
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012

Multi-Robot Multi-Object Rearrangement in Assignment Space

Martin Levihn Takeo Igarashi Mike Stilman

Abstract— We present Assignment Space Planning, a new effi-
cient robot multi-agent coordination algorithm for the PSPACE-
hard problem of multi-robot multi-object push rearrangement.
In both simulated and real robot experiments, we demonstrate
that our method produces optimal solutions for simple problems
and exhibits novel emergent behaviors for complex scenarios.
Assignment Space takes advantage of the domain structure by
splitting the planning up into three stages, effectively reducing
the search space size and enabling the planner to produce
optimized plans in seconds. Our algorithm finds solutions of
comparable quality to complete configuration space search
while reducing the computing time to seconds, which allows
our approach to be applied in practical scenarios in real-time.

I. INTRODUCTION

We present a novel approach to the problem of multi-

object rearrangement planning and execution. Efficient object

rearrangement is an important task for robot systems with

applications ranging from assembly to household service.

Moving multiple objects to target locations leads to long

execution times for a single robot. Multi-robot systems can

perform such tasks faster through collaboration. However,

searching the space of all possible motion combinations for

multiple robots has a branching factor that is exponential in

the number of robots. Fig. 1 shows an example challenge of

setting dishes which is solved by our planner in seconds.

Rearrangement is known to be a PSPACE-hard problem

even for simplified single-agent domains [16], [18]. Since

complete and optimal planners are presently not feasible,

prior work has looked into stochastic optimization [10]

methods and territory strategies [4], [2] that split the working

regions of robots. In contrast, we present a search space

reduction technique that yields near-optimal solutions for

simple cases and novel behaviours in complex environments.

Considering all possible motions of all the robots and

objects would lead to a configuration space of dimension

exponential in the number of entities [15]. Instead, we first

plan the optimal paths that the objects must traverse to reach

their configuration. The remaining problem in Assignment
Space is to decide which robot should push which object at

any given time, taking into account the space occupied by

other robots and objects at that time and the time required

to reach the object. We address this problem by first finding

the optimal assignment of robots to objects, resolving the

motion constraints and finally introducing a credit system to

ensure that robots do not stay idle but rather prepare for

future assignments by navigating to appropriate locations.

M. Levihn (levihn@gatech.edu), T. Igarashi (takeo@acm.org)
are with the JST ERATO, Japan. T. Igarashi is with the University of Tokyo,
Japan. M. Levihn, M. Stilman (mstilman@cc.gatech.edu) are further
with the Georgia Institute of Technology, USA.

Fig. 1. Multiple robots must push multiple objects to designated goals.

II. RELATED WORK

Existing research on multi-robot manipulation planning can

be categorized into two areas:

1) Joint manipulation of a single object.

2) Joint manipulation of many objects with each object

manipulated by an individual robot at a given time.

Our problem and solution are most closely related to the

latter category. We therefore briefly overview the former.

Early work on single object cooperation of multiple robots

was done by Rus, et al. [5], showing multiple robots

cooperating in rearranging a piece of furniture. Wang et

al. presented the concept of object closure by multiple

robots in order to successfully manipulate an object [6].

Yamashita, et al. demonstrated multiple robot cooperation

in a 3D environment [7]. The authors used the concept

of dividing the motion planner into a global path and a

local manipulation planner. These approaches do not directly

address the problem of moving multiple objects.

Multi-object rearrangement planning adds the complexity

of deciding which object should be moved at what time and

by which robot. Previously, Inoue presented a planner for a

group of robots with multiple tasks [10]. Robots could carry

multiple objects at a time. The planning algorithm utilized

simulated annealing and scheduling with prioritization for

synchronization of the robots. In contrast, our algorithm is

entirely deterministic and requires no prioritization.

Fujii, et al. introduced a territorial approach for multiple

robot rearrangement planning in [4] and [2]. The authors

proposed a planning algorithm that divides the workspace of

the robots into distinct regions. Territories are constructed

using a Voronoi diagram and assigned to robots based on

the robots workspace distances to the regions. Robots always

stay within their assigned regions and objects are passed

between territories via delivery points on the territory bound-

aries. Task constraints are solved using an extended project

1

(a) Start Configuration. (b) R0 leaves object O1.

(c) R1 completes O1 and R0 com-
pletes O0.

(d) Goal configuration, robots arrive
simultaneously.

