

Phybots: A Toolkit for Making Robotic Things
Jun Kato1&2 Daisuke Sakamoto1&2 Takeo Igarashi1&2

1The University of Tokyo, Tokyo, Japan 2JST ERATO, Tokyo, Japan
{jun,kato | d.sakamoto | takeo}@acm.org

ABSTRACT
There are many toolkits for physical UIs, but most physical
UI applications are not locomotive. When the programmer
wants to make things move around in the environment, he
faces difficulty related to robotics. Toolkits for robot
programming, unfortunately, are usually not as accessible
as those for building physical UIs. To address this
interdisciplinary issue, we propose Phybots, a toolkit that
allows researchers and interaction designers to rapidly
prototype applications with locomotive robotic things. The
contributions of this research are the combination of a
hardware setup, software API, its underlying architecture
and a graphical runtime debug tool that supports the whole
prototyping activity. This paper introduces the toolkit,
applications and lessons learned from three user studies.

Author Keywords
Toolkits, prototyping, and robotic things.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces – prototyping. I.2.9 [Artificial Intelligence]: Robotics
– commercial robots and applications.

INTRODUCTION
What if you could just relax on the sofa and your speakers
would automatically move to the position that sounds best
for you? What if your alarm clock runs away from you
while it is ringing in the morning? Would not everyday life
be more interesting when you can add some degree of
animacy to everyday things and have them move around in
your everyday space?

In the research area of Human-Computer Interaction and
robotics, such applications are respectively called “Physical
User Interfaces” and “Robots.” There are many toolkits for
prototyping physical UIs and robots, but their coverage is
usually one-sided (Table 1). Toolkits for physical UIs
provide hardware and software building blocks for building
physical UIs, but the application programming interfaces
(APIs) are usually thin wrappers around hardware
components. They do not provide support for the time-
consuming task of integrating sensor input and actuator

output; e.g., to move to a specified position by controlling
differential wheels according to camera input. As a result,
most of the resulting applications are not locomotive and
are fixed to a specific position in the environment.

On the other hand, while many toolkits exist to create
robots that move around in the real world, most of them
focus on the development of a reliable robot whose
hardware components tend to be expensive, with many
precise sensors and actuators. They are mainly interested in
making robots perform tasks automatically and providing
support to implement basic capabilities such as localization,
mapping, and recognition. Therefore, prior knowledge of
robotics is required for the programmer to choose and
configure appropriate modules.

The goal of our research is to enable the rapid prototyping
of user experiences with locomotive robotic things. By
robotic things, we mean those things that have some
degrees of freedom to move around in the real world, such
as physical icons with mobility on a tabletop interface [15],

Toolkits for: Physical UIs Robotic Things Robots

Target
users:

HCI researchers and
interaction designers

Robotics people

Focus: Prototyping Reliability

Software
APIs:

Low-level
and static High-level and extensible

Hardware
size & cost:

Small & cheap (Phidget Kit
$200, Ikimo Robot [9] $160)

Medium to large &
expensive ($700~)

Table 1. Comparison between toolkits

Figure 1. Overview of the prototyping environment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DIS 2012, June 11-15, 2012, Newcastle, UK.
Copyright 2012 ACM 978-1-4503-1210-3/12/06...$10.00.

and small mobile robots that fold clothes [18] or cook meals
[19]. To achieve this goal, we have designed “Phybots” as a
simple setup of inexpensive hardware along with a software
toolkit. Contributions of this research are the combination
of (1) a hardware setup (Figure 1) and software APIs for
two-dimensional locomotion, (2) an extensible software
architecture, and (3) a graphical runtime debug tool, all of
which are validated by three user studies.

First, Phybots assumes a simple and inexpensive hardware
setup of a camera looking down on the floor and visual
markers attached to the top of physical objects. This
hardware setup can easily be deployed to everyday spaces
such as a working desk, a dining table or in a kitchen or
living room. Given the hardware setup, Phybots provides
APIs for two-dimensional localization and locomotion of
floor-based robotic things. These APIs are similar to those
for graphical applications in which object positions are
defined by screen coordinates, and support moving to a goal,
pushing an object toward a goal, tracing a path, and other
custom behavior by specifying a vector field.

Second, Phybots APIs are built on top of a centralized and
extensible software architecture that runs on one personal
computer and manages all physical objects of interest
including cameras, robotic things, and entities with visual
markers. The programmer has direct access to these objects
as instances of the Camera, Robot and Entity interfaces,
respectively. Time-consuming tasks including locomotion
APIs are represented by Task interface. The toolkit can be
easily extended on top of these software stacks to support
other types of sensors, roobts, and tasks. In addition, a
Workflow class represents a directed graph consisting of a
set of Robot and Task instances, and enables higher-level
task management such as handling multiple tasks by one
robot in serial or by two robots in parallel.

