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Abstract—Character pose design is one of the most fundamental processes in computer graphics authoring. Although there are many

research efforts in this field, most existing design tools consider only character body structure, rather than its interaction with the

environment. This paper presents an intuitive sketching interface that allows the user to interactively place a 3D human character in a

sitting position on a chair. Within our framework, the user sketches the target pose as a 2D stick figure and attaches the selected joints

to the environment (e.g., the feet on the ground) with a pin tool. As reconstructing the 3D pose from a 2D stick figure is an ill-posed

problem due to many possible solutions, the key idea in our paper is to reduce solution space by considering the interaction between

the character and environment and adding physics constraints, such as balance and collision. Further, we formulated this

reconstruction into a nonlinear optimization problem and solved it via the genetic algorithm (GA) and the quasi-Newton solver. With the

GPU implementation, our system is able to generate the physically correct and visually pleasing pose at an interactive speed. The

promising experimental results and user study demonstrates the efficacy of our method.

Index Terms—Sketching interface, sitting pose design, virtual environment, genetic algorithm, quasi-Newton solver, GPU

Ç

1 INTRODUCTION

DESIGNING a character pose is one of the most basic
processes in computer graphics authoring. Although

some automatic methods are available today, many artists
still prefer to manually design the character pose by using
direct control of joint angles and inverse kinematics (IK).
With the existing pose design systems, users are often
required to interactively position the extreme joints of a
character and then the interior joints are automatically
updated via inverse kinematics. Such an interface is
powerful in that users can precisely specify the location
of joints. However, manually positioning joints could be
very tedious because of the difficulty in rotating the camera
for proper viewing during the positioning; this situation
can be even more difficult when the characters are in a
complicated environment (e.g., those with occluded joint(s)
that cannot be adequately revealed from many different
viewing directions).

To overcome the limitations in the existing pose design
systems, this paper presents an intuitive sketching interface
that allows the users to quickly and easily set a character’s
sitting pose while considering the interaction with the
environment. Our primary target application is furniture
design, in which the designers usually need to examine
ergonomic and structural concerns [1]. For example, when
designing a chair, the height must be appropriate such that
one’s feet are on the ground. In addition, the chair must
remain stable even if the person sits in an unusual position.

Compared to existing systems, our system is superior in
that it allows both professional users and beginners to easily
and quickly design various sitting poses in a complex
environment. Within our system, the user first draws a stick
figure on the screen space to specify the desired sitting
pose. This stick figure consists of circular dots, representing
joints, connected by lines. The user can further specify
whether a joint is attached to the environment via the pin
tool (e.g., the feet of a sitting character are usually pinned to
the floor). Our system then reconstructs a 3D pose from the
input sketches and environmental constraints. This 3D
reconstruction is fully automatic at an interactive speed,
which allows the users to freely update the stick figure and
easily improve the results. Fig. 1 shows several sitting poses
that were generated by our system.

The key technique of our system is an approach to
reconstruct a collision-free 3D pose from a 2D input stick
figure. Note that the 2D-to-3D reconstruction problem is ill
posed because of many possible solutions. In this paper, we
show that by exploiting interactions between the character
and the chair, one can significantly reduce the solution
space, thus, eliminate undesired poses. Specifically, we
formulated the 2D-to-3D reconstruction as a nonlinear
optimization problem and proposed a hybrid solver that
consists of two components: a genetic algorithm-based
solver (G-A solver) is used to compute a collision-free pose
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and a quasi-Newton procedure (Q-N solver) that is applied

to further refine the result. With the GPU implementation,

our system can generate the physically correct and visually

pleasing pose at an interactive speed.
The preliminary version has appeared in [2]. In this

extended paper, we have incorporated several major
changes that greatly improve the original system:

. We greatly improved the accuracy and efficiency of
our pose reconstruction solver with two new
techniques. First, we parallelize the GA solver onto
GPU with CUDA. Note that quite a small population
size was used in our previous system [2] to achieve
interactive speed. Additionally, we observed that
such a strategy affected the sampling ability of the
solver and thus reduced its accuracy. By paralleliz-
ing the GA solver onto the GPU, we now can use a
much larger population size while maintaining the
interactive speed. Second, we adopted a new
strategy to handle the collision detection issue. The
previous system attempted to avoid the collision
case using a trial-and-error method during the
evolution process. In our new system, we gradually
replaced those collision cases with collision-free
cases in the main population during each iteration.
As a result, we gain a speedup of 5 with the same
population size.

. We observed that users have very different painting
styles that may lead to large distortions in the
sketched 2D stick figures, which, in turn, would
significantly affect the reconstruction quality of our
previous system. In our new system, we reduced
such artifacts by normalizing the stick figure before
pose reconstruction so the projected bone length is
now in a reasonable range. As a result, our new
system allows a wider range of users, including both
beginners and experienced designers, to freely and
efficiently design the desired poses in a complicated
virtual environment. We also improved the user
interface by adding some new features. For example,
we provided an editing tool that allows the user to
further edit the stick figure after drawing. We
further improved the pin tool to allow user to
specify the exact attach target when there are
multiple possible attach positions. As seen in the
second example of Fig. 1, the feet can be attached to
either the table or the ground. The quantitative
results of the user study and positive feedback from
participants demonstrate the efficacy of our system
in sitting pose design.

The remaining of the paper is organized as follows:
Section 2 reviews the related works on inverse kinematics,
sketching interfaces and 3D reconstruction. Section 3
presents the overview of the proposed sketching interface
while Section 4 presents the technical details of our
algorithm. Section 5 shows our experimental results,
followed by the user study in Section 6. Finally, Section 7
discusses the limitations of our work and Section 8 draws
the conclusion.