Fig. 2. Real robot execution of an optimal plan generated by our algorithm
for a relatively simple problem where the goals are directly accessible.

scheduling problem (PSP) solver. We observe that while the

territorial approach eliminates the synchronization problem

between robot motion paths, the resulting behaviours can be

significantly suboptimal. As robots are not permitted to leave

the assigned territories, such methods can lead to frequent

unnecessary object passing in simple examples and robot

idling when their territories are not in use.

Oyama, et al. [8] improved the optimality of the territorial

approach by instantiating delivery points at narrow corridors.

However, this method still faces the earlier challenges on

simple problems and furthermore does not address the fea-

sibility of switching between robots in corridors. Further,

the algorithm requires object grasping, which is not directly

applicable to our domain where mobile robots are required

to push the objects.

More generally, market-based coordination techniques

have been extensively studied as methods for task allocation

among teams of robots [13]. Market-based coordination

decompose-then-allocate has been applied to multi robot

teams with one of the earliest works presented in [12]. Our

algorithm is related to this category, however it differs from

existing work due to a more centralized allocation approach

with a specific focus on object rearrangement.

Outside of the assignment of single robots to specific tasks,

Yamashita, et al. [14] proposed the use of tools to allow the

simultaneous manipulation of multiple objects by multiple

robots. However this work was primarily concerned with the

introduction of tools and did not provide a global planner

that explicitly reasons about robot assignments.

To our knowledge, there is no existing planning algorithm

capable of producing both optimal results as demonstrated in

Fig. 2 and emergent optimized behaviors for more complex

domains as shown in the attached video.

III. MOTIVATION

Our work is motivated by two principles:

1) Our planner should give a practical and efficient solution

to the object rearrangement problem using multi-robot

systems to minimize task completion time.

2) Our planner must be able to take advantage of simple,

low-cost multi-robot systems such as those that can only

push.

A complete, provably optimal planner is presently in-

feasible for practical, online solutions. However, we seek

to produce solutions of comparable quality in reasonable

time. First, we developed a complete optimal planner to gain

insight into typical optimal behaviors. The optimal planner

minimizes time to complete the rearrangement task and is

based on an A∗ [3] search over the full configuration space

in a time-and-space discretization of the robots, objects and

their environment. Its search is guided by a heuristic estimate

between objects and goals.

To demonstrate the time complexity of an optimal solution

in this domain, we present two example plans produced

by the complete optimal planner mentioned (Fig. 2 and 3).

While the computational times of the planner were orders of

magnitude longer than our proposed planner, the solutions

themselves provided the insights for our approach which

yields the same results on both problems.

Consider Fig. 2. Two robots (R0 and R1) must rearrange

objects O0, O1 and O2 to their goal locations G0, G1 and G2.

A naive plan would guide R0 and R1 to push the adjacent

objects O1 and O2 towards their goal positions. R0 would

finish the task by coming back and pushing the remaining

O0 to its final place.

However, the optimal plan, shown in Fig. 2, requires R0 to

be reassigned from O1 to O0 part-way through the execution.

In this case, both O0 and O1 are completed concurrently.

While the solution is interesting, it is not obvious what

heuristic means might be used to achieve such a behavior

by an efficient planner.

Next, consider the domain in Fig. 3. For object O0 to be

pushed into G0 by R0, the robot would have to relocate to

the right side of O0 part-way through the plan. The optimal

plan avoids unnecessary movement:
(a) R0 starts pushing O0. Simultaneously, R1 prepares to

cooperate by moving towards the obstacle corner.

(b) Once R0 reaches the corner with O0, R1 takes over and

start pushing O0 towards its goal location G0

This solution not only efficiently utilizes all the robots but

also it introduces a preparatory motion for R1 that brings it

within pushing range of the obstacle once it arrives.

The optimal planner takes approximately 20s to produce

both plans. In contrast, our algorithm produces these same

plans in less than 0.5s.

IV. PROBLEM FORMULATION

The problem considered by this work is extended from [17],

[9]. A world W is a gridded 2D-workspace populated with:

• Static Obstacles: S = {S0, S1, ..., Sk}
• Objects: O = {O0, O1, ..., On}
• Robots: R = {R0, R1, ..., Rm}

The world configuration at time t is defined by the positions

Rt
i and Ot

i of each of the robots and objects at time step t
respectively: Wt = {Rt

0, . . . , R
t
m, Ot

0, . . . , O
t
n}.

The rearrangement problem requires a fully specified

starting configuration, W 0, and a partially specified W g with

only the goal locations Og = Og
0 , ..., O

g
n for the objects. The

(a) Start Configuration. (b) R1 prepares to take over.

