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ABSTRACT 
There are many toolkits for physical UIs, but most physical 
UI applications are not locomotive. When the programmer 
wants to make things move around in the environment, he 
faces difficulty related to robotics. Toolkits for robot 
programming, unfortunately, are usually not as accessible 
as those for building physical UIs. To address this 
interdisciplinary issue, we propose Phybots, a toolkit that 
allows researchers and interaction designers to rapidly 
prototype applications with locomotive robotic things. The 
contributions of this research are the combination of a 
hardware setup, software API, its underlying architecture 
and a graphical runtime debug tool that supports the whole 
prototyping activity. This paper introduces the toolkit, 
applications and lessons learned from three user studies. 

Author Keywords 
Toolkits, prototyping, and robotic things. 

ACM Classification Keywords 
H5.2 [Information interfaces and presentation]: User Inter-
faces – prototyping. I.2.9 [Artificial Intelligence]: Robotics 
– commercial robots and applications.  

INTRODUCTION 
What if you could just relax on the sofa and your speakers 
would automatically move to the position that sounds best 
for you? What if your alarm clock runs away from you 
while it is ringing in the morning? Would not everyday life 
be more interesting when you can add some degree of 
animacy to everyday things and have them move around in 
your everyday space? 

In the research area of Human-Computer Interaction and 
robotics, such applications are respectively called “Physical 
User Interfaces” and “Robots.” There are many toolkits for 
prototyping physical UIs and robots, but their coverage is 
usually one-sided (Table 1). Toolkits for physical UIs 
provide hardware and software building blocks for building 
physical UIs, but the application programming interfaces 
(APIs) are usually thin wrappers around hardware 
components. They do not provide support for the time-
consuming task of integrating sensor input and actuator 

output; e.g., to move to a specified position by controlling 
differential wheels according to camera input. As a result, 
most of the resulting applications are not locomotive and 
are fixed to a specific position in the environment. 

On the other hand, while many toolkits exist to create 
robots that move around in the real world, most of them 
focus on the development of a reliable robot whose 
hardware components tend to be expensive, with many 
precise sensors and actuators. They are mainly interested in 
making robots perform tasks automatically and providing 
support to implement basic capabilities such as localization, 
mapping, and recognition. Therefore, prior knowledge of 
robotics is required for the programmer to choose and 
configure appropriate modules. 

The goal of our research is to enable the rapid prototyping 
of user experiences with locomotive robotic things. By 
robotic things, we mean those things that have some 
degrees of freedom to move around in the real world, such 
as physical icons with mobility on a tabletop interface [15], 

Toolkits for: Physical UIs Robotic Things Robots

Target 
users:

HCI researchers and 
interaction designers

Robotics people

Focus: Prototyping Reliability

Software 
APIs:

Low-level 
and static High-level and extensible

Hardware 
size & cost:

Small & cheap (Phidget Kit 
$200, Ikimo Robot [9] $160)

Medium to large & 
expensive ($700~)

Table 1. Comparison between toolkits 

 
Figure 1. Overview of the prototyping environment 
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and small mobile robots that fold clothes [18] or cook meals 
[19]. To achieve this goal, we have designed “Phybots” as a 
simple setup of inexpensive hardware along with a software 
toolkit. Contributions of this research are the combination 
of (1) a hardware setup (Figure 1) and software APIs for 
two-dimensional locomotion, (2) an extensible software 
architecture, and (3) a graphical runtime debug tool, all of 
which are validated by three user studies. 

First, Phybots assumes a simple and inexpensive hardware 
setup of a camera looking down on the floor and visual 
markers attached to the top of physical objects. This 
hardware setup can easily be deployed to everyday spaces 
such as a working desk, a dining table or in a kitchen or 
living room. Given the hardware setup, Phybots provides 
APIs for two-dimensional localization and locomotion of 
floor-based robotic things. These APIs are similar to those 
for graphical applications in which object positions are 
defined by screen coordinates, and support moving to a goal, 
pushing an object toward a goal, tracing a path, and other 
custom behavior by specifying a vector field. 

Second, Phybots APIs are built on top of a centralized and 
extensible software architecture that runs on one personal 
computer and manages all physical objects of interest 
including cameras, robotic things, and entities with visual 
markers. The programmer has direct access to these objects 
as instances of the Camera, Robot and Entity interfaces, 
respectively. Time-consuming tasks including locomotion 
APIs are represented by Task interface. The toolkit can be 
easily extended on top of these software stacks to support 
other types of sensors, roobts, and tasks. In addition, a 
Workflow class represents a directed graph consisting of a 
set of Robot and Task instances, and enables higher-level 
task management such as handling multiple tasks by one 
robot in serial or by two robots in parallel. 