Third, Phybots provides a runtime debug tool that supports
a test phase, beyond the programming phase, as an essential
part of the prototyping process. In the robot application test
phase, when the robot fails to accomplish its task, the user
usually has to order the same task to be performed again.
Because it is too costly to restart a test run for each error,
the programmer often wants to fix the error right away
without restarting. To support this workflow, a graphical
runtime debug tool enables API parameter reconfiguration,
restart, pause, or resume of the interaction at run-time. For
example, when the robotic thing fails to move to a desired
destination, the programmer can change the threshold of the
marker detection algorithm by dragging a slider and then
give the robot another try.

RELATED WORK
APIs, software architecture, and a runtime debug tool of
Phybots aim to solve the deficiencies of existing toolkits for
robots and physical UIs, and we borrow good points from
each.

Toolkits for Physical User Interfaces
Recent trends in HCI places an emphasis on physical
interaction that requires new hardware configurations with
sensors and actuators. Papier-Mache [11] is a toolkit for
building tangible interfaces consisted of well-defined APIs,
software architecture, and graphical tools for development
support. Our toolkit takes this approach in the field between
physical UIs and robotics. Phidgets [6] encapsulates a
sensor or actuator as a package with a USB interface and
provides software APIs to control the package. Phybots also
abstracts hardware but provides higher-level task centric
APIs. Arduino [1] lowers the threshold for embedded
programming, which was used in our user study to build
robots. While these toolkits only support the programming
phase of the prototyping process, d.tools [7] additionally
supports the test and analysis phases by recording and
playing video of the user interaction, synchronized with
transition visualization in the program components. Our
toolkit also supports the test phase through runtime debug
tools and differs from d.tools in that it allows configuring
API parameters and testing the interaction scenario many
times without restarting the application.

Toolkits for Robots
There are many robot programming toolkits with much
overlap in their functionalities. Most of them can be
categorized into one of three types according to their
purposes.

The first type is middleware that abstracts hardware and
provides functionality for message passing between
software components in a distributed environment. Robot
Operating System (ROS) [16] constructs a peer-to-peer
network in the environment and abstracts general-purpose
services including robots and sensors, which is similar to
Decentralized Software Services of Microsoft Robotics
Developer Studio (MRDS) [12]. On the other hand, Player
[5] works as a proxy server to the robots. The programmer
has virtually direct access to the connected devices with
these toolkits. However, the connection requires some prior
configuration that is not as easy as our case of presuming
one host computer. Our toolkit is not designed to become a
software platform in a distributed environment, but is
intended to provide a lightweight development environment
with less configuration.

The second type is a collection of algorithms studied in the
specific research domain of robotics. For example, the
Carnegie Mellon Robot Navigation Toolkit [13] provides
basic localization and navigation functionality OpenCV
[14] provides implementation of many vision-based
algorithms, which is included in ROS. Though these
toolkits free the programmer from detailed implementation,
they are still required to learn related topics beforehand. In
contrast, our toolkit supports fewer algorithms related to
marker detection and two-dimensional locomotion, but
provides enough functionality for the prototyping of robotic
things. In addition, our APIs are a similar to those for

programming graphical UIs since we regard HCI
researchers and interaction designers as our target users.

The third type are toolkits for educational and entertainment
purposes, which aim to allow easy development of robot
applications. These toolkits are similar to ours in that they
enable non-experts to program robots, where the difference
lays in the target users, applications, and the resulting
methods of supporting them. For instance, LEGO
Mindstorms [4] provides a set of hardware building blocks
and a visual programming language (VPL) that enables
young children to learn programming. It contains support
for parallel execution of multiple tasks similar to our
Workflow abstraction, but then cannot benefit from other
software libraries since it is specially designed for the
Mindstorms hardware. Topobo [17] is a construction toy
with built-in actuators whose motion can be specified by
demonstration with the user’s hands and so does not even
need a development environment on; but then lacks
extensibility just as the Mindstorms VPL. Our toolkit
provides Java APIs for a desktop programming
environment and can easily be connected with other input
and output devices, such as a mouse, keyboard, camera,
gamepad, voice, physical UIs, display, projector, and
speaker. Pyro [2] helps students learn programming and
artificial intelligence algorithms while providing
locomotion APIs for Python that can specify the relative
movement of a robot from a current position, but does not
support the prototyping and debugging of practical
applications as our toolkit does.

PROTOTYPING SCENARIO
Before describing the concrete features of our toolkit, we
introduce an example prototyping scenario to provide an
overview of Phybots development. This scenario is based
on one of our user study applications that makes an alarm
clock run away from the user while it is ringing. Please note
that the programmer often went backward and forward
among these steps to iteratively complete their project.

The programmer first prepares the hardware, including a
webcam, visual markers, a robotic thing, and a personal
computer (PC) (Figure 1). An alarm clock is broken down
and connected to Ikimo [9], an open-source mobile robot kit
based on Arduino [1]. Basically, the programmer needs to
prepare the robotic hardware, which is supported by
physical UI toolkits or cheap robots. Specifically, Phybots
has built-in support for Ikimo and LEGO Mindstorms NXT
whose components can be assembled with other actuators
and sensors to build a robotic thing without soldering. The
robot can then be connected to the PC via Bluetooth and
controlled by our toolkit.

