
Automatic Learning of Pushing Strategy for Delivery of
Irregular-Shaped Objects

Manfred Lau, Jun Mitani, Takeo Igarashi

Abstract— Object delivery by pushing objects with mobile
robots on a flat surface has been successfully demonstrated.
However, existing methods can push objects that have a circular
or rectangular shape. In this paper, we introduce a learning-
based approach for pushing objects of any irregular shape to
user-specified goal locations. We first automatically collect a
set of data on how an irregular-shaped object moves given
the robot’s relative position and pushing direction. We collect
this data with a randomized approach, and we demonstrate
that this approach can successfully collect useful data. Object
delivery is achieved by using the collected data with a non-
parametric regression method. We demonstrate our approach
with a number of irregular-shaped objects.

I. INTRODUCTION

The use of mobile robots has increased greatly over the

past decade as they can be found in practical use in factories,

hospitals, and people’s homes. This paper focuses on the use

of mobile robots for pushing objects. Pushing is useful for

object delivery, bulldozing/construction operations, cleaning

tasks, and robot soccer. However, many existing approaches

[1], [2], [3], [4], [5] push objects with regular shapes such

as circles, squares, and rectangles.

Pushing an irregular-shaped object is challenging as it

is difficult to accurately measure or specify the shape and

physical parameters of the object by hand. Applying auto-

matic methods for recognizing the parameters can be noisy

and inaccurate. In addition, it is difficult to geometrically

compute how such an object moves as it gets pushed, and

to incorporate its motion into an algorithm for pushing it

towards a goal location.

Fig. 1. We automatically collect a pushing strategy (left) for this irregular-
shaped object, and use the data to control the robot to push the object
towards user-specified goals.

This paper introduces a learning-based approach for push-

ing objects of any irregular shape (Fig. 1). Instead of

explicitly measuring or specifying the object’s shape and

All authors are with JST ERATO Igarashi Design Interface Project,
Tokyo, Japan (contact: manfred.lau@gmail.com). Jun Mitani is also with
University of Tsukuba. Takeo Igarashi is also with The University of Tokyo.

parameters, the idea is to first collect data on how the object

moves based on the robot’s relative position and pushing

direction. We call such a set of data a pushing strategy. The

pushing strategy is collected automatically. The user does

not need to manually specify or provide it. We then use this

pushing strategy to push the object towards a user-specified

goal. The strength of our approach is that we can use the

same algorithm for objects of different shapes and sizes.

The object’s shape is never explicitly specified or recorded,

but is implicitly represented in the data. In addition, the

data implicitly stores relevant physical parameters such as

the weight distribution and the friction between the robot,

object, and pushing surface. The learning-based method is

also robust to slight inaccuracies in the data.

There are two main problems that we solve: how to collect

the pushing strategy, and how to use the pushing strategy to

deliver an object to a goal. For the first problem, we present

an initial data collection method where we collect data by

having the robot push the object from different positions

and directions. We use a simple randomized approach to

decide the robot’s pushing position and direction. We can

then experimentally evaluate the existing data by using them

to solve random goal queries. This is an optional step. The

motivation is that if the existing data can successfully solve

random queries, then we can stop collecting data. For the

second problem, we use a non-parametric regression tech-

nique to decide where to move the robot and which direction

it should push in, given the final goal and the robot/object

relative locations. We do not model the data parametrically,

as it allows us to keep collecting data as the robot pushing

is executed. Although we apply an existing non-parametric

technique in our algorithm, our contributions are: (i) we solve

the object-delivery-by-pushing problem for irregular-shaped
objects, and (ii) we use the idea of automatically learning a
pushing strategy to solve this problem.

We demonstrate that our algorithms are shape indepen-

dent: they work with irregular-shaped objects of various

shapes and weight distributions. Since our focus is on the

pushing algorithm, we do not have obstacles in most of our

test environments. For environments with obstacles, we first

use a global planner to generate a high-level path and then

use our method to push the object towards sub-goals along

this path. We empirically compare our approach with an

existing method for pushing circular objects [5].

II. RELATED WORK

The idea of using the memory of past pushes to predict

future pushes has been previously studied [6], [7]. However,



their pushing models are much simpler and they do not

show results of real mobile robots pushing different types

of irregular-shaped objects. Salganicoff et al. [6] uses a very

simple push model where the point of contact between the

robot and object is a single notched point on the object.

