

Picode:
Inline Photos Representing Posture Data in Source Code

Jun Kato Daisuke Sakamoto Takeo Igarashi
The University of Tokyo, Tokyo, Japan – {jun.kato | d.sakamoto | takeo}@acm.org

ABSTRACT
Current programming environments use textual or symbolic
representations. While these representations are appropriate
for describing logical processes, they are not appropriate for
representing raw values such as human and robot posture
data, which are necessary for handling gesture input and
controlling robots. To address this issue, we propose Picode,
a text-based development environment augmented with
inline visual representations: photos of human and robots.
With Picode, the user first takes a photo to bind it to
posture data. She then drag-and-drops the photo into the
code editor, where it is displayed as an inline image. A
preliminary user study revealed positive effects of taking
photos on the programming experience.

Author Keywords
Development Environment; Inline Photo; Posture Data.

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces – GUI; D.2.6. Software Engineering:
Programming Environments – Integrated environments.

INTRODUCTION
A programming language is an interface for the
programmer to input procedures into a computer. As with
other user interfaces, there have been many attempts to
improve its usability. Such attempts include visual
programming languages to visualize the control flow of the
program, structured editors to prevent syntax errors, and
enhancement to code completion that visualizes possible
inputs [8]. However, programming languages usually
consist of textual or symbolic representations. While these
representations are appropriate for precisely describing
logical processes, they are not appropriate for representing
the posture of a human or a robot. In such a case, the
programmer has to list raw numeric values or to maintain a
reference to the datasets stored in a file or a database.

To address this issue, Ko and Myers presented a framework
called “Barista” for implementing code editors which are
capable of showing text and visual representations [5]. This
framework enhances comments for an image processing

method by including an image that shows a concrete
example of what the method does. Yeh et al. presented a
development environment named “Sikuli,” with which the
programmer can take a screenshot of a GUI element and
paste the image into a text editor [12]. In Sikuli, the image
serves as an argument of the API functions. Our goal was to
apply a similar idea to facilitate the programming of
applications that handle human and robot postures.

We propose a development environment named Picode that
uses photographs of human and robots to represent their
posture data in a text editor (Figure 1). It helps the
development process of applications for handling gesture
input and/or controlling robots. The programmer is first
asked to take a photo of a human or a robot to bind it to the
posture data. She then drag-and-drops the photo into the
code editor, where it is shown as an inline image. Our
environment provides a built-in API which methods take
photos as arguments. It allows the user to easily understand
when the photo was taken and what the code is meant to do.

RELATED WORK
After the Microsoft Kinect and its Software Development
Kit (SDK) hit the market, many interactive applications
have been developed that handle human posture. At the
same time, some toolkits and libraries have been proposed
that support the development of such applications. They can
typically recognize preset poses and gestures. When the
programmer wants to recognize her own poses and gestures,
however, she has to record the examples outside the
development environment. On the other hand, our
development environment is designed to support the entire
prototyping process of application development. It fully
integrates the recording phase, and the programmer can

Figure 1. Overview of Picode

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright © 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

follow the workflow without distraction. Attempts to
support a general workflow of domain-specific applications
have already been made for many domains including
physical computing [3], machine learning [9] and
interactive camera-based programs [4].

There is a long history of developing robot applications that
deal with robot posture. Typical approaches include
Programming by Example (PbE) [1], timeline-based editors
to help designers defining transitions from one posture to
another [7], and general development environments for
textual or visual programming languages [6]. Most of the
PbE systems focus on reproducing observed human actions,
and the editors focus on creating and editing actions. They
both tend to have limited support for handling user input.
Conversely, general development environments are more
flexible in terms of input handling, but do not display
posture data in an informative way. Our objective is to
design a hybrid environment, by taking advantages of these
approaches.