The programmer next starts coding (Code 1). They write a
few sentences in the main function to task the Ikimo robot
with simply going forward and then run the program to test
the connection between the robot and PC. After they
confirm the connection, they write more code to test if the

hardware configuration is correct and the alarm rings
properly. They also design a vector field that causes the
alarm clock to run away from the user. Since the alarm
clock was broken down, they need to prepare a graphical
user interface to allow the user to set the alarm time.
Though we omitted the details, the programmer iteratively
writes this code and tests whether each code snippet works
properly.

Finally, the programmer integrates all of their code and
starts testing the whole application. While they test if the
alarm clock works as intended, they use the runtime debug
tool to monitor its status and configure API parameters until
its behavior stabilizes.

PHYBOTS: HARDWARE AND SOFTWARE
We now explain PhyBots’ hardware requirements and the
implementation of our software APIs. The building stacks
of the software architecture are shown in Figure 2.

Supported Hardware
The toolkit runs on a PC with a Java development
environment. Depending on the operating system, cameras
are controlled by DirectShow or QuickTime. Phybots has
built-in support for LEGO Mindstorms NXT, Ikimo, iRobot
Roomba and Create, but the programmer can add support
for any robot that can be controlled via Bluetooth, TCP/IP,
or the serial port.

APIs for 2D Locomotion
Two-dimensional (2D) locomotion in the environment is
one of the fundamental functions of a robot and is achieved
through localization and navigation. Our strategy in

Robot r = new Ikimo(“btspp://deadbeaf”);

// Test connection.
r.connect();
Task goForward =
 new GoForward();
goForward.assign(r);
goForward.start();

// Make the robot run away from the user while the bell rings.
VectorField vf = new VectorField() {
 // Define vector field responsive to the user’s position.
 public void getVectorOut(Position robotPos, Vector2D v) {
 Position personPos = markerDetector.getPosition(person);
 vector.set(
 robotPos.getX()-personPos.getX(),
 robotPos.getY()-personPos.getY());
 }
};
Task runAway = new VectorFieldTask(vf); Task ring = new Ring();
runAway.assign(r); ring.assign(r);
runAway.start(); ring.start();

Code 1. Code snippets written during the development

// Test a motor for ringing bells.
r.addExtension(“IkimoMotor”, Port.DC3);
r.connect();
IkimoMotor motor =
 r.requestResource(“IkimoMotor”, this);
motor.drive();

designing the APIs is to be as similar to graphical UI
applications as possible because they are well understood
by many programmers. New concepts are introduced only
when necessary. This strategy was evaluated in the first
user study as described later.

Localization in Global Coordinates
Although the 2D GUI coordinates are defined with respect
to the pixels of display devices, coordinates in the real
world are not defined a priori. Phybots defines the area of
interest by the field of view of the camera looking down on
a flat surface, while visual markers define the entities of
interest and whose positions are detected from images
captured by the camera. We use ARToolKit [10] markers
for the visual markers, whose detection algorithm is
available as an open source library.

With our toolkit, the location information of an entity, or
robotic thing, is provided by a MarkerDetector instance
implementing LocationProvider interface. The programmer
can simply call getLocation to get the location immediately
or addEventListener to get notified when the location is
updated. When built-in localization is not satisfactory,
another LocationProvider can be implemented that possibly
uses motion capture or other localization methods, retaining
the usability of the APIs. Location information is a 2D
coordinate combined with a direction in centimeters and
radian. The functionality to convert coordinates between the
real world in centimeters and the camera image in pixels is
provided by Camera instance that captures images, which is
expected to work with LocationProvider interface.

Navigation by Global Coordinates
The toolkit supports robotic things with differential wheels
that can go forward, go backward, as well as rotate left and
right in place. Navigating robots to a specified destination
on the floor in the real world corresponds to moving the
position of a component in a graphical UI. However, unlike
UI components, robots cannot instantly “teleport” to this
destination; they require running a localization feedback
loop that commands the robot until it arrives at the
destination.

To provide high-level navigation, the toolkit provides three
built-in classes: Move makes a robot go to a specified
position, Push makes the robot bring a specified object to a
specified position by pushing it, and TracePath makes it

visit specified waypoints in order. The instance of these
classes has assign-robot method to assign the task to the
robot instance and start, pause, resume, and stop methods
to control its status. Event listeners are used for
notifications when the task status has changed.

Vector Field Navigation
The above navigation APIs do not allow specifying
dynamic behavior of the robotic thing in responsive to
changes in the environment. For example, it is not easy to
make a robotic thing follow the user or another thing.