(c) R1 takes over. (d) Goal configuration.

Fig. 3. Real robot execution of our optimal plan where the object cannot
be directly pushed to the goal.

planner must find a sequence of collision-free actions for the

robots that result in the relocation of the objects from their

initial configuration Os to the goal Og .

The robots operate in the environment through the use

of primitives. Without loss of generality, we define two

primitives for the pushing domain.

• Move (m(i, x)) is a displacement of Ri to location x.

• Push (p(i, j, x) is displacement of object Oj to location

x by robot Ri.

Since we use non-holonomic robots, a robot Ri performing

a push on Oj must be located directly behind the object and

oriented towards the pushing direction. Let R(Oj , x) denote

this configuration for any robot Ri with respect to Oj at x.

V. PLANNING ALGORITHM

Our planning algorithm takes in the initial world state W 0

and goal object configurations Og . It outputs an ordered list

of sets of primitives for the robots that achieves Og .

The algorithm operates in three stages:

• Primitive Generation Our algorithm computes the

object displacements required to reach Og from Os

(Fig.4(a)). These displacements are used to derive the

required push primitives (Fig.4(b)).

• Assignments Assignment space planning is utilized to

assign each primitive to specific robots (Fig.4(c))

• Post Processing Finally we compute motion paths

that displace the robots according to their assigned

primitives (Fig. 4(d)).

We now consider each step in detail:

A. Primitive Generation:

• For each object Oi, a path Pi is built from its start to

goal location (Os
i → Og

i) by using A* search.

• A* is performed with the constraint that a valid push
configuration R(Oj , x) for each node must exist.

• The sequence of push primitives, p(i, j, x), is computed

from each generated path with Oj and x specified but

not yet assigned to a robot i.
• Each object path is found independently from the other

objects paths. This results in least commitment con-

cerning prioritisation of objects displacement at this

planning stage. Ordering constraints on the objects are

resolved in the next planning stage which also accounts

for robot motion.

B. Assignment Space Planning

After obtaining the push primitives from V-A, robots must

be assigned to these primitives.

Rather than search the space of all possible assignments

of all primitives, we specifically focus on assignment of

push primitives to robots. This defines a new, reduced search
space that allows us to use simple graph search techniques

to perform the search. This is the Assignment Space (AS).
In order to define Assignment Space as a search space we

must define: states, state expansions and costs.

Definition 1 (AS State). Let ak be either a push primitive
p(i, j, x) or a no-op (−). An AS state, st = {a0, . . . , am}
assigns each robot Ri either a push primitive or a no-op.

Given an ordered sequence of AS states, (s0, ..., st), a
primitive p(i, j, x) is considered to be assignable in st if
all prior push primitives on Oj have been assigned in some
earlier states sk(k < t). A valid st must use only assignable
primitives or no-ops.

Note that an AS state sl is equivalent to a world con-

figuration Wt resulting from executing all the assigned push

primitives from assignment states sk(k ≤ l). Hence, the goal

state sg is equivalent to Wg .

Definition 2 (AS Expansion). The expansion operation on
a state generates states for all valid robot assignments for
assignable push primitives.

An assignment of the robot Ri to the push primitive
p(i, j, x′) is valid if and only if a motion plan exists that
displaces Ri to the push configuration R(Oj , x) and the
location x′ and its associated R(Oj , x

′) are not occupied
by other robots, objects or obstacles.

Definition 3 (AS Cost). The cost of a state s is the maximum
cost of the optimal motion paths necessary to displace an as-
signed robot to R(Oj , x), the push configuration associated
with its assigned push primitive p(i, j, x′) plus the cost of
executing the push primitive.

The number of assignments does not alter the cost, which

is just defined by the single most expensive assignment.
Note that this implicitly encodes the execution time of

transitioning from one world state to another without directly

searching the space of all possible robot motions.

Given the definition of the reduced assignment search

space, we apply A∗. We present an intuitive description of

the subroutines for expanding nodes and computing cost.

(a) Object path is determined. (b) Required primitives are com-
puted.

(c) Primitives get assigned. (d) Robot motion paths are created.

Fig. 4. Algorithm workflow example.

Algorithm 1 gives pseudocode for the state expansion

function. The algorithm first determines the assignable push

primitives in lines 4-13 and the robots that can reach the

push configurations associated with these push primitives

in lines 14-21. Line 20 adds the possibility of the no-

op assignment. All valid assignment combinations are then

created by utilizing algorithm 2. The algorithm recursively

goes over each robots possible assignments in lines 6-9 and,

upon reaching the recursion depth, creates the new states.