2 RELATED WORK

Inverse kinematic [3], is a widely used technique for
character pose design. In spite of its popularity, IK is
known to be almost always underdetermined. Thus, lots of
previous efforts [4], [5] have been made to restrict the
solution space with various constraints that lead to feasible
solutions. As discussed in Section 1, the inverse kinematics-
based pose design systems often require the users to
interactively position the extreme joints of a character.
These positioning procedures may be awkward if the
character is in a complicated environment, since the
occluded joint(s) cannot be adequately revealed from many
different viewing directions.

Traditionally, animators often began work by quickly
sketching 2D stick figures in key poses to capture the
character’s overall motion. Inspired by this, several sketch-
ing interfaces have been developed to facilitate the user’s
input. For example, Davis et al. [6] reconstructed a 3D pose
from an artist-drawn 2D stick figure and provided a
complementary alternate for 3D pose design. Wei and Chai
[7] formulated the interactive character posing problem via
a maximum posteriori framework and also discussed direct
manipulation interfaces and sketching interfaces. Jain et al.
[8] proposed a method to generate 3D animation of human
motion from traditional hand-drawn frames that leverage
motion capture data as a source of domain knowledge.
Hardware input device has also been proposed to intui-
tively control character pose [9]. Of note, we adopted a
similar sketching interface as [6]. However, our method is
different from previous work in two aspects: 1) we focused
more on the interaction between the character and the
environment and 2) we formulated the 3D pose reconstruc-
tion as an optimization problem with both sketching and
physical constraints.

Our work is also closely related to the reconstruction of
3D poses from monocular images. Most existing works have
focused on using various domain constraints to solve the
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Fig. 1. Various sitting poses designed by our system. The user sketches the 2D stick figures on the screen space to specify the desired poses in a
virtual environment (see the inset of each subfigure), and our system automatically generates the physically correct and visually pleasing 3D poses
at interactive speed.



underconstrained depth ambiguity problem. These works
can be roughly classified into either model-based technique
[10], [11], [12] or probabilistic learning-based techniques
[13]. However, our work is different than the previous
methods in that 1) our method takes advantage of physical
constraints and the interactions between the character and
environment to eliminate inappropriate solutions and 2) our
input is a hand-drawn stick figure, which is usually
imprecise and needs special treatment.

3 USER INTERFACE

In a typical design session, the user roughly sketches a 2D
stick figure on the screen space to represent the desired
pose (see Fig. 2a). Note, the edges of the stick figure can be
drawn in an arbitrary order. Our system then analyzes the
stick figure and organizes it into a tree structure similar to
the character’s skeletons. After this organization, the user
can check the tree structure and specify the left and right
limbs to eliminate symmetrical ambiguity, if necessary1 (see
Fig. 2b). The user can also use the pinning tool to attach the
joints to the environment (e.g., the feet on the ground, the
hands on the armrest, and so on (see Fig. 2c). Finally, our
system automatically generates the 3D pose at an interactive
speed (see Fig. 2d).

3.1 Drawing Tool

We also developed a simple drawing tool similar to [6], in
which the user draws straight limb segments by dragging,
rather than freeform drawing; the user presses the mouse
button to specify the position of the first joint then drags
and releases the cursor at the desired position of the second
joint. This process is repeated until the entire skeleton has
been specified. A newly sketched limb will automatically
snap to an existing one if its joint is close enough to the
joints of the previous limb. This snapping function makes it
easy for the user to ensure that segments are connected
properly. Note that the user sketches elements of the pose in
an arbitrary order and cannot change the view point during
sketching. As a result, the stick figure is drawn purely on
the 2D screen space.

3.2 Editing Tool

The user can freely edit the 2D stick figure in either local or
global mode. Within the local mode, the user can drag any

individual joint without changing other joints. The editing
tool can also be automatically switched to the global model if
a joint is dragged a certain distance, d, or further away from
the original position (d ¼ 100 pixels in our implementation),
as shown in Fig. 8. Specifically, joints that are between the
root joint and the dragging joint will be updated in an as-
rigid-as-possible way so as to preserve their relative
orientation as much as possible. Further, the children of
the moving joints (the dragging joint and the affected
intermediate joints) will rigidly move and follow their
parents. However, if a joint is only modified slightly, the
editing will be local. User can also manually switch between
the two editing modes.

3.3 Pinning Tool

The pinning tool is used to specify the target position in the
environment to which a joint is attached (e.g., putting the
feet on the ground). The pinning tool can also be used to
attach a joint to a limb of the character. This is useful for the
scenario of the character sitting with the hands on the legs.
To pin a joint, the user simply clicks on the sketched node. If
multiple attached candidates are detected, a dialog box will
popup that allows the user to specify the desired candidate
(e.g., the right feet in Fig. 1b can be attached to either the
table or the ground). The system detected limb attachments
by checking whether the pinning joint is close enough to a
certain limb in the stick figure on the screen space. For
environment attachments, we simply emitted an eye ray
that passes through the pinning joint and finds all
intersections within the environment. These intersection
points are then added to the candidate list. Of note,
intersection points can be points either on the horizontal
floor or in the environment with various normal directions.
The pelvis joint is an exception in that it can only be pinned
to the environment (sitting plane).