To provide a more flexible way to design interactive
behavior, the toolkit abstracts its strategy by means of
vector fields, which have long since been used in the field
of robotics [3]. Example vector fields are shown in Figure 3.
The programmer can define a strategy by providing a vector
field as an instance of the VectorField interface, on which a
robot moves in the direction of a vector at its position.
Actually, the Move and Push APIs are defined using vector
fields. A vector field for Move is like a whirlpool and for
Push is like an electric field from a dipole. When multiple
Push tasks for transporting the same object to the same
location are assigned to multiple robots, the robots achieve
cooperative transportation of the object [8]. In addition,
existing vector fields can be combined into a new one. For
example, the combination of the collision avoidance field
and Move task achieves navigation to the destination
without collisions.

Figure 2. Phybots software building stacks

Figure 3. Vector fields for navigation of robotic things.

Centralized and Extensible Architecture
As shown in Figure 2, APIs for 2D locomotion such as
Move and Push are provided on top of Phybots software
stacks. A Phybots singleton provides direct access to all of
the instantiated software components related to Phybots
such as cameras, robots, tasks, etc. The programmer can
define his own class on top of these stacks to extend the
toolkit to their own needs.

Robot, Resource, and Task Abstraction
Our toolkit abstracts both robots and tasks through the
Robot and Task interfaces and their abstract
implementations. A Robot instance has a set of function
units named resources. A Task instance requests one or
more resources of a Robot instance to carry out the task
such as pushing an object, cleaning the floor with brushes,
putting on and off a pen on the paper, etc.

The Resource interface serves three purposes. First, it
enables the dynamic building of a robot by composing
several hardware components. For example, a LEGO
Mindstorms robot has multiple ports to connect building
blocks such as actuators and sensors. If the capability of the
robot was statically described in a class definition, the
programmer would have to rewrite it whenever they
changed the hardware configuration. The resource
abstraction allows the programmer instead to construct a
robot instance dynamically with a different set of resources.

The second purpose is to improve the portability of the task
definition so that it can be used with various kinds of robots.
For example, navigation APIs introduced in the previous
section request WheelsController for mobility functions. As
long as a robot has a WheelsController resource, the robot
can be used in any application that uses the navigation APIs.

Third purpose is to enable the safe assignment of multiple
tasks to one robot at the same time. Some types of tasks
need to obtain resources of a robot exclusively, which is
managed by the toolkit. For example, an output to an
actuator should be controlled from at most one task at a
time, while observation of the output does not need such
exclusive control. In this case, interfaces for observation
and control are defined separately as Wheels and
WheelsController. An interface that requires exclusive
control must extend the ExclusiveResource interface, whose
instance is managed properly by the toolkit to avoid any
conflict.

With these abstractions, backend code that runs the
feedback loop to accomplish a certain type of task is written
as a class definition and is instantiated and controlled from
user interface code without needing to learn its
implementation.

Workflow for Higher-level Task Management
The toolkit provides a data structure named workflow for
higher-level task management based on the task abstraction,
which represents the procedure of tasks by one or more

robots. A workflow is a kind of directed graph whose
specification is drawn from the activity diagram of the
Unified Modeling Language (UML) 1.0 [21]. The diagram
is used to show the flow of discrete stepwise activities,
which is similar to the traditional flowchart but different in
that the diagram allows concurrent execution of multiple
nodes. The workflow data structure consists of nodes and
directed edges. An action node represents a task and a robot
assigned to it. A control node such as a fork or join node
coordinates program flow. Each directed edge represents a
transition from one node to another that is usually activated
when the process in the source node is finished, such as on
task completion. Since robot applications must often handle
timeouts, we also provide a convenient “timeout transition”
that activates when a specified time has passed since the
process in the source node was started.

Each workflow instance is constructed through a user
interface that relieves the programmer from writing many
event listeners to manage the status of multiple tasks. Since
the Workflow class and Task interface share their major
purpose of encapsulating time-consuming processes, both
of them have methods to control their status and add event
listeners to receive status change notifications.

Runtime Debug Tool
During user tests of robot applications, the programmer
usually stands by the running system to check whether the
robot runs properly, and if not, to diagnose the cause of the
error and sometimes restart the system. However, such
debugging is not easy since there are many possibilities for
the cause including hardware (unstable wireless connection,
low battery, broken actuators, etc.) and software issues
(incorrect parameter configurations such as threshold for
binarizing images in the marker detection process,
maximum distance to the destination to judge Move task as
finished, etc.). In addition, restarting the whole system and
recovering the previous state takes time.

To address these issues, the toolkit provides an interactive
tool named the “runtime debug tool” (Figure 4). The tool
allows the programmer to monitor and configure the status
of the application, and re-run the task or workflow in order
to help figure out the error cause and remove the need to
restart whole system. It consists of three main components
described below, each of which is tightly coupled with the
APIs of our toolkit. All of the presented information is
accessible through methods of a Phybots singleton. These
components can be used not only for debugging but also as
part of an application so that it benefits from their rich
GUIs.