Third, Phybots provides a runtime debug tool that supports 
a test phase, beyond the programming phase, as an essential 
part of the prototyping process. In the robot application test 
phase, when the robot fails to accomplish its task, the user 
usually has to order the same task to be performed again. 
Because it is too costly to restart a test run for each error, 
the programmer often wants to fix the error right away 
without restarting. To support this workflow, a graphical 
runtime debug tool enables API parameter reconfiguration, 
restart, pause, or resume of the interaction at run-time. For 
example, when the robotic thing fails to move to a desired 
destination, the programmer can change the threshold of the 
marker detection algorithm by dragging a slider and then 
give the robot another try. 

RELATED WORK 
APIs, software architecture, and a runtime debug tool of 
Phybots aim to solve the deficiencies of existing toolkits for 
robots and physical UIs, and we borrow good points from 
each.  

Toolkits for Physical User Interfaces 
Recent trends in HCI places an emphasis on physical 
interaction that requires new hardware configurations with 
sensors and actuators. Papier-Mache [11] is a toolkit for 
building tangible interfaces consisted of well-defined APIs, 
software architecture, and graphical tools for development 
support. Our toolkit takes this approach in the field between 
physical UIs and robotics. Phidgets [6] encapsulates a 
sensor or actuator as a package with a USB interface and 
provides software APIs to control the package. Phybots also 
abstracts hardware but provides higher-level task centric 
APIs. Arduino [1] lowers the threshold for embedded 
programming, which was used in our user study to build 
robots. While these toolkits only support the programming 
phase of the prototyping process, d.tools [7] additionally 
supports the test and analysis phases by recording and 
playing video of the user interaction, synchronized with 
transition visualization in the program components. Our 
toolkit also supports the test phase through runtime debug 
tools and differs from d.tools in that it allows configuring 
API parameters and testing the interaction scenario many 
times without restarting the application.  

Toolkits for Robots 
There are many robot programming toolkits with much 
overlap in their functionalities. Most of them can be 
categorized into one of three types according to their 
purposes. 

The first type is middleware that abstracts hardware and 
provides functionality for message passing between 
software components in a distributed environment. Robot 
Operating System (ROS) [16] constructs a peer-to-peer 
network in the environment and abstracts general-purpose 
services including robots and sensors, which is similar to 
Decentralized Software Services of Microsoft Robotics 
Developer Studio (MRDS) [12]. On the other hand, Player 
[5] works as a proxy server to the robots. The programmer 
has virtually direct access to the connected devices with 
these toolkits. However, the connection requires some prior 
configuration that is not as easy as our case of presuming 
one host computer. Our toolkit is not designed to become a 
software platform in a distributed environment, but is 
intended to provide a lightweight development environment 
with less configuration. 

The second type is a collection of algorithms studied in the 
specific research domain of robotics. For example, the 
Carnegie Mellon Robot Navigation Toolkit [13] provides 
basic localization and navigation functionality OpenCV 
[14] provides implementation of many vision-based 
algorithms, which is included in ROS. Though these 
toolkits free the programmer from detailed implementation, 
they are still required to learn related topics beforehand. In 
contrast, our toolkit supports fewer algorithms related to 
marker detection and two-dimensional locomotion, but 
provides enough functionality for the prototyping of robotic 
things. In addition, our APIs are a similar to those for 



 

programming graphical UIs since we regard HCI 
researchers and interaction designers as our target users. 

The third type are toolkits for educational and entertainment 
purposes, which aim to allow easy development of robot 
applications. These toolkits are similar to ours in that they 
enable non-experts to program robots, where the difference 
lays in the target users, applications, and the resulting 
methods of supporting them. For instance, LEGO 
Mindstorms [4] provides a set of hardware building blocks 
and a visual programming language (VPL) that enables 
young children to learn programming. It contains support 
for parallel execution of multiple tasks similar to our 
Workflow abstraction, but then cannot benefit from other 
software libraries since it is specially designed for the 
Mindstorms hardware. Topobo [17] is a construction toy 
with built-in actuators whose motion can be specified by 
demonstration with the user’s hands and so does not even 
need a development environment on; but then lacks 
extensibility just as the Mindstorms VPL. Our toolkit 
provides Java APIs for a desktop programming 
environment and can easily be connected with other input 
and output devices, such as a mouse, keyboard, camera, 
gamepad, voice, physical UIs, display, projector, and 
speaker. Pyro [2] helps students learn programming and 
artificial intelligence algorithms while providing 
locomotion APIs for Python that can specify the relative 
movement of a robot from a current position, but does not 
support the prototyping and debugging of practical 
applications as our toolkit does. 