4 TECHNICAL DETAILS

4.1 Sketch Analysis

4.1.1 Human Model

We currently use a humanmodel with 29 degrees of freedom
(DOF) as shown in Fig. 3a. The human model is represented
by a tree of joints (H ¼ fjkgmk¼1;m ¼ 20) rooted at the pelvis.
The stick figure (Fig. 3b) is used to specify the pose in the
screen space. It is also organized in a simple tree structure
with 13 nodes (S ¼ fsigni¼1; n ¼ 13). Let � : si �! jk be the
function that maps the stick nodes to the skeleton joints.

The user-drawn sketch is initially defined as an undir-
ected graph. To construct a tree structure from the graph,
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Fig. 2. Sitting pose design flow: the user roughly sketches a 2D stick
figure on 2D screen space to represent the desired pose (a) and then
specifies the left and right limbs to eliminate symmetrical ambiguity (b).
Next, the user can attach the joints to the environment with the pinning
tool (c). Finally, the 3D pose is generated automatically at interactive
speed.

Fig. 3. The human model used in our system: (a) template skeleton of
the 3D character; (b) template stick figure used to specify the pose.

1. Red (resp. blue) edges represent the left (resp. right) side of the
character.



the system first identified the pelvis (of degree 3) and neck
(of degree 4), then extracted the chains from the root to the
leaf nodes (of degree 1). Next, we distinguished the arms
and legs by counting the number of nodes on the chains. For
example, there were five nodes from the root (pelvis) to the
left or right hand and three nodes from the root to the feet.
To define the mapping �, we also must eliminate the
symmetric ambiguity of the tree structure. Assuming the
user draws a front view pose of the character, we then
identify the left and right limbs by checking the following
equation (Fig. 4):

sign ¼ s0si � s0s1ði 6¼ 0; 1Þ:
Chain i represents a left limb when sign > 0, right limb,
otherwise. Our interface also allows the users to manually
switch left and right sides if the automatic determined
orientation is wrong (see Fig. 2b).

4.1.2 Sit Location

To reconstruct a pose, the system first needs to know where
the person sits. As shown in Fig. 5a, users may have very
different sketching styles (e.g., some may draw the central
line of each limb (red), while others may place the sketched
joints at the contact between the character and the floor or
chair (blue)). Clearly, the algorithm for locating the sitting
position depends on the user’s painting styles. Therefore,
we conducted an observational study to better understand
the way people draw. Specifically, we showed participants
photos of sitting poses (see Fig. 5b for an example) and
asked them to sketch 2D stick figures using our interface.
Fig. 5c shows several typical sketches collected from the
study. Observing that most users drew the skeletons as
center lines, we adopted the center line strategy as the
default sketching style in our implementation. Our system
also allows the user to switch, manually, to a contact-point
sketching style.

To find the sitting location, we calculate the intersection
between the extended bounding box of the chair and the ray
leðpe;veÞ from the eye to the pelvis node (see Fig. 6a). We

extend the bounding box in an upward direction vu ¼
ð0:0; 1:0; 0:0Þ to ensure the intersection with some object,
such as the foot stool in Fig. 9. We then sample the
intersection line segment in the bounding box and emit a
ray from each sample in the direction vs ¼ �vu (Fig. 6b).
We collect the intersected faces whose normal satisfies

nf � vu >
ffiffiffi
3

p
=2 ð1Þ

and where the distance to the sample point satisfies

s1 � h � d � s2 � h; ð2Þ
where h is the hip height, s1 ¼ 0:5 and s2 ¼ 1:5. The
constants in (1) and (2) are chosen empirically by the users.
Using these intersected faces as seeds, we can grow several
regions by collecting all the faces for which the normal
satisfies (1). For each region Ri, we assign a normal nr by
averaging the face normals over the whole region. We can
then generate a cut plane Pi passing through the eye
position pe and the normal np ¼ nr � ve. We calculate the
uniformly resampled intersection curve Ii ¼ ðp0;p1; . . .pmÞ
between Pi and Ri, and find the best sitting point of Ri by
minimizing the following equation:

MðRiÞ ¼ argmin
k

ðjdðpk; le;nrÞÞ � hj � Cðk;mÞÞ: ð3Þ

The metric consists of a distance term and a centerness
term: the distance term measures the difference between
dðpk; le;nrÞ and the hip height h. dðpk; le;nrÞ is the distance
between pk and its projection on the eye ray le along the
normal direction nr

dðpk; le;nrÞ ¼ k ðpk � peÞ � ve k
k nr � ve k :

Fig. 6d shows how to calculate dðpk; le;nrÞ; the centerness

term Cðk;mÞ ¼ e
�ðk�m=2Þ

ðmÞ2 =2
is used to reduce the ambiguity of
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Fig. 4. Eliminating symmetric ambiguity in the stick figure.

Fig. 5. Observation study. (a) Different sketching styles; (b) a sitting
pose shown to the participants of the study; (c) several sketched poses.

Fig. 6. Locating the sit position: (a) the ray from the eye to the pelvis node intersects the bounding box of the chair; (b) find all possible sitting areas
on the chair; (c) determine the final sit position which is h (hip height) offset from the optimal sample point along the normal direction. (d) The optimal
sample point is the one with the distance to the eye ray along the normal direction to be closest to h.



the user input, and we assume that the user places the

character at the center of the sitting area. The sitting region

Rs is the region with the minimal metric across all regions

(Fig. 6c), and the root position pr ¼ psk þ h � nr. In some

cases, the hip may collide with the chair under the optimal

sitting position. We then search those intersection points

(pk�r . . .pk . . .pkþr) around the optimal sitting position for a

certain range r (r ¼ 5 in our current implementation) until

we find a collision-free arrangement.
We also provide a scheme for users who prefer to draw

the contact points instead of the center lines. Note such a
style is also useful in some extreme cases which are difficult
to specify the sitting position with center lines. For example,
when the user wants to sit the character on a very thin
object such as the arm of a chair. The user can choose
between the two different sketching styles. For the contact-
point method, we simply set h ¼ 0:0 in (3) and rewrite (2) as
s1 � d � s2 with s1 ¼ �0:05 and s2 ¼ 0:05.