Entity Monitor
The entity monitor allows the programmer to monitor the
status of robots and objects, as well as change their
configuration and even instantiate a new robot instance. For
example, the programmer can monitor the status of the
output to the actuators of a robot. He can also change the

Bluetooth address and reset the connection to the robot. All
of the robot and object instances are registered to our toolkit
during their instantiation process and can be retrieved by
the getEntities method of the Phybots singleton. The results
can be filtered by specifying a class object such as
getEntities(Roomba.class). Each GUI component is
retrieved by getConfigurationComponent of a robot and
object instance, and the use of the component is not limited
in the runtime debug tool but can be used in the application
to allow parameter configuration by the end user.

Service Monitor
The service monitor allows the programmer to monitor,
configure parameters, and control the status of services,
which are active functions of our toolkit that include tasks,
such as capturing images from a camera, detecting markers,
and navigating a robot to the destination. All of the service
and task instances can be retrieved by the getServices
method of the Phybots singleton. As is the case for a robot
and object instance, every GUI component can be retrieved
for further use from a service and task instance.

Workflow Monitor
The workflow monitor allows the programmer to monitor
and control status of workflows. The programmer can save
the workflow and re-run it afterwards in the application to
test the same scenario many times. He can also solve the
hardware problems of a robot and re-run its workflow by:
stopping the workflow; restarting the robot; re-establishing
connection to the robot; and restarting the workflow.

USER STUDIES
We have iteratively developed, evaluated, and refined our
toolkit. Evaluations were carried out at two points during a
three years period. First, we provided the alpha version of
the toolkit with limited functionality to fourteen graduate
students who took HCI lecture courses in order to obtain
feedback about the navigation APIs. Second, after we
revised our toolkit to provide the complete functionality
described in this paper, we provided the toolkit to seven
graduate students majoring in HCI. We wanted to see the
breadth of the robot applications that can be prototyped

with our toolkit, as well as to know its limitation. At the
same time, we provided our toolkit to two graduate students
who are majoring in robotics and have development
experience with well-known robotics middle-ware; and had
discussions with them to compare this toolkit with other
robotics toolkits.

Providing an Alpha Version to HCI Students
Eleven groups formed of fifteen graduate students enrolled
in an HCI course attended this user study, which consisted
of a five times weekly one-and-half hour course lecture.
They are allowed to play with robots outside class hours.
We asked each student group to create an original robot
application with an alpha version of the toolkit that only
provides two-dimensional localization and navigation APIs.
We told the students that their deliverables would not affect
their course scores. Fourteen students had never written a
program for a robot before, while one student had
experience with writing a program for a LEGO Mindstorms
robot. We gave them our homebuilt mobile robots, visual
markers, web cameras, and the toolkit with a robot class for
the robots. The robot is wirelessly connected to a host
computer via Bluetooth. It measures 7.5 x 8.8 x 6.5 [cm]
and is driven by two stepping motors. Visual markers were
5.5 [cm] square. Cameras could capture images with 800 x
600 [pixels] at 30 [fps]. Along with the hardware, we
provided a one-and-half hour lecture to explain the
overview of the toolkit and provided sample codes and API
documents. The participants could ask any questions during
their development process.

After four one-and-half hour lectures, the student groups
spent four to seventeen days in total for the development

Figure 4. Runtime debug tool.

Figure 5. Applications developed by the students.

and all of them had successfully developed robot
applications; three of eleven results are shown in Figure 5.
The applications vary among new user interfaces for a robot,
multi-player games, and practical tools. Eight of eleven
groups reported that the programming with the toolkit were
easy. The rest three groups reported that the difficulty came
from parameter configuration, which shows that the
proposed set of localization and navigation APIs were used
effectively for rapid prototyping. The hardware setup could
be easily deployed on the desktop with cameras attached at
heights of about 50 [cm].

Lessons learned
First, the applications seemed to be limited by the hardware
and software specifications. Since we provided the robots
and the toolkit as one package for simplicity, they were not
designed to be extended by the students, and their technical
specifications were not open. As a result, the robots were
never extended mechanically, though one group attached
paper-made arms to a robot to gather objects. It was not
possible to define new locomotion strategies to be used
other than those predefined as APIs. These observations
revealed to us the importance of the extra features of the
robot besides the basic locomotion features. Therefore, we
were motivated to do a code refactoring of the toolkit so
that it can expose public interfaces and abstract classes to
provide enough extensibility for the programmer.

Second, the students appeared to avoid dealing with
complex workflows for robots. They simply called
navigation APIs in event listeners of GUI components. This
observation led us to provide workflow, a data structure to
relieve the programmer from high-level task management.

Third, the students complained that the API parameters
could not be easily configured. They tweaked the
parameters in source code and evaluated their performance
by restarting their applications many times. We noticed the
lack of support for the prototype test phase and planned to
implement the runtime debug tool.

Providing the Current Version to HCI Students
After we implemented the functionality described in this
paper, we ran a study with students again, though all of the
members were different from the first user study. With this
user study, we aimed to observe the whole process of
prototyping including hardware preparation, programming,
debug, and user test.