PROTOTYPING SCENARIO 
Before describing the concrete features of our toolkit, we 
introduce an example prototyping scenario to provide an 
overview of Phybots development. This scenario is based 
on one of our user study applications that makes an alarm 
clock run away from the user while it is ringing. Please note 
that the programmer often went backward and forward 
among these steps to iteratively complete their project. 

The programmer first prepares the hardware, including a 
webcam, visual markers, a robotic thing, and a personal 
computer (PC) (Figure 1). An alarm clock is broken down 
and connected to Ikimo [9], an open-source mobile robot kit 
based on Arduino [1]. Basically, the programmer needs to 
prepare the robotic hardware, which is supported by 
physical UI toolkits or cheap robots. Specifically, Phybots 
has built-in support for Ikimo and LEGO Mindstorms NXT 
whose components can be assembled with other actuators 
and sensors to build a robotic thing without soldering. The 
robot can then be connected to the PC via Bluetooth and 
controlled by our toolkit. 

The programmer next starts coding (Code 1). They write a 
few sentences in the main function to task the Ikimo robot 
with simply going forward and then run the program to test 
the connection between the robot and PC. After they 
confirm the connection, they write more code to test if the 

hardware configuration is correct and the alarm rings 
properly. They also design a vector field that causes the 
alarm clock to run away from the user. Since the alarm 
clock was broken down, they need to prepare a graphical 
user interface to allow the user to set the alarm time. 
Though we omitted the details, the programmer iteratively 
writes this code and tests whether each code snippet works 
properly. 

Finally, the programmer integrates all of their code and 
starts testing the whole application. While they test if the 
alarm clock works as intended, they use the runtime debug 
tool to monitor its status and configure API parameters until 
its behavior stabilizes.  

PHYBOTS: HARDWARE AND SOFTWARE 
We now explain PhyBots’ hardware requirements and the 
implementation of our software APIs. The building stacks 
of the software architecture are shown in Figure 2. 

Supported Hardware 
The toolkit runs on a PC with a Java development 
environment. Depending on the operating system, cameras 
are controlled by DirectShow or QuickTime. Phybots has 
built-in support for LEGO Mindstorms NXT, Ikimo, iRobot 
Roomba and Create, but the programmer can add support 
for any robot that can be controlled via Bluetooth, TCP/IP, 
or the serial port. 

APIs for 2D Locomotion 
Two-dimensional (2D) locomotion in the environment is 
one of the fundamental functions of a robot and is achieved 
through localization and navigation. Our strategy in 

Robot r = new Ikimo(“btspp://deadbeaf”); 
 

// Test connection. 
r.connect(); 
Task goForward = 
    new GoForward(); 
goForward.assign(r); 
goForward.start(); 
 

// Make the robot run away from the user while the bell rings. 
VectorField vf = new VectorField() { 
    // Define vector field responsive to the user’s position. 
    public void getVectorOut(Position robotPos, Vector2D v) { 
        Position personPos = markerDetector.getPosition(person); 
        vector.set( 
            robotPos.getX()-personPos.getX(), 
            robotPos.getY()-personPos.getY()); 
    } 
}; 
Task runAway = new VectorFieldTask(vf); Task ring = new Ring(); 
runAway.assign(r); ring.assign(r); 
runAway.start(); ring.start(); 

Code 1. Code snippets written during the development 

// Test a motor for ringing bells. 
r.addExtension(“IkimoMotor”, Port.DC3); 
r.connect(); 
IkimoMotor motor = 
    r.requestResource(“IkimoMotor”, this); 
motor.drive(); 



 

designing the APIs is to be as similar to graphical UI 
applications as possible because they are well understood 
by many programmers. New concepts are introduced only 
when necessary. This strategy was evaluated in the first 
user study as described later. 

Localization in Global Coordinates 
Although the 2D GUI coordinates are defined with respect 
to the pixels of display devices, coordinates in the real 
world are not defined a priori. Phybots defines the area of 
interest by the field of view of the camera looking down on 
a flat surface, while visual markers define the entities of 
interest and whose positions are detected from images 
captured by the camera. We use ARToolKit [10] markers 
for the visual markers, whose detection algorithm is 
available as an open source library. 

With our toolkit, the location information of an entity, or 
robotic thing, is provided by a MarkerDetector instance 
implementing LocationProvider interface. The programmer 
can simply call getLocation to get the location immediately 
or addEventListener to get notified when the location is 
updated. When built-in localization is not satisfactory, 
another LocationProvider can be implemented that possibly 
uses motion capture or other localization methods, retaining 
the usability of the APIs. Location information is a 2D 
coordinate combined with a direction in centimeters and 
radian. The functionality to convert coordinates between the 
real world in centimeters and the camera image in pixels is 
provided by Camera instance that captures images, which is 
expected to work with LocationProvider interface. 