4.1.3 Normalization

Wealso noticed that it is quite difficult for the user to estimate
the appropriate projected bone length when drawing the
stick figure. As shown in Fig. 5c, the length of some sticks are
too long and out of the normal range. According to our
observations, error rate could be 10-20 percent of the
maximum bone length. Additionally, feedback from users
indicated that more practice with our system would
efficiently reduce such errors. Therefore, we checked and
normalized the stick figure to eliminate such cases before
pose reconstruction. Specifically, we determined the max-
imum bone projection length by assuming the bone lie on the
depth plane of the succeeding joint (see Fig. 7)

IPl ¼ hv � b
2 � d � tan �

2

;

where hv is the height of viewport, d ¼ dr þ �d is the
distance from the eye position to the joint depth plane, � is
the field of view angle, and b is the bone length. Because
the 3D pose is unknown, we cannot know the exact depth
plane of each joint. Therefore, we take the depth plane of
the sitting position for every bone, d ¼ dr.

We calculate the scaling factor s of the stick figure with
the following equation:

s ¼ min
IPli
li

� �
;

s < 1:0 means there exist some sticks whose length are
greater than their normal range. We then scale the stick
figure around the tree root by s.

4.2 Stick Figure Editing

In our system, the user can edit the stick figure by dragging
each stick joint. The editing operation could be either local
or global. For the local case, only the dragging joint will be
modified. While in the global mode, other joints may also be
affected. By default, the system will automatically switch
between the two editing modes. When editing operations
happen during the drawing or when the dragging joint is d
distance away from the original position (d ¼ 100 pixels in
our implementation), the editing stays in local mode.
Otherwise, when the distance is greater than the threshold,
the operation will automatically switch to the global mode.
User can also choose to manually switch between the two
editing modes. In the global mode, we first find those
directly affected n joints which lie in between the dragging
joint and the root joint, the orange ones in Fig. 8. These
joints are updated by solving a linear system:

L � p ¼ �;

where p is an n� 2matrix, the two column vectors are the x
and y components of joint coordinates. � is also an n� 2
matrix, consisting of the original Laplacian coordinates of
the joints. The Laplacian coordinate of each joint is
calculated by

�i ¼ pi � ðpi�1 þ piþ1Þ=2:
L is the Laplacian matrix, defined as

Lij ¼
1:0 if i ¼ j;
�0:5 if i ¼ j� 1;
0:0 otherwise:

8<
:

The children of the affected joints and the dragging joints
(blue dots in the stick figure) are moved rigidly following
their parents. The other joints (green dots) in the stick figure
keep unchanged. The purpose of the global editing mode is
to propagate distortion around the dragging joint to the
whole stick figure when it is edited significantly. The basic
idea is to preserve the relative orientation between the
neighboring sticks as much as possible. However, such a
style only provides a convenient, but rough way, to edit the
entire stick figure. Therefore, some editing results may be
undesirable, which could change the stick lengths. In such
cases, the user could further edit the undesired joints within
the local editing mode.

4.3 Pose Reconstruction

4.3.1 Overview

The core of our character-posing system is the reconstruc-
tion of a 3D pose from a 2D stick figure. Previous works on
pose reconstruction from a single image may not work well
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Fig. 7. Stick figure normalization.
Fig. 8. Editing stick figure in global mode.



to the hand-drawn stick figure due to the imprecise nature
of the stick figure.

We formulate the pose reconstruction problem as an
optimization problem. The input of the reconstruction
algorithm is the 2D positions of the joints in the stick figure
(si), and the output is the joint angles of the reconstructed
3D character pose (qi). We represent each joint angle with
angle vectors with the dimension of the DOF of the joint.
We use Euler angles to parameterize joint rotation as it is
intuitive to place limits on the legal range of motion for
them. Besides, the axis angle vector is a more appropriate
parameterization for differential control with inverse kine-
matics [14]. The objective function evaluates the match
between the projected 3D pose and the 2D input sketch, the
plausibility of the pose, and the distance between the
pinned joints and their bases. Collision handling is done
separately. In the following, we first describe the details of
the objective function and then describe how we solve this
optimization problem. Finally, we describe how we handle
collisions in this framework.

4.3.2 Objective Function

The objective function to determine the optimal 3D pose
from a 2D sketch is described by the following equation:

E ¼ wpEpðQÞ þ wbEbðQÞ þ waEaðQÞ; ð4Þ
whereQ ¼ ½q0;q1; . . . ;qn� is the vector of joint angles subject
to the range of motion of each joint. W ¼ ½wp; wb; wa� are the
weights given to each term. In our implementation, we
empirically set wp ¼ 1:0, wb ¼ 0:5, and wa ¼ 5:0 such that the
priority of the energy terms (from high to low) is attach
energy, projection energy, and balance energy.