Three undergraduate and four graduate students from six
laboratories, all of whom majored in HCI, attended the user
study. Five students had experience of programming simple
robots. Two of the five had experience of building an
original robots and programming their firmware, while
three used prebuilt robots such as Roomba. Six students
have experience of using toolkits for physical computing
such as Arduino, Gainer, and SunSPOT. We asked each of
the seven students to create an original robot application

with the toolkit. We gave them Ikimo, an Arduino-based
open-source mobile robot, visual markers of 5.5 [cm] or 11
[cm] square, a web camera same as the first user study, and
the Phybot toolkit. An Ikimo robot is wirelessly connected
to a host computer via Bluetooth. It measures 10.5 x 13 x 7
[cm] and is driven by two direct current (DC) motors.
Along with the hardware, we overviewed the toolkit and
provided sample codes with API documentation.

All students spent two to four days to successfully develop

Figure 6. Applications developed by the students.

robot applications as shown in Figure 6. The time spent for
the development decreased significantly from the alpha
version, which shows the improvement of the overall
usability of the toolkit. They especially appreciated the
extendibility which enables adding new locomotion
strategies and supporting new robots and the runtime debug
tool, both of which are the main difference from the alpha
version. We will briefly introduce the resulting applications
below.

1. Miniature drive recorder: This application makes a
robot go around the specified object and take video with its
mounted mobile phone. Position and rotation of the camera
is also recorded along with the video, which can be used for
3D reconstruction. The TracePath task is used to control
the robot and GUI on captured images and is used to set the
position of the object and the radius of the circle to trace.

2. Beach flags with obstacles: This application is a two-
player game to make the player’s robots go into the center
circle as fast as possible while avoiding obstacles. All
robots are controlled by the Move task with an additional
vector field for collision avoidance. Their positions are
watched by an event listener to detect the goal. In its current
implementation, game status such as the goal area and the
name of the winner is shown in GUI with some special
effect.

3. MatereARdrone: This application provides a remote
control interface of a quadcopter capable of flying and
capturing images with its mounted camera. The
programmer wrote a robot class and resource classes for the
quadcopter to use its full feature. His future work is to use
this quadcopter as a source for MarkerDetector and make it
possible to navigate mobile robots on the floor without
limitation of the static camera position.

4. Cameraman robot: This application takes photos of
guests. First, it detects guest positions from the image
captured from the ceiling-mounted camera and calculates
an ideal position and rotation from which all of the guests
could be seen in a photo. Second, it navigates the robot to
this ideal position. Third, it takes photo with all of the
guests being in the frame. These actions are constructed as
a workflow and executed in order.

5. Alarm clock: This application rings an alarm bell and
gets away from the user when the specified time has come.
A vector field is used to design this behavior and a task is
defined to ring and stop the bell, which controls an extra
actuator connected to the robot. A GUI to set the time to
wake the user up is provided. The user’s position is tracked
by a ceiling mounted camera.

6. Hawk view: This application continuously provides a
heat map of the field that represents any kind of data
captured by a robot-mounted sensor such as temperature,
smell, sound, etc. The heat map is provided as follows. First,
the data is continuously retrieved by a mobile robot, which
navigates around the field. Then, the color representing the

data is displayed on a small LCD display on the robot. The
data on the LCD display is captured with its location by the
ceiling mounted camera and the result is plotted on the
screen.

7. Serving robot: This application monitors people coming
in and out of a public space such as a large table in a library.
The robot responds to the action of the users: When an
adult user sits on a chair, the robot delivers a cup of tea.
When a child user sits on a chair, it delivers a candy. When
some time has passed since the user sits on a chair, it
delivers a piece of cookie. When the user leaves his place,
the robot removes the garbage. These actions are detected
by the change of seeing and not seeing the marker on the
chairs. The robot navigates to the front of the user, waits for
a moment, and gets back by workflow. Things to deliver are
put onto the dish attached to the back of the robot by a
person who gets the instruction by the system behind the
scenes.

Lessons learned
While typical robot applications often use robots as their
primary user interface, it seems that using GUI (and
possibly other HCI techniques) as the user interface for
robots is also the promising way. Many of the students used
GUI as the primary channel to get user instruction to robots.
Three students (1, 2 and 6) used a top-down view as the
user interface for the robots, while the other three (3, 4, 5)
used their own GUI. The last one (7) did not provide any
apparent user interface for the end-users but monitored the
status of them to provide the service. In addition, it required
a person to work behind the scene to help the robot, and the
person got instruction from the system through GUI.

Providing extendibility to the toolkit through abstractions
such as vector field, robot, and task interfaces was
welcomed by the students. One student (5) defined a new
vector field (5) while another student (2) combined existing
vector fields to make a new one. Two students (3 and 5)
extended the toolkit to use his robot and to define a new
task to ring a bell

The programmers who have experience usingJava and GUI
programming (2, 4, 5, and 7) were familiar with inner
classes which are often used for event listeners. They
tended to write inner classes for definition of a vector field,
a task, and a listener to a task and workflow instance.
While these inner classes have access to the local variables
and thus allow convenient programming, this tendency led
him/her to write the whole code in one file. Since along
code in one file is difficult to read, the programmer should
divide the inner class to another file, as some students (3
and 6) did . Workflow prevented the programmers (4 and 7)
from writing many listeners to the tasks and thus prevented
the code to be too long.