There is only one rotational degree of freedom at the contact

point. Walker et al. [7] also builds a mapping between pushes

and object motion. However, they explicitly measure the

object’s shape by using a proximity sensor on a robot finger

to detect a point cloud of the object, and then fit a shape

to these points. Our method avoids potential measurement

inaccuracies by not explicitly finding the object’s shape.

Furthermore, their objects are restricted to those with low

curvature and without corners due to sensor issues. Their

pushes are limited to be only at specific discretized points

on the object, along the object’s surface normal, and at single

contact points with the object. In contrast, our objects can

be of any shape. Our pushes can be at any point around the

object, at any direction, and be in contact with the object at

multiple points.

There exists much work in pushing objects for various

tasks, but these methods handle objects of a circular/spherical

or rectangular shape. Mobile robots for playing robot soccer

can push a spherical ball or a rectangular-shaped box [8]. A

watcher robot can lead a team of pusher robots to push a

rectangular-shaped box [1]. Push plans for circular objects

are computed that allow the object to touch and move along

the wall/obstacles [2], [3], [4], or allow for multiple pushes of

the object [4]. A method that computes a dipole field [5] can

push circular objects for object delivery tasks. Our method

differs in that we can handle objects of any irregular shape.

The mechanics of pushing objects on a surface has been

studied [9]. This work uses knowledge about the mechanical

properties of objects to generate stable pushing plans. On the

other hand, our method is empirical and based on observing

actual robot pushes of objects. Lynch et al. [10] perform

experimental pushes of objects and observe the resulting

motion to estimate the friction parameters. While we also

perform empirical pushes of objects, we neither model the

friction explicitly nor recognize the object geometry directly.

Our approach is related to work in the learning community.

Reinforcement learning and vision methods have been used

to allow mobile robots to learn to shoot a ball into a

goal [11], and to learn behaviors such as obstacle avoidance

and target pursuit [12]. Our work applies a different learning

technique for the robot to learn a different task. Learning

from demonstration methods [13], [14] allow the human to

demonstrate a task to a robot, and a policy to perform the

task is learned from the human data. Our method of using

the example data to control the robot pushing is similar,

although we collect the data automatically and there is no

human demonstration of the task.

III. ALGORITHM

A. Problem Definition

There are two problems that we solve to achieve our

pushing task. We assume that our system can continuously

track the global position/orientation of the robot, object, and

goal. We also assume that the object does not roll on the

flat pushing surface. The first problem is to collect data on

the object’s movement based on the robot’s position and

push direction. We collect and store this pushing strategy

beforehand so that it can be used for future goal queries.

The inputs are the boundary of the workspace where the

robot and object can move in, the radius of the circular

robot, and the radius of the bounding circle of the object.

We bound the object by a circle so that the robot can move

around it regardless of its orientation. The output is a pushing

strategy: a set of data where each sample is for one robot

push and the corresponding object movement. We describe

an initial data collection approach (Section III-C) where we

start from no data, and we collect samples by having the

robot push from a variety of positions and directions. We

then present an experimental evaluation method (Section III-

D) that can optionally be used to test if we should collect

more data. This may be the case if the existing data cannot be

used to successfully solve goal queries. We can also collect

supplemental data with this method and immediately use

them as the robot is solving goal queries.

The second problem is to use the pushing strategy for

controlling the robot to deliver the object to any goal position

(ie. we do not use goal orientation). We present a non-

parametric regression algorithm (Section III-E) that takes as

input the pushing strategy, the position/orientation of the

robot, object, and goal, and returns as output the robot

instantaneous push direction and in some cases the position

that the robot should push from.

Fig. 2. We collect one data sample for each robot push. (px, py) is the
position of the robot’s center. (rx,ry) is the change in position of the robot’s
center. (sx,sy) is the change in position of the object. All values are in the
object’s coordinate frame (black axes).