The first term projection energy Ep measures the
consistency between the projection of the reconstructed 3D
pose and the 2D stick figure.We consider both the orientation
and the position, with an emphasis on the orientation.
Denoting the projection of the corresponding joint as pi, the
orientation energy for sketch node si is defined as

Ei-ori ¼
Xci
j

1� ðpj � piÞ � ðsj � siÞ
k pj � pi k � k ðsj � siÞ k

 !
; ð5Þ

where ci is the set of children nodes of the joint
corresponding to sketch node si. The position energy is
described by the following equation:

Ei-pos ¼ k pi � si k2
k si � sr k2 þ

P
IPl2

; ð6Þ

where sr is the coordinate of the root stick joint,
P

IPl2 is the
sum of the stick lengths in between the root stick joint and
stick joint i. The projection energy is then defined as the
sum of the energy of all sketch nodes

Ep ¼
Xn
i

ðEi-ori þ wEi-posÞ; ð7Þ

where w leverages the importance between orientation and
position constraints. We empirically set w ¼ 0:1 to empha-
size more on the orientation, and thus to further reduce the
noise contained in the user-drawn stick figure.

We introduce the second term, balance energy Eb, to
keep the character balanced, leading to a physically
plausible pose (Fig. 9). We achieve the balance constraint
by forcing the center of mass of the whole body to stay over
the supporting polygon [15] which is defined by the set of
joints pinned to the environment. We minimize the distance
between the ground projection of the character barycenter
and the center of the supporting polygon

Eb ¼k MC� c k2 : ð8Þ

c is the supporting center, matrix M ¼ P �T calculates
the new barycenter of the character and projects it onto the
ground, T ¼ ðm1T1;m2T2; . . . ;mnTnÞ (Tks and mks are the
rigid motion and the mass of each skeleton bone,
respectively, mks are normalized by the overall mass), P
is the projection matrix, and C ¼ ½c1; c2; . . . ; ch�T are the
barycenters of the skeleton bones in standard pose. We
currently only consider explicitly pinned joints in comput-
ing the supporting polygon. Little weight is assigned to this
balance energy, so it is only used when the input sketch is
very ambiguous, when it is helpful in eliminating some
invalid poses (Fig. 9).

We name the third term attach energy Ea, which is used
to constrain a joint attached to certain place (Fig. 10). There
are two different attach styles: 1) the user specifies a joint
attached to a limb (e.g., hand on knee); and 2) the user
specifies a joint attached to the environment (e.g., feet on
ground); If the selected sketch node sk is very close to a
nonneighbor sketch limb sk0sk1, we treat it as the first case
(Fig. 10b). Otherwise, we generate an eye ray passing
through the selected sketch node sk in the screen space.
Then, we find the intersection point v between the ray and
the chair or the ground (Fig. 10c). For the first case, we
minimize the distance between the joint jk and the closest
point on the bone segment jk0jk1
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Fig. 9. Balance constraint: (a) 2D stick figure; (b, c) reconstructed 3D pose with balance constraint; (d, e) without balance constraint.



Ea ¼ k jk � ðjk0 � ð1� tÞ þ jk1 � tÞ k2

t ¼ j sk0v j
j sk0sk1 j :

ð9Þ

We define the energy for the second case with the following
equation:

Ea ¼ ððjk � vÞ � nÞ2: ð10Þ
Here, we minimize the distance between the corresponding
skeleton joint jk and the plane defined by the attach point v
and its normal n rather than the distance between the two
points directly, as it is difficult to exactly specify the 3D
position to which we want the joint to attach. Fig. 10 shows
the difference between 3D figures generated with and
without attach constraints.

4.3.3 Genetic Algorithm for Pose Reconstruction

We solved the above optimization problem using a two-
phase approach. First, we solved this problem via Genetic
Algorithm and second by refining the results with quasi-
Newton method. The reason for this approach was twofold:
1) solving the problem with gradient methods, such as the
quasi-Newton solver, requires an collision-free initial pose; it
would be quite tedious for the user to construct a rough initial
pose manually and also break our purpose in this paper to
avoid direct manipulation of the 3D character and 2) genetic
algorithm permits the investigation of multiple optima in the
search space via niching techniques. Additionally, we argue
that static poses, such as sitting poses, depend more on
the character’s intention, rather than styles or habits as in
motion. Therefore, it would be better to provide multiple
suggestive poses for user to reflect their intention.

Genetic algorithm is a heuristic search procedure that
mimics the process of natural evolution to find the optimal
solution. It has been applied to solve inverse kinematic
problem [16]. However, there are few work on applying
genetic algorithm for pose reconstruction [17]. Fig. 11 shows
the flowchart of our GA solver for pose reconstruction:

. Initialization. An initial main population (with size
Sm) of robot configurations is generated by random
sampling of the variable search space. Each indivi-
dual consists ofn joint angles. The fitness values of the

individuals are calculated by using (4). The popula-
tion is sorted in increasing order of fitness value.

. Crossover. Crossover operation is applied onto the
randomly chosen parent pair (P1 and P2) with a
probability Pc ¼ 0:7; otherwise, the two children (C1

and C2) will directly derived from the parents with
the same property. The operation allows for rapid
exploration of the search space. We use the simulated
binary crossover (SBX) [18] to generate two children
for the two parents. Among the n joint angles, l
(l ¼ 0:5n in our implementation) of them are ran-
domly selected for the crossover operation. The rest
n� l joint angles will be transferred from the parents
to the children, remaining unchanged. For each of the
selected l joint angles, a random number, u�ðiÞ, is
generated. We then calculate a spread factor � using

�ðiÞ ¼
ð2u�ðiÞÞ

1
�þ1 u�ðiÞ � 0:5

1

2ð1� u�ðiÞÞ
� � 1

�þ1

otherwise:

8><
>:

And the children are produced from the following
equation:

C1ðiÞ ¼ 0:5½ð1þ �ðiÞÞP1ðiÞ þ ð1� �ðiÞÞP2ðiÞ�
C2ðiÞ ¼ 0:5½ð1� �ðiÞÞP1ðiÞ þ ð1þ �ðiÞÞP2ðiÞ�:

�

. Mutation. A further genetic operator, mutation is
applied to the new individuals in temporary
population. This operation makes local adjustments
by perturbing m (m ¼ 0:1n in our implementation)
of the n joint angles with a Gaussian term Nð0; �2Þ.