Providing the Current Version to Robotics Students
Two graduate students from the robotics laboratory
attended the user study and partnered together. For their
research, they had used Robot Operating System (ROS)
[16], an open-source well-known middleware, First, we
gave them the same set of hardware as in the previous user
study – mobile robots, visual markers, web cameras and the
toolkit. Second, we provided the same one day lecture,
sample code, and documentations. When they adapted to
the toolkit with the sample code, we asked them to
implement the same application with ROS. The application
is called “click and run,” where the user clicks the position
on the camera image shown in a GUI window to make the
robot move to thatposition. After the implementation, we
interviewed the students to compare the toolkits.

The students successfully implemented almost the same
application with ROS. The module for the user interface
was written in C++ and was capable of showing received
images in a GUI window and sending clicked position
information to another module. To glue it with robot control
modules, they wrote code in Common Lisp, which runs on
another module named “euslisp.” There was a file to
describe dependency on other modules and a file to specify
options for running the system, such as the name of the
communication port etc. The total code length was 668
lines (586 lines for the GUI module and 82 lines for Lisp),
which was longer than our 130 lines sample code for
Phybots.

Lessons learned
Regarding the differences between the programming
languages, we cannot simply compare the lines of code. 586
lines of code is a relatively large number for the simple user
interface, which seems to root in the completely modular
architecture of the middleware. Since the user interface
module was connected to the other modules only with its
publicly defined channels, it must have assumed every
possible way to be used from the others and defined those
many channels. This is like writing a public class in Java
with public getter and setter methods. On the other hand,
when we write Java code in Phybots, a GUI class is usually
the main code itself, or is extended as an inner class of the
main code. It ensures that the GUI class is used from within
the main class only, removing the need to write many getter
and setter methods.

The user interface code was treated equally to the other
control modules in ROS, and it did not have direct access to
any specific model of the world including robots, objects,
and tasks. This is problematic because the user interface
often needs to know what kind of information it is
manipulating. Our toolkit provides direct access to the
world model from the user interface code, which makes the
prototyping easier.

Availability of many modules is thought to be a prerequisite
for a good middleware, but was also found to be a

shortcoming for novice users. The students complained that
it was difficult to learn about modules and that
documentation was lacking. The only way would be to
throw their questions to the online forum and wait for an
answer. On the other hand, our toolkit provides a good
starting point for general software programmers to
prototype robotic applications, thanks to its compact APIs,
event-driven programming, and rich GUI components.

DISCUSSION

Physical UIs, Robots, and Phybots
Phybots aims to provide a prototyping environment for
robotic things. While its application domain is between
physical UIs and robots, its target users are the same as
physical UIs. Therefore, we adopted the approach that
weighs more on the physical toolkit side.

First, in the user studies the robotic things were built from
building blocks without soldering. There was also no need
for microcontroller programming and the user could control
the hardware directly in Java code. It was as easy as the
physical UIs.

Second, Phybots required the camera as a global sensor set
in the environment instead of sensors attached to the robotic
things. Making an assumption on the environment is often
invalid in the robotics applications since many applications
are expected to work in an unknown environment. Though,
as shown in the user studies, everyday spaces could be
easily equipped with the hardware and turn into a known
environment for the applications. Therefore, our approach
was valid for the prototyping. Our future work may use a
depth camera such as Kinect instead of the normal camera
and implement techniques for object recognition to remove
the need of the visual markers on top of the object. It would
also allow natural interaction between the robotic things
and the user.

Third, built-in APIs for locomotion of robotic things only
provided basic functionality. In the second user study for
HCI students, some of them suggested us to implement
some algorithms for path planning to support TracePath
task. We recognize the needs and will provide handful APIs.
In the sense of functionality, we should port more useful
algorithms from robotics but keep the usability of the
exposed APIs. Our future work may implement a software
module for robotics middleware such as ROS that works as
a bridge between Phybots and the middleware. Then, its
plenty of modules will be accessible to our users.

3D World and 2D Workspace
Phybots supports only two-dimensional activities of mobile
robots. While it is possible to extend the framework to three
dimensions, we decided to focus on two dimensions for
several reasons. First, it is much easier to understand two-
dimensional coordinates and develop applications in them
because software programmers are familiar with GUIs that
use two-dimensional coordinates and whose standard input

and output devices such as a mouse and a display are
capable of processing two-dimensional information. Second,
two-dimensional information is often sufficient to represent
the global positions of the most relevant entities including
the robots, objects, and users because all of them usually
reside on a two-dimensional surface such as the desktop or
floor. Our assumption is that global locomotion tasks can be
handled in two-dimensional coordinates, while local
manipulation tasks require three-dimensional coordinates to
be performed robustly, such as picking up an object on the
floor and placing it on a shelf. Our future work will explore
how to support such manipulation tasks for more advanced
robots.