Navigation by Global Coordinates 
The toolkit supports robotic things with differential wheels 
that can go forward, go backward, as well as rotate left and 
right in place. Navigating robots to a specified destination 
on the floor in the real world corresponds to moving the 
position of a component in a graphical UI. However, unlike 
UI components, robots cannot instantly “teleport” to this 
destination; they require running a localization feedback 
loop that commands the robot until it arrives at the 
destination.  

To provide high-level navigation, the toolkit provides three 
built-in classes: Move makes a robot go to a specified 
position, Push makes the robot bring a specified object to a 
specified position by pushing it, and TracePath makes it 

visit specified waypoints in order. The instance of these 
classes has assign-robot method to assign the task to the 
robot instance and start, pause, resume, and stop methods 
to control its status. Event listeners are used for 
notifications when the task status has changed.  

Vector Field Navigation 
The above navigation APIs do not allow specifying 
dynamic behavior of the robotic thing in responsive to 
changes in the environment. For example, it is not easy to 
make a robotic thing follow the user or another thing. 

To provide a more flexible way to design interactive 
behavior, the toolkit abstracts its strategy by means of 
vector fields, which have long since been used in the field 
of robotics [3]. Example vector fields are shown in Figure 3. 
The programmer can define a strategy by providing a vector 
field as an instance of the VectorField interface, on which a 
robot moves in the direction of a vector at its position. 
Actually, the Move and Push APIs are defined using vector 
fields. A vector field for Move is like a whirlpool and for 
Push is like an electric field from a dipole. When multiple 
Push tasks for transporting the same object to the same 
location are assigned to multiple robots, the robots achieve 
cooperative transportation of the object [8]. In addition, 
existing vector fields can be combined into a new one. For 
example, the combination of the collision avoidance field 
and Move task achieves navigation to the destination 
without collisions. 

 
Figure 2. Phybots software building stacks 

 
Figure 3. Vector fields for navigation of robotic things. 



 

Centralized and Extensible Architecture 
As shown in Figure 2, APIs for 2D locomotion such as 
Move and Push are provided on top of Phybots software 
stacks. A Phybots singleton provides direct access to all of 
the instantiated software components related to Phybots 
such as cameras, robots, tasks, etc. The programmer can 
define his own class on top of these stacks to extend the 
toolkit to their own needs. 

Robot, Resource, and Task Abstraction 
Our toolkit abstracts both robots and tasks through the 
Robot and Task interfaces and their abstract 
implementations. A Robot instance has a set of function 
units named resources. A Task instance requests one or 
more resources of a Robot instance to carry out the task 
such as pushing an object, cleaning the floor with brushes, 
putting on and off a pen on the paper, etc. 

The Resource interface serves three purposes. First, it 
enables the dynamic building of a robot by composing 
several hardware components. For example, a LEGO 
Mindstorms robot has multiple ports to connect building 
blocks such as actuators and sensors. If the capability of the 
robot was statically described in a class definition, the 
programmer would have to rewrite it whenever they 
changed the hardware configuration. The resource 
abstraction allows the programmer instead to construct a 
robot instance dynamically with a different set of resources. 

The second purpose is to improve the portability of the task 
definition so that it can be used with various kinds of robots. 
For example, navigation APIs introduced in the previous 
section request WheelsController for mobility functions. As 
long as a robot has a WheelsController resource, the robot 
can be used in any application that uses the navigation APIs.  

Third purpose is to enable the safe assignment of multiple 
tasks to one robot at the same time. Some types of tasks 
need to obtain resources of a robot exclusively, which is 
managed by the toolkit. For example, an output to an 
actuator should be controlled from at most one task at a 
time, while observation of the output does not need such 
exclusive control. In this case, interfaces for observation 
and control are defined separately as Wheels and 
WheelsController. An interface that requires exclusive 
control must extend the ExclusiveResource interface, whose 
instance is managed properly by the toolkit to avoid any 
conflict. 

With these abstractions, backend code that runs the 
feedback loop to accomplish a certain type of task is written 
as a class definition and is instantiated and controlled from 
user interface code without needing to learn its 
implementation. 

Workflow for Higher-level Task Management 
The toolkit provides a data structure named workflow for 
higher-level task management based on the task abstraction, 
which represents the procedure of tasks by one or more 

robots. A workflow is a kind of directed graph whose 
specification is drawn from the activity diagram of the 
Unified Modeling Language (UML) 1.0 [21]. The diagram 
is used to show the flow of discrete stepwise activities, 
which is similar to the traditional flowchart but different in 
that the diagram allows concurrent execution of multiple 
nodes. The workflow data structure consists of nodes and 
directed edges. An action node represents a task and a robot 
assigned to it.  A control node such as a fork or join node 
coordinates program flow. Each directed edge represents a 
transition from one node to another that is usually activated 
when the process in the source node is finished, such as on 
task completion. Since robot applications must often handle 
timeouts, we also provide a convenient “timeout transition” 
that activates when a specified time has passed since the 
process in the source node was started. 