. Evaluation. We then evaluate the fitness value for
the temporary population generated through cross-
over and mutation. We also do collision detection for
each individuals.

. Merge. We then incorporate the temporary popula-
tion with population of current generation to form
the next generation. We choose those collision free
case in the temporary population by order of fitness
value and replace those collided ones in the current
generation.

. Termination criterion. After each evolution, we
check the termination criterion. The genetic algorithm
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Fig. 10. Attach constraint: (a) stick figure; (b) attach style-1; (c) attach
style-2; (d, e) with attached constraints; (f, g) without attached
constraints.

Fig. 11. Genetic algorithm for pose reconstruction.



will stop when one of three conditions is met: 1) the
number of iterations reaches the maximum genera-
tion number; 2) The fitness value drops below the
user-specified value (5.0); 3) The population has
converged, i.e., the ratio of the population mean
fitness divided by the maximum fitness dropped
below the user-specified value (0.1).

4.3.4 GPU Implementation

A technical challenge in using GAs for optimization is that
they are quite time consuming. A number of parallel genetic
algorithms have been proposed running on parallel
computers, and other specialized hardwares [19]. Several
researchers have also implemented genetic algorithm on the
GPU which is a much more convenient platform for general
purpose parallel computation [20]. However, these imple-
mentations are designed for general problem and cannot be
directly applied to our problem for several reasons: First,
the fitness function in our application is complicated and
depends on a lot of factors (scene transform matrix, stick
figure, 3D skeleton, etc.). We need to design appropriate
structure to store those information and to evaluate the
fitness value efficiently. Second, the structure of our
algorithm is different from their work which requires
different organization. Finally, our algorithm involves a
CPU-side collision detection procedure which also requires
an appropriate organization. Fig. 12 shows the organization
of our GPU-based GA solver. The crossover and mutation
stage fully run on the GPU while the merge stage fully run
on the CPU. For the initialization and the evaluation stage,
we switch back to the CPU side for collision detection and
run the other parts on the GPU.

Data organization. We need to pass the scene parameter,
stick figure information and character skeleton information
to the GPU. For the scene parameters, we pass the world-
view-projection matrix and the viewport size. For the stick
figure, we need to pass the screen coordinate of each stick
joint. For the skeleton, we pass the relative position , relative
orientation, and joint range of motion. Both the data for
stick figure and skeleton are stored in a breadth-first
manner. We store the main population and the temp
population with a Sm � n and St � n array, respectively. We
also store the updated absolute position and orientation of

the skeleton joints for each genome in the main and
temporary population. Those information will also be used
to update the character mesh in collision detection except
for fitness calculation.

Random number generator. Random number generator
plays an important role in the whole evolution process of
genetic algorithm. We realize a pseudorandom number
generators on the GPU for the genetic algorithm [21]. The
GPU generator combines a Tausworthe generator with a
linear congruential generator. We evaluate the randomness
of the pseudorandom number generator using the NIST test
suites [22]. The test suites contain 15 tests. The inputs for the
tests are samples of binary sequences, and the outputs are p-
values corresponding to the sequences indicating the
probability that the result is due to random chance. We
use a significance level of 0.01 with the sample size to be 500.
Fig. 13 shows the test results. The vertical axis represents
portion of passed sample while the horizontal axis
represents the test list. The horizontal black dash lines mark
the range of acceptable proportions which are determined
by the significance level. For comparison purpose, we also
test with several other popular algorithms provided either
by the test suites (the Linear Congruential method) or by the
GALIB. Notice that our purpose is just to show that our GPU
generator is comparable to those algorithms.

4.3.5 Collision Handling

Collision handling is an important issue in our application.
Therefore, we must ensure that there are no self-collisions
on the polygonal mesh of the character or collisions
between the character and the environment. Therefore, we
took a more efficient strategy to handle collision in this
paper. In previous work, we tried to avoid the generation of
collision cases via trial-and-error; whenever a new genome
was generated, we would check whether a collision
occurred. If collision was detected, we would regenerate
the genome until we yielded a collision free result. This
process would repeat several times and if no collision-free
genome was found, we would add the collided genome into
the temp population. Although this method is quite
effective, the scheme is also time consuming. In the current
system, we treat the collision cases the same as those
collision-free cases in the evolution operations. Further, we
gradually replaced those collision cases in the main
population with those in the temporary population.

Additionally, we omitted feet and hands in the stick
figure to reduce the user’s burden and kept the character
feet and hands at standard 3D poses by default. We also ran
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Fig. 12. GPU implementation of genetic algorithm.

Fig. 13. Evaluation of the random number generator.



collision detection for the feet and hands during the
optimization process. Once a collision was detected, we
search for collision-free orientations in the specific range of
motion and assign them to the foot or hand in question.

The COLDET package [23] is used for collision detection.
The collision handling is very helpful in eliminating
unnatural poses, see Fig. 14 for an example.