Line 7 enforces the constraint that a push primitive can not

be assigned to more than one robot in a given state.
Algorithm 3 provides pseudocode for the cost function.

For the heuristic function, we use the number of remaining,

unassigned push primitives. The algorithm terminates once

the next node to be popped from the open queue has no

assignable push primitives remaining.

1) Reducing Expansion Time: Valid node expansion and

cost computation require verified motion paths for each robot

assigned to a motion primitive. To obtain these motion paths,

the swept volumes of the objects and other robots must

be taken into account during each path construction. Both

computationally expensive operations are frequently called.
In order to resolve this bottleneck, our implementation

does not take the swept volumes of the other robots into

account and delays the construction of valid parallel motion

paths to a post-processing step. Only the object configu-

rations are considered. Consequently motion paths can be

computed using standard A∗, yielding significantly lower

computation times. The resulting motion plans are used

as estimates for the existence of a path for the expansion

operation and state cost calculation.
Intuitively, robots can occupy the same space, they just

need to wait their turn. Our experimental results show that

this decision does not significantly alter solution optimality.

Algorithm 1 EXPAND-NODE(n)

1: nodes := ∅;

2: prim := ∅; {assignable push primitives}
3: reach := [][∅]; {reachable push configurations for Ri}
4: for ∀Oj ∈ O do
5: if all primitives p(i, j, x) have been assigned then
6: skip;

7: end if
8: p(i, j, x) := next unassigned primitive on Oj ;

9: if x or R(Oj , x) of p(i, j, x) are blocked then
10: skip;

11: end if
12: append(prim, p(i, j, x));
13: end for
14: for ∀Ri ∈ R do
15: for ∀p(i, j, x) ∈ prim do
16: if Ri can reach R(Oj , x) then
17: append(reach[i], p(i, j, x));
18: end if
19: end for
20: append(reach[i], −) {no assignment}
21: end for
22: nodes = GET-COMBS(reach, 0, ∅, ∅);
23: return nodes;

Algorithm 2 GET-COMBS(reach, k, cur, nodes)

1: if i ≡ |R| then
2: APPEND(nodes, cur);

3: pop(cur);

4: return nodes;

5: end if
6: for ∀p ∈ reach[k] do
7: if p(i, j, x) /∈ cur then
8: append(cur, (p(i, j, x)))
9: GET-COMBS(reach, k + 1, cur, nodes)

10: end if
11: end for
12: pop(cur);

13: return nodes;

2) Constraints: The ordering constraints discussed in V-

A are automatically resolved by the expansion operation and

the search over the assignment space.

C. Post Processing

As the assignment space search is not guaranteed to construct

valid motion plans, our proposed method does perform a post

processing step.

For each node in the assignment space solution, motion

paths are re-constructed in order of original estimated path

length. Each new paths takes into account the swept volumes

of all the paths generated prior to it in both time and space.

D. Optimization - Limited Node Expansion

It is not necessary to perform a node expansion after every

push primitive. Nodes are only required to be expanded if

Algorithm 3 COST(node)

1: max = 0;

2: for p(i, j, x) ∈ node do
3: path cost=GET-PATH-COST(Ri, R(Oj , x));
4: push cost=GET-PUSH-COST(p(i, j, x));
5: if path cost+ push cost > max then
6: max = path cost+ push cost;
7: end if
8: end for
9: return max;

any of the requirements in Def. 2 become violated for the

current assignment. To save computation time, the chosen

assignment can be kept constant for multiple push primitives.

This will result in shorter computation time but solutions as

visualized in Fig. 2 might not be found.

Our algorithm can limit the node expansion operation to

cases where either of the following occurs:

• The current assignment becomes invalid

• The push configuration for the next primitive on an

object changes drastically in relation to the current

The last condition is introduced to capture cases where

an object needs to be pushed in a different direction and

a significant displacement of the currently assigned robot

would be required.

Our implemented system also allows the user to set an

upper limit of constant push primitives after which a node

expansion has to be performed. This feature is disabled

during the evaluation in section VII.

VI. CREDIT SYSTEM

While the algorithm in Sec. V-B is efficient, it alone does not

generate the optimal solution to Fig. 3(b) or the optimized

behaviors in the attached video. This is due to the fact that

the assignment search space does not consider the motion

of unassigned robots. Consequently in Fig. 3(b), R1 would

remain in its initial configuration until it is assigned to

perform the horizontal push. This assignment cannot occur

until R0 has completed the vertical pushes. Such circum-

stances unnecessarily increase task completion time. Fig.