B. Notation

Let the robot be R, the object be O, and the pushing

strategy (or set of data) be D. Each sample of D contains

the data for one robot push and the corresponding object

movement: (px, py,rx,ry,sx,sy,θ) (Fig. 2). θ represents the

change in orientation of the object and is not drawn in the

figure. We only allow forward robot pushes in our current im-

plementation, although the approach accepts general pushes

such as moving forward and turning at the same time. The

object’s trajectory is not necessarily a straight line, although

we only record its change in position and orientation. For



Algorithm 1: Data Collection

Initial Data Collection:
for k = 1 to K do1

if dist(prev O pos,O.pos())< ε then2
reset robot();3

if ob j outside boundary() then4
reset robot ob j boundary();5

prev O pos = O.pos();6
R.spin(random angle());7
R. f orward(random dist());8
D.save sample();9

Experimental Evaluation of Existing Data:
reset robot();10
while true do11

if ob ject not move() or over time limit() then12
reset robot();13

if ob j outside boundary() then14
reset robot ob j boundary();15

solve query(random goal());16
if good success rate() then17

break;18

the purpose of collecting data samples, the robot can be

positioned anywhere as long as it is in contact with the

object. The robot can be in contact with the object at multiple

points. The robot’s push direction can be in any direction

such that it moves the object by at least a small distance.

C. Initial Data Collection

The objective of the initial data collection process is to

start with no data, and collect a variety of robot pushes and

object movement as quickly as possible. Although we can

use more sophisticated methods to decide where and how the

robot should push the object, we choose to use a randomized

strategy that is simple but effective. The idea is to place the

robot and object on a flat workspace (ie. a table) with a pre-

defined boundary, and automatically run the data collection

process without human intervention. The basic strategy is

to choose a random direction and distance (within certain

limits) for the robot to push with from its current position.

Algorithm 1 (Initial) collects K samples of data.

reset robot() is executed if a robot push does not move

the object (ie. robot is not in contact with the object). In

this case, we spin the robot to face the position of the

marker attached to the object and move the robot forward

until a small change in the object’s position is detected.

reset robot ob j boundary() is executed if the robot pushes

the object outside the boundary. In this case, we move the

robot around the object so that it can push the object back

inside the boundary (Fig. 3). The collected data can be used

immediately.

D. Experimental Evaluation of Existing Data

After we collect some data with the above method, we can

experimentally evaluate this data (Algorithm 1 Experimental

Evaluation) to test whether or not it has enough samples

for successfully solving goal queries (ie. pushing object to

goal). This is an optional process. The idea is to choose

Fig. 3. The operations in reset robot ob j boundary() in Algorithm 1. Let
the bound-all circle’s center be the object’s center, and radius be the sum of
the robot’s radius, the object’s bounding circle’s radius and a small amount
of extra space. (a to b) The robot pushed the object outside the boundary,
and we spin and move the robot to the closest point on the bound-all circle.
Let the push-point be the point on the bound-all circle such that the vector
from that point to the object’s center is perpendicular to the boundary. (c-
1,2,3) We keep spinning and moving the robot along points on the bound-all
circle until it reaches the push-point. (d) We then spin and move the robot
towards the object until it pushes the object inside the boundary (not shown).

random goal queries, and try to use the current pushing

strategy (with the non-parametric method in the next section)

to solve them. If we can solve these goal queries with a good

success rate, we have enough samples and can stop collecting

data. Otherwise, this process keeps collecting supplemental

data even if the goal queries are not successfully solved.

We add the supplemental samples to the pushing strategy

interactively and use them immediately.

In Algorithm 1 (Experimental Evaluation),

ob ject not move() is true if the robot pushes forward

but the object does not move (ie. the robot has moved away

from the object). reset robot(), ob j outside boundary(),
and reset robot ob j boundary() are the same as in the

initial data collection process. over time limit() is true
if an execution of solve query() is not solved before a

certain time limit. solve query() drives the robot to deliver

the object towards the goal. It uses the data and the

non-parametric method in the next section. The query fails

if any of the conditions in lines 12 and 14 are true. New

supplemental data is stored and used immediately during

each query. good success rate() is true if the previous ten

queries succeeded. The number of previous queries is a

parameter.

E. Object Delivery by Using Collected Data

We describe how to use the collected pushing strategy to

control the robot to push the object towards the goal. In

the general case (Algorithm 2), we find the goal direction

(from object to goal) and the robot position, and use the

pushing strategy and non-parametric kernel regression to

compute the robot push direction that results in that goal

direction. We continuously perform this computation and

execute the appropriate robot push until the object reaches

the goal. Although pushing can be unstable, the continuous

computation and execution of small pushes help to adjust for

the noise and errors from pushing.