Human as Part of Robotic System
Serving robot in the second user study uses human behind
the scenes instead of a complex robot. This approach is
thought to be valid when we can assure that it is technically
possible to implement the robot. Such a case would rather
be encouraged in the prototyping, since the application
focuses in its interaction design with the end-user who does
not care about the backstage. Regarding the high-level
abstractions of Phybots, it is possible to define a Robot
class that represents human, whose resources would show
text message on a display or produce a speech sound to tell
what to do. To confirm this possibility, we implemented an
application to make human write figures on a piece of paper,
which was originally developed for a calligraphy robot.

CONCLUSION
In this paper, we proposed Phybots, a toolkit for making
robotic things. Its assuming hardware setup was easily
deployed to everyday places. The users could implement
various physical applications that showed possibilities of
adding mobility to everyday things. While the functionality
of the toolkit is limited compared to professional robotics
toolkits, its well-designed APIs could be easily understood
by the users and was enough for the rapid prototyping.
Phybots is open-source and available at http://phybots.com/.

ACKNOWLEDGEMENTS
We would like to thank all participants of the user studies
who enjoyed making robotic things with the toolkit.

REFERENCES
1.Arduino. http://www.arduino.cc/.
2.Blank, D., Kumar, D., L. Meeden., and Yanco, H. Pyro: A

python-based versatile programming environment for
teaching robotics. JERIC 2005, 3(4). ACM (2005).

3.Borenstein, J., and Koren Y. Real-Time Obstacle
Avoidance for Fast Mobile Robots. IEEE Trans. on
Systems, Man and Cybernetics, 19(5). (1989), 1179-1187.

4.Erwin, B., Cyr. M., and Rogers, C. LEGO Engineer and
RoboLab: Teaching Engineering with LabVIEW from
Kindergarten to Graduate School. International Journal
of Engineering Education 16, 3 (2000), 181-192.

5.Gerkey, B., Vaughan, R. T., and Howard, A. The
player/stage project: Tools for multi-robot and distributed
sensor systems. In Proc. ICAR 2003, (2003), 317-323.

6.Greenberg, S., and Fitchett, C. Phidgets: easy
development of physical interfaces through physical
widgets. In Proc. UIST 2001. ACM (2001), 209-218.

7.Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla,
L., Burr, B., Robinson-Mosher, A., and Gee, J. Reflective
physical prototyping through integrated design, test, and
analysis. In Proc. UIST 2006. ACM (2006), 299-308.

8.Igarashi, T., Youichi, K., Masahiko, I. A Dipole Field for
Object Delivery by Pushing on a Flat Surface. In Proc.
ICRA 2010, IEEE (2010), 5114-5119.

9. InMojo. Ikimo. http://www.inmojo.com/ikimo/.
10.Kato, H., and Billinghurst, M. Marker tracking and

HMD calibration for a video-based augmented reality
conferencing system. In Proc. IWAR 1999. (1999), 85-94.

11.Klemmer, S. R., Li, J., Lin, J., and Landay, J. A. Papier-
Mache: toolkit support for tangible input. In Proc. CHI
2004. ACM (2004), 399-406.

12.Microsoft. Microsoft Robotics Developper Studio.
http://msdn.microsoft.com/en-us/robotics/.

13.Montemerlo, M., Roy, N., and Thrun, S. Perspectives on
standardization in mobile robot programming: The
Carnegie Mellon navigation (CARMEN) toolkit. In Proc.
IROS 2003, IEEE/RSJ (2003), 2436-2441.

14.OpenCV. http://opencv.willowgarage.com/.
15.Pedersen, E., and Homæk, K. Tangible bots: interaction

with active tangibles in tabletop interfaces. In Proc. CHI
2011. ACM (2011), 2975-2984.

16.Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T.,
Leibs, J., Berger, E., Wheeler, R., and Ng, A. ROS: an
open-source Robot Operating System. In Open-source
software workshop of ICRA 2009, (2009).

17.Raffle, H., Parkes, A., and Ishii, H. 2004, Topobo: a
constructive assembly system with kinetic memory. In
Proc. CHI 2004, ACM (2004), 647-654.

18.Sugiura, Y., Igarashi, T., Takahashi, H., Gowon, T. A.,
Fernando, C. L., Sugimoto, M., and Inami, M. Graphical
instruction for a garment folding robot. In ACM
SIGGRAPH 2009 Emerging Technologies, ACM (2009).

19.Sugiura, Y., Sakamoto, D., Withana, A., Inami, M., and
Igarashi, T. Cooking with robots: designing a household
system working in open environments. In Proc. CHI
2010. ACM (2010), 2427-2430.

20.The Machine Perception and Intelligent Robotics Lab,
University of Malaga. The Mobile Robot Programming
Toolkit (MRPT). http://www.mrpt.org/.

21.UML Partners. 1997. Unified Modeling Language v. 1.0.
OMG document ad/97-01-14.