4.3.6 Pose Refinement

Although genetic algorithms can effectively locate the
region in which the global optimum exists, they take a
relatively long time to locate the exact local optimum in the
region of convergence. Therefore, the combination of a
genetic algorithm and a local search method can improve
the performance to locate the exact global optimum. We
apply a quasi-Newton method to the solution generated by
the genetic solver to further improve the result. The
Jacobian matrix is computed numerically.

To handle the collision issue, we use a strategy similar to
[24] by adding a collision energy to the objective function. If
collision is detected at iteration k, we restore the angle vector
to the previous collision-free iteration and then add new
collision energy onto the objective function. For limb-limb
collision, we find the two closest points v1 and v2 (Fig. 15a)
and try to keep them as in collision-free iteration k� 1. For
limb-environment collision, v2 is replaced by the collision
point in the environment (Fig. 15b)

Ecollision ¼ ���v½k�
1 � v

½k�
2

��� ��v½k�1�
1 � v

½k�1�
2

���2: ð11Þ
In practice, this strategy is very effective to avoid most of
the collisions. However, it cannot guarantee that the final
result is completely collision free.

4.3.7 Attachment Enforcement

Although we introduced attach constraints in the objective
function, the optimization can only place joints close to the
attached positions, rather than accurately attach these joints
the specified positions. Thus, we further conducted a rigid

body dynamic simulation [25] on the reconstructed pose.
For each skeleton chain that contain attaching joints, we
performed a rigid body dynamic simulation with fixed root
joint. The simulation ran until all attaching joints contacted
the specified attach surfaces or until a certain time step
number was reached. Here, we assumed that all the attach
points would act as support points. Thus, this system
cannot deal with these nonsupport attachment cases (e.g.,
attaching the hand to a wall, etc.). It also does not work well
if the attachment locates on a very tiny object as in the case
the attaching joint may fall outside the attaching region
during simulation. In these cases, the user can manually
drag the attaching joint to the target position.

5 RESULTS

We developed a prototype system in C++ on a work-
station with an Intel Xeon 2.67-GHz CPU, NVIDIA
Quadro FX 580 GPU. We conducted experiments in
various virtual environments. See Figs. 1, 2, 9, 10, 14,
and 16 for some examples of constructed 3D poses.

As shown in Fig. 17, a speedup of 3-5 can be obtained by
using the proposed GPU solver, compared to the original
CPU solver [2]. We also evaluated the reconstruction
accuracy with respect to the population size. We run 50
reconstructions for each population size and computed the
average fitness value and the standard deviation. As shown
in Fig. 18, the bigger the population size, the smaller the
fitness value and the standard deviation. Based on the
above analysis, we set the default value of main population
size to 1,024, which leads to accurate results at interactive
speed (1-2 seconds to generate a pose). To investigate the
effect of collision handling strategy on the convergence of
the genetic solver, we conducted a test to reconstruct poses
from the input in Fig. 2 with/without collision handling. As
shown in Fig. 19, the collision handling strategy works
pretty well as its convergence rate is very similar to the one
without collision handling. We also compared the recon-
structed result with the ground truth data. We first
synthesized a 2D stick figure in the screen space from a
posed character with 170 cm (see Fig. 20a). Then, we apply
our algorithm on the synthesized stick figure to generate a
reconstructed 3D pose (the pink one in Figs. 20b and 20c).
The reconstruction error is 7.8 cm, which is computed as the
average euclidean distances of 3D joints between the
ground truth data and the reconstructed pose.

6 USER STUDY

We conducted a user study to evaluate the benefits of our
sketching interface for general user. Our system is
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Fig. 15. Collision energy: (a) limb-limb collision; (b) limb-environment
collision.

Fig. 14. Handling collision: (a) 2D stick figure; (b, c) reconstructed 3D pose with collision handling; (d, e) without collision handling.



compared against Poser Pro 2010, a professional 3D figure
design and animation software. To pose a character with
Poser Pro 2010, users can choose to switch on/off the
inverse kinematics function. With inverse kinematics, users
only need to edit the end joints, the intermediate ones will
be updated automatically. Without inverse kinematics,
users have to edit each joint one by one. We designed two
experiments (with increasing difficulty) in the user study to
evaluate how the interfaces can help user to design a 3D
pose in a complex environment. The test data set of each
experiment includes a photo showing the desired pose, the
3D virtual environment in both Poser Pro 2010 and our
system (see Fig. 21).

Participants. Twenty participants were recruited in our
user study: 12 males and eight females, aged between 20
and 35. Among them, four are professional artists, four have
no experiences with 3D software, the others have passing
knowledge or certain experiences in 3D design. Note that
the familiarity with the tasks may affect the user study
result. To minimize such a potential discrepancy, we
divided the participants into two equally sized groups,
the professional artists and beginners were split equally
into the two groups. The first group (G1) was asked to
complete the tasks using the proposed sketching interface
followed by Poser Pro 2010, while the other group (G2) did
exactly the same tasks but in the reverse order.
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Fig. 16. More results. (a) The input stick figure; (b) overlay of the stick figure and reconstructed pose; (c)-(e) the reconstructed pose in different
views.



There are two stages in the user study. In the first stage

(for G1), we first showed our proposed interface to the

participants and gave them 5 minutes to try the operations

in the interface. Then, they were asked to complete the two

design tasks (two experiments) with it. After that, we

moved on to the second stage and introduced the interface

of Poser Pro 2010 to them. Again, they had 5 minutes to get

familiar with the interface. After that, they were asked to do

the (same) two experiments with Poser Pro 2010 this time.