In Algorithm 2 (General Case), the values are in the



Algorithm 2: Object Delivery by Using Collected Data

General Case:
(px, py) = R.pos;1
(sx,sy) = o f f set ∗ normalize(Goal.pos−O.pos);2
foreach samplei ∈ D do3

disti = dist(samplei,(px, py,sx,sy));4
K = set o f indices o f k smallest disti;5
for k ∈ K do6

weightk = exp
(
−dist2

k
K2

w

)
;

7

(rx,ry) =
∑k∈K (weightk ∗ (rxk ,ryk))

∑k∈K weightk
;8

Special Case (if last robot push moves object away from goal):
(sx,sy) = o f f set ∗ normalize(Goal.pos−O.pos);9
foreach samplei ∈ D do10

disti = dist(samplei,(sx,sy));11
K = set o f indices o f k smallest disti;12
for k ∈ K do13

weightk = exp
(
−dist2

k
K2

w

)
;

14

(px, py,rx,ry) =
∑k∈K (weightk ∗ (pxk ,pyk ,rxk ,ryk))

∑k∈K weightk
;15

object’s coordinate frame. o f f set adjusts the length of

(sx,sy) such that it is near the range of the corresponding

vectors in the pushing strategy. The dist() function com-

putes the Euclidean distance between (px, py,sx,sy) and the

corresponding values in each samplei. We take the nearest k
samples for the kernel regression. Kw is the kernel width. We

use k = 5 and Kw = 8 pixels (or about 1.8cm) in our tests.

We execute the robot push direction given by (rx,ry).
The regression method described above only allows the

robot to push the object from its current position. As the

robot pushes the object towards the goal, it may deviate

from the goal because it can only adjust its push direction.

It may be possible that the best robot push direction pushes

the object away from the goal (Fig. 4a). If this happens,

we execute a special regression case to re-position the robot

(Fig. 4b and Algorithm 2 Special Case). The idea is to first

find the goal direction (from object to goal), and then use

the pushing strategy to find both the robot position and
push direction that results in that goal direction. We move

the robot to the computed position, execute a push in the

computed direction, and then return to the general case (or

until a special case is needed again).

Fig. 4. (a) The “best” robot push direction may push the object away from
the goal. (b) If this happens, we perform a special regression step where we
use the pushing strategy to find both the robot position and push direction.

In Algorithm 2 (Special Case), the dist() function uses

only (sx,sy) and not the robot position. Instead the position

(px, py) is computed. The robot moves to (px, py) by moving

around the object similar to the way it does in Fig. 3. It then

executes a push in the computed direction (rx,ry).
The runtime and storage space for Algorithm 2 are both

in the order of the size of the pushing strategy. As there

are about hundreds of samples in the pushing strategy, the

runtime and storage space are not practical concerns.

As our focus is on local pushing algorithms, we focus on

cases where there are no obstacles. If there are obstacles,

we first compute a global collison-free path with existing

planning techniques [15], and then execute the robot to push

the object along sub-goals of this path.

IV. IMPLEMENTATION

Hardware. Our system (Fig. 5) consists of a robot, a

ceiling-mounted USB web camera (Logicool Qcam Pro for

Notebook, 2M pixels), and a host computer (Dell Latitude

E6400, Intel Core2 Duo T9800 2.93GHz processor running

Windows XP). The host computer continuously tracks the

position/orientation of the robot, object and goal with the

camera, and wirelessly sends control signals to the robot.

We use a small custom-made differential drive robot with

a circular bumper. We use unique markers [16] to identify

the robot, object, and goal. These markers provide a simple

method for recognition, but other methods can also be used.

Fig. 5. Hardware configuration.

Software. The tracking and control program was written

in JavaTM. It uses a 2D tracking system with proprietary

visual markers, similar to the AR ToolKit [16]. The markers

have a 3x3 black-and-white pattern enclosed in a black

frame, and size of 5x5 cm. The system can uniquely detect

the identity, position, and orientation of each marker. The

camera resolution is 960x720 at 30 fps, with a delay of

approximately 30 ms.