Each workflow instance is constructed through a user 
interface that relieves the programmer from writing many 
event listeners to manage the status of multiple tasks. Since 
the Workflow class and Task interface share their major 
purpose of encapsulating time-consuming processes, both 
of them have methods to control their status and add event 
listeners to receive status change notifications. 

Runtime Debug Tool 
During user tests of robot applications, the programmer 
usually stands by the running system to check whether the 
robot runs properly, and if not, to diagnose the cause of the 
error and sometimes restart the system. However, such 
debugging is not easy since there are many possibilities for 
the cause including hardware (unstable wireless connection, 
low battery, broken actuators, etc.) and software issues 
(incorrect parameter configurations such as threshold for 
binarizing images in the marker detection process, 
maximum distance to the destination to judge Move task as 
finished, etc.). In addition, restarting the whole system and 
recovering the previous state takes time. 

To address these issues, the toolkit provides an interactive 
tool named the “runtime debug tool” (Figure 4). The tool 
allows the programmer to monitor and configure the status 
of the application, and re-run the task or workflow in order 
to help figure out the error cause and remove the need to 
restart whole system. It consists of three main components 
described below, each of which is tightly coupled with the 
APIs of our toolkit. All of the presented information is 
accessible through methods of a Phybots singleton. These 
components can be used not only for debugging but also as 
part of an application so that it benefits from their rich 
GUIs. 

Entity Monitor 
The entity monitor allows the programmer to monitor the 
status of robots and objects, as well as change their 
configuration and even instantiate a new robot instance. For 
example, the programmer can monitor the status of the 
output to the actuators of a robot. He can also change the 



 

Bluetooth address and reset the connection to the robot. All 
of the robot and object instances are registered to our toolkit 
during their instantiation process and can be retrieved by 
the getEntities method of the Phybots singleton. The results 
can be filtered by specifying a class object such as 
getEntities(Roomba.class). Each GUI component is 
retrieved by getConfigurationComponent of a robot and 
object instance, and the use of the component is not limited 
in the runtime debug tool but can be used in the application 
to allow parameter configuration by the end user.  

Service Monitor 
The service monitor allows the programmer to monitor, 
configure parameters, and control the status of services, 
which are active functions of our toolkit that include tasks, 
such as capturing images from a camera, detecting markers, 
and navigating a robot to the destination. All of the service 
and task instances can be retrieved by the getServices 
method of the Phybots singleton. As is the case for a robot 
and object instance, every GUI component can be retrieved 
for further use from a service and task instance. 

Workflow Monitor 
The workflow monitor allows the programmer to monitor 
and control status of workflows. The programmer can save 
the workflow and re-run it afterwards in the application to 
test the same scenario many times. He can also solve the 
hardware problems of a robot and re-run its workflow by: 
stopping the workflow; restarting the robot; re-establishing 
connection to the robot; and restarting the workflow. 

USER STUDIES 
We have iteratively developed, evaluated, and refined our 
toolkit. Evaluations were carried out at two points during a 
three years period. First, we provided the alpha version of 
the toolkit with limited functionality to fourteen graduate 
students who took HCI lecture courses in order to obtain 
feedback about the navigation APIs. Second, after we 
revised our toolkit to provide the complete functionality 
described in this paper, we provided the toolkit to seven 
graduate students majoring in HCI. We wanted to see the 
breadth of the robot applications that can be prototyped 

with our toolkit, as well as to know its limitation. At the 
same time, we provided our toolkit to two graduate students 
who are majoring in robotics and have development 
experience with well-known robotics middle-ware; and had 
discussions with them to compare this toolkit with other 
robotics toolkits. 

Providing an Alpha Version to HCI Students 
Eleven groups formed of fifteen graduate students enrolled 
in an HCI course attended this user study, which consisted 
of a five times weekly one-and-half hour course lecture. 
They are allowed to play with robots outside class hours. 
We asked each student group to create an original robot 
application with an alpha version of the toolkit that only 
provides two-dimensional localization and navigation APIs. 
We told the students that their deliverables would not affect 
their course scores. Fourteen students had never written a 
program for a robot before, while one student had 
experience with writing a program for a LEGO Mindstorms 
robot. We gave them our homebuilt mobile robots, visual 
markers, web cameras, and the toolkit with a robot class for 
the robots. The robot is wirelessly connected to a host 
computer via Bluetooth. It measures 7.5 x 8.8 x 6.5 [cm] 
and is driven by two stepping motors. Visual markers were 
5.5 [cm] square. Cameras could capture images with 800 x 
600 [pixels] at 30 [fps]. Along with the hardware, we 
provided a one-and-half hour lecture to explain the 
overview of the toolkit and provided sample codes and API 
documents. The participants could ask any questions during 
their development process. 