PROGRAMMING WORKFLOW
Our prototype implementation consists of three main
components (Figure 1): a code editor, the pose library, and
a preview window. First, the user takes a photo of a human
or a robot in the preview window. At the same time, posture
data are captured and the dataset is stored in the pose
library. Next, she drag-and-drops the photo from the pose
library into the code editor, where the photo is displayed
inline, as shown in Figure 2. Then, she can run the
application and distribute the source code bundled with the
referenced datasets so that others can run the same
application within our development environment.

Taking Photos
To start taking photos, the user clicks the “+” button in the
pose library interface and opens the preview window in
which the photo preview and posture status are displayed in
real time. She can choose the input source of the posture
data from Kinect (human) or Mindstorms NXT [6] (robots)

devices. While only one Kinect device can be connected at
a time and is automatically detected, one or more
Mindstorms NXT devices can be used by entering their
Bluetooth addresses. Photos are usually taken from the
RGB stream of a Kinect device, but a web camera can be
used as an alternative source.

While the preview window is displayed, clicking the
“Capture” button triggers the system to take a photo and
capture the corresponding posture data. Each captured
dataset is automatically named, e.g., “New pose (1),” and
stored in the pose library. It can be manually renamed but
must be unique. Saying the word “capture” works when the
user wants to capture a human posture and cannot click the
button because standing in front of the Kinect device. When
capturing a robot posture, a torque is applied to each servo
motor on a joint to fix its angle. When the user tries to
change its angle, however, the torque is set off so that she
can move the joint freely. Therefore, the user can set the
robot posture by changing joint angles individually.
Additionally, she can load an existing posture by right-
clicking its photo in the library. This allows the user to
easily create a new posture from the existing ones. These
interactions for capturing a robot’s posture are inspired by
the actuated physical puppet [13].

Coding with Photos
The programmer can write code in a programming language
that is an extension of Processing [10], with a built-in
photo-based API whose methods take photos as arguments.
She can drag-and-drop photos from the pose library to the
code editor, directly into argument bodies of the methods.
Usage examples of currently supported API are shown in
Table 1. A human and robot are represented by Human and
Robot classes, whose instance handles communication with
the hardware devices. Note that the Human instance is
capable of sensing but not controlling posture while the
Robot instance is capable of both.

Figure 2. Example code that makes robot swing its hand when

user raises her hand

Compare Pose with specified error allowance [0-1]

Set current Pose

Play series of pose changes by Action definition

Table 1. Usage examples of photo-based API

Running Program
The programmer can compile and run the program by
clicking the “Run” button in the main window. After
iterative cycles of development, a ZIP archive consisting of
source code, referenced photos, and posture data can be
made so that others can run the same application.

IMPLEMENTATION
Picode is built on top of Processing core components
including its compiler and libraries. The main difference is
in the user interface. Therefore, the programmer can benefit
from the simple language specification and extensibility
provided by many Java-based libraries. Beside the user
interface, we modified the compilation process to link every
program to our library. We also modified the execution
process so that the development environment disconnects
from the Kinect device and robots when the program starts,
and reconnects to them when it shuts down.

Human postures and the corresponding images are retrieved
using a standalone GUI-less program implemented with
Kinect for Windows SDK, which is automatically executed
when needed. It communicates with the development
environment and all programs that run on the environment
through a TCP/IP connection. Robot postures are retrieved
by reading values of a motor encoder or set by transmitting
Bluetooth commands that are officially supported by the
Mindstorms NXT firmware.

Code Editor Supporting Inline Photos
The code editor is implemented in the Model-View
architecture, where the model is the source code in string
format and the view is its GUI representation. Each photo
has its string representation, which is a call to the specific
photo-based API Pose.load(key) where key is a unique
name of the corresponding posture data. When the photo is
dropped to the code editor, the string is inserted into the
source code. Every change in the source code triggers the
language parser in order to build an abstract syntax tree.
Then, the view is updated for syntax highlighting and every
call to the photo-based API is replaced with photos.