The second group did exactly the same tasks but in a

reverse order when using the two systems. During the

course of the user study, the time taken by each participant

to complete a task was measured.
Experiment #1. The first experiment is a character sitting

on a stool and stretching his legs. It aims to evaluate how the

2D sketching interface can help users to quickly design a 3D

pose. Here, we choose to use a simple pose with simple

environment, so as to eliminate the interferences of other

factors such as occlusion, collision, etc. With Pose Pro 2010,

the users had to frequently change the viewpoint to find the

appropriate viewing direction and specify the joint locations.

In sharp contrast, our sketching interface allows the users to

simply sketch a stick figure without changing the view

direction, pin the feet on the ground and then obtain the 3D

pose immediately. As shown in Fig. 22, the participants

saved up to 53.4 percent time by using our sketching

interface. We conduct the paired t-test to investigate the

significance of the difference between the averaged time

costs of the two interface. We have t ¼ 5:7771, df ¼ 19 and

p < 0:0005; thus, we conclude that our result is significant

beyond the 0.0005 level.
Experiment #2. The second experiment is slightly

difficult than the first one in that the legs are occluded by

a tea table placed in front of the character. This experiment
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Fig. 19. Convergency of the genetic solver.

Fig. 20. Evaluation of reconstruction accuracy through comparison with
ground truth data. (a) Ground truth data; (b, c) reconstructed pose and
the ground truth data.

Fig. 21. Test data used in the user study. Left: the pose pictures shown
to the user. Middle: the results of our sketching interface. Right: the
results of Poser Pro 2010.

Fig. 22. User study results. We measured the time each participant took
to complete the task in Experiments #1 and #2. G1 and G2 refer to the
first and second groups, respectively, while S and P stand for our
system (Sitter) and Poser Pro 2010, respectively. We show the average
time and the 95 percent confidence interval for each case.

Fig. 18. Accuracy of the solver w.r.t. the population size. Horizontal axis:

population size; vertical axis: fitness value.

Fig. 17. Performance of the GPU solver and the original CPU solver.
Horizontal axis: the population size; vertical axis: execution time
(seconds).



aims to simulate a complex environment, which is quite
common in real-world design applications. Thus, the pose
and the environment shown to the user are much complex
than the previous one, frequent switch of camera will be
involved. Due to the occlusions, the Pose Pro 2010 users
have to carefully align the camera to position the joints;
thus, it is very tedious to position the legs (see the
supplementary video, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2012.61). Besides, using a 2D input
device such as mouse for such kind of task is also a
challenge. The consideration of collision with the environ-
ment makes the task even more difficult. The users of our
system, however, can complete this task in the same way as
the first experiment, since they can sketch the 2D stick
figure on the screen space without caring the occlusion
issue at all. The time statistics in Fig. 22 justify that our
sketching interface is more efficient than the conventional
IK-based interface saving 58.7 percent time. According to
the paired t-test (t ¼ 8:9183, df ¼ 19, p < 0:0005), the result
is significant beyond 0.0005 level.

Note that the sitting poses and the environment config-
urations in the two experiments are carefully designed for
the comparison of the two interfaces. They maybe not
sufficient to cover the whole range of sitting pose; however,
they are typical and very common in real life.

Rating. After the two tasks, the participants were also
asked to rate the two interfaces on their “preference,”
“effectiveness,” “accuracy,” and “easy to use” on a scale of
1 to 5: 1 means “strongly disagree” and 5 means “strongly
agree.” Our interface received very positive feedbacks as
shown in Fig. 23. Some participants also commented that
Pose Pro 2010 can lead to more accurate result than our
interface, since one can directly position each joint, although
this manipulation is very tedious. We perform Wilcoxon
signed rank tests on the questionnaire data to evaluate the
significant effects of the availability of our interface on the
listed aspects. Table 1 shows the test result.

7 LIMITATIONS

Our current implementation has several limitations. First,
we considered only simple collision and balance constraints
in our current implementation. In fact, the interaction
between the character and the environment could be more
complicated. Second, the determination of supporting
polygon completely depends on how the user specifies
with the pinning tool. It is desired to automatically detect
some extra contact points to further reduce the user’s
burden. Third, our system does not work for some highly
complicated poses such as the Lotus position in Yoga,
where both feet are placed in front of the pelvis with knees
bent (see Fig. 24).

8 CONCLUSION

This paper presented an intuitive sketching interface for a
sitting pose design in a virtual environment. Our interface
only requires the users to draw a simple 2D stick figure on
the screen space without changing the viewing direction.
Following this sketch, physically correct and visually
pleasing 3D poses are reconstructed, automatically, at an
interactive speed. Our system is novel in that it takes into
account the interaction between the character and environ-
ment, which is helpful in solving the ill-posed 2D-to-3D
reconstruction problem. The promising experimental results
and the user study demonstrate that our method is efficient,
intuitive, and effective and allows the users to quickly design
the desired sitting pose in a complex virtual environment.

Of note, our current framework focuses only on a sitting
pose design. However, it can be easily extended for other
static pose design tasks such as lying or standing as shown
in Fig. 25. We can also choose to specify other joints as the
main pivot by making the joint the root of the skeleton.
Finally, the technique described in [26] could be used for
handling such a structure-varying skeleton.
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Fig. 24. Failed case: pose that cannot be generated with our system.

TABLE 1
Wilcoxon Signed Rank Test Result

Fig. 25. Posing character in other environments.

Fig. 23. Rating of the two testing systems (Sitter: our interface, Poser:
Poser Pro 2010) on a scale between 1 and 5 (1 ¼ strongly disagree,
5 ¼ strongly agree), the error bars represent for the 95 percent
confidence interval.
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