After four one-and-half hour lectures, the student groups 
spent four to seventeen days in total for the development 

 
Figure 4. Runtime debug tool. 

 
Figure 5. Applications developed by the students. 



 

and all of them had successfully developed robot 
applications; three of eleven results are shown in Figure 5. 
The applications vary among new user interfaces for a robot, 
multi-player games, and practical tools. Eight of eleven 
groups reported that the programming with the toolkit were 
easy. The rest three groups reported that the difficulty came 
from parameter configuration, which shows that the 
proposed set of localization and navigation APIs were used 
effectively for rapid prototyping. The hardware setup could 
be easily deployed on the desktop with cameras attached at 
heights of about 50 [cm]. 

Lessons learned 
First, the applications seemed to be limited by the hardware 
and software specifications. Since we provided the robots 
and the toolkit as one package for simplicity, they were not 
designed to be extended by the students, and their technical 
specifications were not open. As a result, the robots were 
never extended mechanically, though one group attached 
paper-made arms to a robot to gather objects. It was not 
possible to define new locomotion strategies to be used 
other than those predefined as APIs. These observations 
revealed to us the importance of the extra features of the 
robot besides the basic locomotion features. Therefore, we 
were motivated to do a code refactoring of the toolkit so 
that it can expose public interfaces and abstract classes to 
provide enough extensibility for the programmer. 

Second, the students appeared to avoid dealing with 
complex workflows for robots. They simply called 
navigation APIs in event listeners of GUI components. This 
observation led us to provide workflow, a data structure to 
relieve the programmer from high-level task management. 

Third, the students complained that the API parameters 
could not be easily configured. They tweaked the 
parameters in source code and evaluated their performance 
by restarting their applications many times. We noticed the 
lack of support for the prototype test phase and planned to 
implement the runtime debug tool. 

Providing the Current Version to HCI Students 
After we implemented the functionality described in this 
paper, we ran a study with students again, though all of the 
members were different from the first user study. With this 
user study, we aimed to observe the whole process of 
prototyping including hardware preparation, programming, 
debug, and user test. 

Three undergraduate and four graduate students from six 
laboratories, all of whom majored in HCI, attended the user 
study. Five students had experience of programming simple 
robots. Two of the five had experience of building an 
original robots and programming their firmware, while 
three used prebuilt robots such as Roomba. Six students 
have experience of using toolkits for physical computing 
such as Arduino, Gainer, and SunSPOT. We asked each of 
the seven students to create an original robot application 

with the toolkit. We gave them Ikimo, an Arduino-based 
open-source mobile robot, visual markers of 5.5 [cm] or 11 
[cm] square, a web camera same as the first user study, and 
the Phybot toolkit. An Ikimo robot is wirelessly connected 
to a host computer via Bluetooth. It measures 10.5 x 13 x 7 
[cm] and is driven by two direct current (DC) motors. 
Along with the hardware, we overviewed the toolkit and 
provided sample codes with API documentation. 

All students spent two to four days to successfully develop 

 
Figure 6. Applications developed by the students. 



 

robot applications as shown in Figure 6. The time spent for 
the development decreased significantly from the alpha 
version, which shows the improvement of the overall 
usability of the toolkit. They especially appreciated the 
extendibility which enables adding new locomotion 
strategies and supporting new robots and the runtime debug 
tool, both of which are the main difference from the alpha 
version. We will briefly introduce the resulting applications 
below. 

1. Miniature drive recorder: This application makes a 
robot go around the specified object and take video with its 
mounted mobile phone. Position and rotation of the camera 
is also recorded along with the video, which can be used for 
3D reconstruction. The TracePath task is used to control 
the robot and GUI on captured images and is used to set the 
position of the object and the radius of the circle to trace. 

2. Beach flags with obstacles: This application is a two-
player game to make the player’s robots go into the center 
circle as fast as possible while avoiding obstacles. All 
robots are controlled by the Move task with an additional 
vector field for collision avoidance. Their positions are 
watched by an event listener to detect the goal. In its current 
implementation, game status such as the goal area and the 
name of the winner is shown in GUI with some special 
effect.  

3. MatereARdrone: This application provides a remote 
control interface of a quadcopter capable of flying and 
capturing images with its mounted camera. The 
programmer wrote a robot class and resource classes for the 
quadcopter to use its full feature. His future work is to use 
this quadcopter as a source for MarkerDetector and make it 
possible to navigate mobile robots on the floor without 
limitation of the static camera position. 