API with Photo Arguments
Each posture dataset represented by a photo is instantiated
as a Pose class instance. A Pose class is currently extended
using KinectHumanPose and MindstormsNXTPose classes
to support platform-dependent implementation and can be
further extended to support more types of robots, such as
humanoids, or more ways of detecting poses such as with a
motion capture system. The posture data and the photo are
saved as a text file and a JPEG file with its unique name
(e.g. Hand up.txt and Hand up.jpg) in the same directory.
The text file starts with its corresponding Pose class name
followed by raw numerical values.

The equality test between Pose instances always returns
false if their types are different. When their types are the
same, the system calculates the Euclid distance between the

vectors consisting of the absolute difference between joint
angles (e.g. absolute difference in elbow angle, knee angle,
…) and normalizes it between 0 and 1. The equality test
returns true if the distance is less than the specified
threshold, otherwise it returns false.

PRELIMINARY USER STUDY AND DISCUSSION
We asked two test users to try our development
environment together for about three hours. The goal was to
verify two hypotheses on the benefit of embedding photos
in the source code. The first hypothesis was that photos
contain rich contextual information other than mere posture
information, which helps the programmer recall the
situation. The other was that the inline photos can involve a
non-programmer in the software development process since
they can be basically taken and understood by anybody.
While one test user knew Processing and was familiar with
basic programming concepts, the other did not know about
programming except for basic HTML coding. We had them
work together since we expected our environment to
establish a new relationship between programmers and non-
programmers (users). First, we thoroughly explained the
workflow of our programming environment with the
example code for an hour. Then, we asked them to make
their own program for the remaining two hours.

After two hours of free use, the participants could write a
program that uses gesture input to control robot posture.
The robot basically tried to mimic the user input, e.g., when
the user waved her hand, the robot waved its hand back. By
putting the robot in front of the keyboard, the participants
also had it operate the PC with its mechanical hand, which
reminded us of mechanical hijacking [2].

Contextual Information in Photos
When the participants were asked to read existing code,
they seemed to benefit from contextual information in
photos, which was missing in the numerical posture data.
The programmer commented that he might also benefit
from the information when he reads the code he had written
a long time ago since the photo can remind him of the
situation. According to this observation, there were two
types of contextual information. The first type tells the user
about what the subject (human or robot) in the photos was
doing. For example, photos would make it easy to
distinguish when a user is drinking a glass of juice from
when she is raising her hand to greet, while raw posture
data will be the same (or very similar). A robot hand
grasping a small ball and a large cube falls within the same
issue. Additionally, each photo of the robot helps the users
remember the proper hardware configuration. Prototyping
robot applications often requires many iterations, and the
photos taken during the development process might work as
revision history for the hardware setup. The second type
tells the user about the surrounding context for which the
program was designed. For instance, the optimal parameters

for a mobile robot that runs on the floor differ according to
the material, such as carpets or laminated flooring.

Source Code as Communication Medium
The meaning of the inline photos could be understood by
both the programmer and the non-programmer, and the
photos worked as a communication medium between them.
The non-programmer said that she felt involved in the
application development process and was never bored. She
stated two reasons for this feeling. First, she could take part
in the development process by taking photos. Simple
algorithms that handle posture data often require parameter
tuning depending on the environment in which the code
runs. In our environment, this can be done by replacing the
existing photo with a new one. Through the replacement,
she started to take ownership of the source code. With the
inline photos, the source code became not only for the
programmer but also for the non-programmer. Second, she
could guess what the code was doing by recognizing the
inline photos. For non-programmers, text code sometimes
looks like a series of non-sense words. In Picode, however,
they can understand the meaning of the code in relation to
its nearby photos. When she asked a question about the
code to the programmer, the programmer often started the
explanation by pointing to the related photo. She also
mentioned that the photos were easy to see in the plain text
code, which made it easy to locate particular lines of the
code. The idea of making meaning of code transparent
(more understandable) was also discussed in Victor’s recent
essay about learnable programming [11]. Inline photos can
be a good starting point for learning programming.

