumes require watertight models, oth-

erwise there may be light leaks. We exploit the properties

of the described accurate silhouette reconstruction method

(i.e., that it creates long connected loops, which discrete sil-

houettes usually don’t do) for accelerating the rendering pro-

cess of the shadow volumes in terms of the type of primitive

we can use for rendering. In particular, this allows us to use

a single OpenGL primitive (e.g., GL_TRIANGLE_STRIP)

per loop.

Figure 7: Smoothing the mesh and shadow contours of a
coarse sphere (a) by applying Phong tessellation (blend fac-
tor 0.5) for both light and camera view silhouettes will reveal
the introduced discontinuities as self shadows (B). Restrict-
ing Phong tessellation to the camera view mesh contours
only and using our smooth silhouette reconstruction scheme
for the light view silhouettes avoids any discontinuities (C).

All methods are approximately equal in performance for

a lower number of triangles. The additional computational

complexity due to the recursive Hermite Spline computa-

tion starts having a noticeable impact on performance for the

more complex Stanford Dragon model. We believe that this

Figure 8: Using the discrete mesh silhouettes (left) causes
self-shadowing artifacts on the Paolo model. The self-
shadows can be improved using accurate silhouettes (mid-
dle), and further improved with smooth silhouettes (right).

overhead of our method can be minimized using an efficient

GPU implementation of the recursive subdivision scheme.

Most of the performance variations come from the different

silhouette reconstruction schemes and not from the render-

ing, as the timings are quite similar if the silhouettes are not

recomputed (shown in brackets).

Figure 4 compares our method to a hypothetical algorithm

where the interpolation formula used in Phong tessellation is

used instead of Hermite splines to create the smooth contour

in our algorithm. It can be seen that this approach would

reveal discontinuities.

Figure 7 compares our method to a Phong Tessellation

variant where not only the screen-space silhouette of the ge-

ometry is refined, but also the silhouette seen from the light.

As can be seen, the introduced discontinuities due to the lo-

cal operator are strongly visible in the shadows. Using our

algorithm in combination with Phong Tessellation for the

object contours gives satisfactory results while also avoid-

ing morphing artifacts.

Figure: 8 shows another benefit of our reconstruction

scheme. Typical self-shadow artifacts that appear for the

standard approach of using discrete mesh silhouettes for

shadow volumes (left) are reduced with the method of Hertz-

mann and Zorin. (middle), and practically removed with

smooth silhouette reconstruction (right).

Figure 9: Closeup of a shadow of an arm of the Paolo model
(6K triangles). While the discrete shadow is quite well tes-
sellated (left), our algorithm improves the smoothness as can
be seen in the closeup (middle) and the full image (right).

Figure 9 shows the benefit of our reconstruction scheme
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Figure 10: Closeup of the Stanford dragon model. Due to
the projection, this finely tessellated model (100K triangles)
can still reveal discontinuities (top), which can be removed
using our method (bottom and right).

on a model which would typically be used in a game,

with several thousand vertices. In Figure 10, discontinuities

are still visible in the discrete shadows of the rather com-

plex Stanford Dragon model (100K triangles), whereas our

method produces a smooth shadow boundary. This example

shows that the degree of model tessellation required to guar-

antee a smooth shadow can be almost arbitrarily high, and

hence underlines the usefulness of our algorithm in practical

scenes.

The particular shadowing method is orthogonal to our al-

gorithm (as long as it operates on the silhouettes). Hence

it is straightforward to use our tessellated silhouettes as

input to a soft-shadow volume algorithm like penumbra

wedges [AAM03] (refer to Figure 11).

6. Conclusions

To the best of our knowledge, we have presented the first

method for rendering smooth shadow boundaries. The de-

gree of smoothness can be chosen globally independent of

the tessellation of the geometry. The simplicity and effi-

ciency of our approach makes it well suited for practical

use. Our technique can be well combined with algorithms

that refine camera-space silhouettes, so that both object and

shadow boundaries become smooth. Compared to naive ap-

proaches based on smooth screen-space silhouettes, our ap-

proach avoids shadow artifacts and visible mesh retessella-

tion artifacts.

Figure 11: Our algorithm applied to soft shadows generated
with penumbra wedges [AAM03]. Left: dragon scene; right:

elephant scene (423K triangles) with overlapping shadows
and self shadows (e.g., on the trunk).
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