4. Cameraman robot: This application takes photos of 
guests. First, it detects guest positions from the image 
captured from the ceiling-mounted camera and calculates 
an ideal position and rotation from which all of the guests 
could be seen in a photo. Second, it navigates the robot to 
this ideal position. Third, it takes photo with all of the 
guests being in the frame. These actions are constructed as 
a workflow and executed in order. 

5. Alarm clock: This application rings an alarm bell and 
gets away from the user when the specified time has come. 
A vector field is used to design this behavior and a task is 
defined to ring and stop the bell, which controls an extra 
actuator connected to the robot. A GUI to set the time to 
wake the user up is provided. The user’s position is tracked 
by a ceiling mounted camera. 

6. Hawk view: This application continuously provides a 
heat map of the field that represents any kind of data 
captured by a robot-mounted sensor such as temperature, 
smell, sound, etc. The heat map is provided as follows. First, 
the data is continuously retrieved by a mobile robot, which 
navigates around the field. Then, the color representing the 

data is displayed on a small LCD display on the robot. The 
data on the LCD display is captured with its location by the 
ceiling mounted camera and the result is plotted on the 
screen.  

7. Serving robot: This application monitors people coming 
in and out of a public space such as a large table in a library. 
The robot responds to the action of the users: When an 
adult user sits on a chair, the robot delivers a cup of tea. 
When a child user sits on a chair, it delivers a candy. When 
some time has passed since the user sits on a chair, it 
delivers a piece of cookie. When the user leaves his place, 
the robot removes the garbage. These actions are detected 
by the change of seeing and not seeing the marker on the 
chairs. The robot navigates to the front of the user, waits for 
a moment, and gets back by workflow. Things to deliver are 
put onto the dish attached to the back of the robot by a 
person who gets the instruction by the system behind the 
scenes.  

Lessons learned 
While typical robot applications often use robots as their 
primary user interface, it seems that using GUI (and 
possibly other HCI techniques) as the user interface for 
robots is also the promising way. Many of the students used 
GUI as the primary channel to get user instruction to robots. 
Three students (1, 2 and 6) used a top-down view as the 
user interface for the robots, while the other three (3, 4, 5) 
used their own GUI. The last one (7) did not provide any 
apparent user interface for the end-users but monitored the 
status of them to provide the service. In addition, it required 
a person to work behind the scene to help the robot, and the 
person got instruction from the system through GUI. 

Providing extendibility to the toolkit through abstractions 
such as vector field, robot, and task interfaces was 
welcomed by the students. One student (5) defined a new 
vector field (5) while another student (2) combined existing 
vector fields to make a new one. Two students (3 and 5) 
extended the toolkit to use his robot and to define a new 
task to ring a bell  

The programmers who have experience usingJava and GUI 
programming (2, 4, 5, and 7) were familiar with inner 
classes which are often used for event listeners. They 
tended to write inner classes for definition of a vector field, 
a task, and a listener to a task and  workflow instance. 
While these inner classes have access to the local variables 
and thus allow convenient programming, this tendency led 
him/her to write the whole code in one file. Since along 
code in one file is difficult to read, the programmer should 
divide the inner class to another file, as some students (3 
and 6) did . Workflow prevented the programmers (4 and 7) 
from writing many listeners to the tasks and thus prevented 
the code to be too long. 



 

Providing the Current Version to Robotics Students 
Two graduate students from the robotics laboratory 
attended the user study and  partnered together. For their 
research, they had used Robot Operating System (ROS) 
[16], an open-source well-known middleware, First, we 
gave them the same set of hardware as in the previous user 
study – mobile robots, visual markers, web cameras and the 
toolkit. Second, we provided the same one day lecture, 
sample code, and documentations. When they adapted to 
the toolkit with the sample code, we asked them to 
implement the same application with ROS. The application 
is called “click and run,” where the user clicks the position 
on the camera image shown in a GUI window to make the 
robot move to thatposition. After the implementation, we 
interviewed the students to compare the toolkits. 

The students successfully implemented almost the same 
application with ROS. The module for the user interface 
was written in C++ and was capable of showing received 
images in a GUI window and sending clicked position 
information to another module. To glue it with robot control 
modules, they wrote code in Common Lisp, which runs on 
another module named “euslisp.” There was a file to 
describe dependency on other modules and a file to specify 
options for running the system, such as the name of the 
communication port etc. The total code length was 668 
lines (586 lines for the GUI module and 82 lines for Lisp), 
which was longer than our 130 lines sample code for 
Phybots.  