FUTURE WORK AND CONCLUSION
We foresee three enhancements that can make our
development environment more effective: support for
machine learning, comparison between partial posture data,
and recording videos instead of taking photos. First, the
current API only supports comparison between one posture
dataset with another, which makes it difficult to recognize
more general postures. For example, when the programmer
wants to recognize the human posture of raising the right
hand regardless of the height of the hand, she must write
several “if” statements. Support for machine learning might
solve this issue, treating multiple posture datasets as correct
examples and others as false examples. Second, the current
API cannot compare partial data, which makes it difficult to
recognize the posture of the right hand and ignore the other
body parts. With Kinect, Picode might allow the
programmer to mask certain areas of the body on the photo
to ignore the corresponding joints. Third, recording videos
instead of taking photos might allow interesting
programming experiences, by combining Picode code-
based approach with the flow paradigm of DejaVu [4].
Videos can be used for learning human gestures or for
replaying robot actions. The programmer might be able to
change the replaying speed to make robot actions faster or
slower.

We introduced Picode, a development environment that
integrates photos into a code editor. It supports the
programming workflow with the posture data: recording
examples by taking photos, coding, and running the
program. Photos were found to be interesting media that
enhance the programming experience. Picode is open-
source and available at http://junkato.jp/picode/.

ACKNOWLEDGEMENTS This work was supported in part
by Microsoft Research 7th collaborative research program
and JSPS KAKENHI Grant Number 23-9292, 24700112.

REFERENCES
1. Billard, A., Calinon, S., Dillmann, R. and Schaal, S.

Robot programming by demonstration. In Handbook of
Robotics, Springer (2008), 1371-1394.

2. Davidoff, S., Villar, N., Taylor, A.S. and Izadi, S.
Mechanical hijacking: how robots can accelerate
UbiComp deployments. In Proc. UbiComp 2011, 267-
270.

3. Hartmann, B., Klemmer, S.R., Bernstein, M., Abdulla,
L., Burr, B., Mosher., A.R. and Gee, J. Reflective
physical prototyping through integrated design, test, and
analysis. In Proc. UIST 2006, 299-308.

4. Kato, J., McDirmid, S. and Cao, X. DejaVu: Integrated
support for developing interactive camera-based
programs. In Proc. UIST 2012, 189-196.

5. Ko, A.J. and Myers, B.A. Barista: An implementation
framework for enabling new tools, interaction
techniques and views in code editors. In Proc. CHI
2006, 387-396.

6. LEGO Mindstorms NXT. http://mindstorms.lego.com/
7. Nakaoka, S., Kajita, S. and Yokoi, K. Intuitive and

flexible user interface for creating whole body motions
of biped humanoid robots. In Proc. IROS 2010, 1675-
1682.

8. Omar, C., Yoon, Y., LaToza, T.D. and Myers, B.A.
Active code completion. In Proc. ICSE 2012, 859-869.

9. Patel, K., Bancroft, N., Drucker, S.M., Fogarty, J., Ko,
A.J. and Landay, J. Gestalt: integrated support for
implementation and analysis in machine learning. In
Proc. UIST 2010, 37-46.

10.Processing. http://processing.org/
11.Victor, B. Learnable Programming.

http://worrydream.com/LearnableProgramming/
12.Yeh, T., Chang, T.H. and Miller, R.C. Sikuli: using GUI

screenshots for search and automation. In Proc. UIST
2009, 183-192.

13.Yoshizaki, W., Sugiura, Y., Chiou, A.C., Hashimoto, S.,
Inami, M., Igarashi, T., Akazawa, Y., Kawachi, K.,
Kagami, S. and Mochimaru, M. An actuated physical
puppet as an input device for controlling a digital
manikin. In Proc. CHI 2011, 637-646.