The control program continuously receives the markers’

positions/orientations. Based on this information, it computes

the desired robot movement using the algorithms described

in the previous section. It then sends low-level control com-

mands (move forward/backward, spin left/right, and stop) to

the robot to execute the desired movement. To move the

robot forward by a specific amount, the robot starts to move

forward and stop when it has travelled within a small value

of that amount. If the robot moves forward (or backward) by

too much, we allow it to move backward (or forward). This

resolves issues of noise in the captured positions/orientations.

We use a two-level movement scheme: we first move the

robot at a coarser level (by larger distances), and then move

it at a finer level (by smaller distances). The coarser level is



useful for speed, while the finer level is useful for accuracy.

The spin commands are executed in a similar way.

V. EMPIRICAL EVALUATION

Fig. 6 shows the robot and irregular-shaped objects that we

used. The irregular shape with two markers are two separate

cases. We cover one of the markers during our experiments.

We intentionally put one marker near the middle of the shape

and one marker near the corner to test the robustness of

our approach. We only used the goal position (and not the

orientation) in our experiments. We empirically show that

our pushing strategy collection and robot control algorithms

work well and, most importantly, are independent of the
shape and weight distribution of the object.

Fig. 6. Sizes of robot and irregular-shaped objects.

Pushing Strategy. Fig. 7 shows the pushing strategy for

each object. In each case, we first collect samples with the

initial method. We then performed the experimental evalu-

ation process until we can successfully solve ten previous

queries. This process also collects supplemental samples.

Fig. 7 shows the total number of samples and total time.

About a quarter of the total number and time is for the sup-

plemental data. In our experiments, the initial data collection

method already gives us good pushing strategies. Hence the

evaluation process is mainly for verification purposes, and

having the supplemental data was not a necessity. However,

having more data can only help the algorithm.

An advantage of the initial method is that we can easily

collect a variety of robot pushes with different positions and

directions. The variety comes automatically from pushing

with a random direction from the robot’s current position,

and from the robot turning around the object due to the

boundary. An interesting observation is that the robot posi-

tions that are more likely to be encountered in practice (due

to the overall shape of the object) are more likely to have

more sample points in the pushing strategies. A disadvantage

is that it can take a long time to collect a good variety

of data. However, the data can be collected without human

intervention and this is not a practical concern.

The advantages of the experimental evaluation method are

that we can test if we have enough data with the current

pushing strategy, and we can collect supplemental data at

the same time. A disadvantage is that the additional samples

are a weighted combination of existing samples and hence

are not “new” samples. To resolve this issue, we can collect

data by alternating the initial and experimental evaluation

Fig. 7. Pushing strategy for (from top left) irregular, irregular-corner, L-
shape, wire-cutter, scissors, and snake-shape. Each data sample (ie. change
in robot position and corresponding change in object position) has its own
color. There are 423, 217, 680, 245, 329, and 219 samples respectively.
Collection times are 116, 99, 180, 56, 73, and 85 minutes respectively.

methods several times, and stopping when the evaluation

method can successfully solve the previous ten queries.

We found that this is not necessary in our experiments,

as the initial data collection already gives us good pushing

strategies.

Shape Independence. We use the same data collection and

object delivery algorithms, independent of the object’s shape.

Fig. 8 shows example trajectories of the robot and object.

Please see the accompanying video for more examples.

Fig. 8. Robot (blue) and object (red) trajectories for four trials. The robot
and object are at the end of the trajectory in each case. In (a), (b), and (d),
the robot re-positions itself around the object once at the beginning and
once more before reaching the goal. A strength of the algorithm is that we
do not need to specify when and the number of times to re-position the
robot.

Parameters. We use k = 5 and Kw = 8 pixels. In general,

we can use a larger Kw value if the environment is larger.

We experimented with slightly different values of these

parameters and found no significant influence on the result.

Learning Rate. Fig. 9 shows examples of the learning

rate from our experiments. A trial succeeds if the distance

between the goal and the object’s marker position is less than

10 pixels in the camera view (or about 2.2cm). A trial fails if

the robot or object goes outside the boundary, or the system



goes into an infinite loop (in which case we terminate the

execution after 8 minutes).

Fig. 9. Each point on the plots are for the same ten goal queries. In
general, a larger number of samples in the pushing strategy leads to a higher
success rate. The rate of increase (of the success rate) tends to decrease as
the number of samples is large.

Comparison with Dipole Method. We compared our

method with the dipole field method [5] (Fig. 10 and 11).