Lessons learned 
Regarding the differences between the programming 
languages, we cannot simply compare the lines of code. 586 
lines of code is a relatively large number for the simple user 
interface, which seems to root in the completely modular 
architecture of the middleware. Since the user interface 
module was connected to the other modules only with its 
publicly defined channels, it must have assumed every 
possible way to be used from the others and defined those 
many channels. This is like writing a public class in Java 
with public getter and setter methods. On the other hand, 
when we write Java code in Phybots, a GUI class is usually 
the main code itself, or is extended as an inner class of the 
main code. It ensures that the GUI class is used from within 
the main class only, removing the need to write many getter 
and setter methods. 

The user interface code was treated equally to the other 
control modules in ROS, and it did not have direct access to 
any specific model of the world including robots, objects, 
and tasks. This is problematic because the user interface 
often needs to know what kind of information it is 
manipulating. Our toolkit provides direct access to the 
world model from the user interface code, which makes the 
prototyping easier. 

Availability of many modules is thought to be a prerequisite 
for a good middleware, but was also found to be a 

shortcoming for novice users. The students complained that 
it was difficult to learn about modules and that 
documentation was lacking. The only way would be to 
throw their questions to the online forum and wait for an 
answer. On the other hand, our toolkit provides a good 
starting point for general software programmers to 
prototype robotic applications, thanks to its compact APIs, 
event-driven programming, and rich GUI components. 

DISCUSSION 

Physical UIs, Robots, and Phybots 
Phybots aims to provide a prototyping environment for 
robotic things. While its application domain is between 
physical UIs and robots, its target users are the same as 
physical UIs. Therefore, we adopted the approach that 
weighs more on the physical toolkit side. 

First, in the user studies the robotic things were built from 
building blocks without soldering. There was also no need 
for microcontroller programming and the user could control 
the hardware directly in Java code. It was as easy as the 
physical UIs. 

Second, Phybots required the camera as a global sensor set 
in the environment instead of sensors attached to the robotic 
things. Making an assumption on the environment is often 
invalid in the robotics applications since many applications 
are expected to work in an unknown environment. Though, 
as shown in the user studies, everyday spaces could be 
easily equipped with the hardware and turn into a known 
environment for the applications. Therefore, our approach 
was valid for the prototyping. Our future work may use a 
depth camera such as Kinect instead of the normal camera 
and implement techniques for object recognition to remove 
the need of the visual markers on top of the object. It would 
also allow natural interaction between the robotic things 
and the user. 

Third, built-in APIs for locomotion of robotic things only 
provided basic functionality. In the second user study for 
HCI students, some of them suggested us to implement 
some algorithms for path planning to support TracePath 
task. We recognize the needs and will provide handful APIs. 
In the sense of functionality, we should port more useful 
algorithms from robotics but keep the usability of the 
exposed APIs. Our future work may implement a software 
module for robotics middleware such as ROS that works as 
a bridge between Phybots and the middleware. Then, its 
plenty of modules will be accessible to our users. 

3D World and 2D Workspace 
Phybots supports only two-dimensional activities of mobile 
robots. While it is possible to extend the framework to three 
dimensions, we decided to focus on two dimensions for 
several reasons. First, it is much easier to understand two-
dimensional coordinates and develop applications in them 
because software programmers are familiar with GUIs that 
use two-dimensional coordinates and whose standard input 



 

and output devices such as a mouse and a display are 
capable of processing two-dimensional information. Second, 
two-dimensional information is often sufficient to represent 
the global positions of the most relevant entities including 
the robots, objects, and users because all of them usually 
reside on a two-dimensional surface such as the desktop or 
floor. Our assumption is that global locomotion tasks can be 
handled in two-dimensional coordinates, while local 
manipulation tasks require three-dimensional coordinates to 
be performed robustly, such as picking up an object on the 
floor and placing it on a shelf. Our future work will explore 
how to support such manipulation tasks for more advanced 
robots. 

Human as Part of Robotic System 
Serving robot in the second user study uses human behind 
the scenes instead of a complex robot. This approach is 
thought to be valid when we can assure that it is technically 
possible to implement the robot. Such a case would rather 
be encouraged in the prototyping, since the application 
focuses in its interaction design with the end-user who does 
not care about the backstage. Regarding the high-level 
abstractions of Phybots, it is possible to define a Robot 
class that represents human, whose resources would show 
text message on a display or produce a speech sound to tell 
what to do. To confirm this possibility, we implemented an 
application to make human write figures on a piece of paper, 
which was originally developed for a calligraphy robot. 

CONCLUSION 
In this paper, we proposed Phybots, a toolkit for making 
robotic things. Its assuming hardware setup was easily 
deployed to everyday places. The users could implement 
various physical applications that showed possibilities of 
adding mobility to everyday things. While the functionality 
of the toolkit is limited compared to professional robotics 
toolkits, its well-designed APIs could be easily understood 
by the users and was enough for the rapid prototyping. 
Phybots is open-source and available at http://phybots.com/. 
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