Our method has a better success ratio than the dipole method

in all cases. There are cases where the dipole method works

by coincidence depending on the object’s shape and initial

configuration. For the L-shape, our method fails for two

trials because the object went outside of the boundary. If

the boundary were bigger (ie. our table was bigger), we

believe that our method would have succeeded, as the L-

shape required more space to maneuver.

Fig. 10. Layout of test environment.

Fig. 11. Comparison between dipole field method and our method. We
show the success percentage out of 10 trials.

VI. LIMITATIONS AND FUTURE WORK

Our approach requires collecting a pushing strategy for

each object. It is possible to scale an existing pushing

strategy for objects of the same shape but different scale.

We may further use existing strategies and generalize them

for different shaped objects in the future. In addition, some

pushing strategies may contain more data than we need, and

we can explore the idea of pruning the samples that do not

improve the result significantly. We can also more formally

analyze the relationships between the number of samples

needed, the object shape, the location of the marker, and

the success rate.

Our algorithm is not optimal and not complete. We also

currently do not analyze the quality of the solution. These

limitations are because our approach is greedy and learning-

based. The tradeoff is that our approach works for any

irregular-shaped object and is easy to understand.

Our current method for handling obstacles is simple and

may fail. For example, we may ask the robot to push left (or

push from the right) when there is an obstacle to the right.

In the future, we can take into account such cases with our

pushing approach.

For future work, we can define a formal measure of

the variety of samples in a pushing strategy based on the

robot positions and push directions. The idea is that if there

are regions of the object without samples (or without as

many samples), we should detect this automatically and

explicitly instruct the robot to collect more samples in those

regions. This can also improve the current runtime of the

data collection process.

REFERENCES

[1] B. P. Gerkey and M. J. Mataric, “Pusher-watcher: An approach to fault-
tolerant tightly-coupled robot coordination,” in Int’l Conf. on Robotics
and Automation (ICRA), May 2002, pp. 464–469.

[2] D. Nieuwenhuisen, A. Frank, and H. Overmars, “Path planning for
pushing a disk using compliance,” in In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2005, pp. 4061–4067.

[3] D. Nieuwenhuisen, A. van der Stappen, and M. Overmars, “Pushing
using compliance,” in ICRA, 2006, pp. 2010–2016.

[4] M. de Berg and D. Gerrits, “Computing push plans for disk-shaped
robots,” in Int’l Conf. on Robotics and Automation (ICRA), May 2010.

[5] T. Igarashi, Y. Kamiyama, and M. Inami, “A dipole field for object
delivery by pushing on a flat surface,” in ICRA, 2010.

[6] M. Salganicoff, G. Metta, A. Oddera, and G. Sandini, “A vision-based
learning method for pushing manipulation,” in AAAI Fall Symposium
on Machine Learning in Computer Vision, 1993.

[7] S. Walker and J. K. Salisbury, “Pushing using learned manipulation
maps,” in ICRA, 2008, pp. 3808–3813.

[8] R. Emery and T. Balch, “Behavior-based control of a non-holonomic
robot in pushing tasks,” in ICRA, 2001.

[9] K. Lynch and M. T. Mason, “Stable pushing: Mechanics, controllabil-
ity, and planning,” vol. 15, no. 1, December 1996, pp. 533–556.

[10] K. Lynch, “Estimating the friction parameters of pushed objects,” in
IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, 1993, pp.
186–193.

[11] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda, “Vision-based
reinforcement learning for purposive behavior acquisition,” in Int.
Conf. on Robotics and Automation, 1995, pp. 146–153.

[12] T. Nakamura and M. Asada, “Motion sketch: Acquisition of visual
motion guided behaviors,” in IJCAI, 1995, pp. 126–132.

[13] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,”
in International Conference on Machine Learning, 1997, pp. 12–20.

[14] D. C. Bentivegna and C. G. Atkeson, “Learning from observation using
primitives,” in ICRA, 2001, pp. 1988–1993.

[15] S. M. LaValle, Planning Algorithms. Cambridge University Press
(also available at http://planning.cs.uiuc.edu/), 2006.

[16] H. Kato, M. Billinghurst, B. Blanding, and R. May, “AR ToolKit,” in
Technical Report, Hiroshima City University, Dec 1999.