4(d) demonstrates that the timing for R1s move primitives is

unclear. We resolve this by incorporating ideas from market-

based robot task allocation [13] through a system of credits.

A. Preliminaries

Conceptually, even if a robot is not assigned to any push

primitive for an assignment state, it could still execute move
primitives with cost up to the cost of the state without

increasing the state’s cost. It will therefore accumulate credit
for remaining unassigned. The credit each robot receives in

a state is equal to the maximum cost of a push operation as

described in Algorithm 3. The accumulated credit can pay
for the costs of a motion plan in a later state.

Fig. 5 visualizes the credit concept. The robot R1 is not

assigned to a push primitive in Fig. 5(a) or 5(b). During this

time, it accumulates credit. In other words, R1 can reach

(a) Robot not assigned, receives
credit.

(b) Robot sill not assigned, credit
increases.

Fig. 5. Visualization of the credit method. Robots credit is proportional to
the time they are unassigned.

every configuration within the credited region (gray circle)

with a cost of 0 and everything outside the credited region

with a cost discounted proportional to the credited region

size (diameter of the circle). Since the assignment of robots

is based on the cost of reaching R(Oj , x), the credit method

will influence the assignment of robots to objects.

B. Paying Off Credit

The credit that a robot used to discount the cost of a motion

plan has to be paid off. If credit was used to discount the

cost of a motion plan then this assumes that the robot is

proportionally closer to the assigned object than it actually

is for the state it was assigned. We therefore extend the post-

processing step to create motion plans that use credit.

The post-processing step iterates over each solution node

and creates valid motion plans by taking the swept volumes

of previously computed motion plans for other robots and

objects into account. In Section V-C this could be done for

each node independently, however the credit system requires

interleaving of the states.

If the post-processing step detects that credit was used

in a state to discount motion plan costs, swept volumes of

the previous (consecutive) states in which the credits were

granted are also taken into account for creating the motion

plan. The resulting motion plan in turn, is then split up

according to the states the credit was granted and the partial

motion plans are saved in the appropriate states.

The credit method assumes that the robot can reach every

configuration within the credit region with a direct path.

However, due to the movement of robots and objects, this

assumption may not hold. If this assumption does not hold,

the post-processing step may fail in creating motion plans

for the robot that is equal to the used credit. In case of

such a failure, the post-processing steps first checks if the

robot was granted more credit than it used, e.g. if it was

not assigned for a longer period. If this is true, the post-

processing step attempts to move the robot in earlier steps as

well. This serves to recover from failure without increasing

overall cost. Only if a credited path cannot be constructed

over all previous states where the robot is idle does the cost

of the overall plan increase.

VII. EXPERIMENTS AND EVALUATION

We have validated our algorithm using real robot trials and

performed extensive simulations to demonstrate its efficiency

Fig. 6. An instance of our simulation environment.Fig. 6. An instance of our simulation environment.

Fig. 7. Runtime comparison. The first two data groups corresponds to Set
1, the remaining 10 to Set 2. The full configuration space search returned
results only for set 1 within 24 hours computation time. Map 9 was not
solvable with the credit method disabled before running out of memory.

and resulting plan quality.

A. Simulated Experiments

Fig. 6 shows an instance of our 2D simulation environment,

which was discretized using a 26× 16 grid. Primitives were

restricted to the four adjacent grid cells (left, right, up, down)

of the current location of the robot or object. All experiments

were performed on an Intel Core 2 Duo (2.80 GHz).

We evaluated four types of algorithms:

1) Basic: The most basic version of our approach

2) Basic + Credit System: As presented in Section VI

3) Basic + Credit + Limited Expansion: As presented in

Section V-D

4) Full Configuration Space Search: As discussed in Sec-

tion III, a complete and optimal planner purely for

benchmarking

We applied these algorithms to three sets of configurations,

each with a diverse degree of difficulty:

• Set 1: Two simple configurations, as shown in Fig.2(a)

and Fig.3(a). The purpose of this set was to evaluate

the basic capabilities of our proposed method.

• Set 2: 10 randomly generated configurations. The pur-

pose of this set was to gather performance statistics.

However, for this set the full configuration space search

was unable to produce a plan within 24 hours computa-

tion time. Hence, we designed a simpler version in Set

3.

• Set 3: 10 manually designed small scale configurations

solvable using a full configuration space search. This

set allows for plan quality comparisons to the optimal

solutions.

B. Comparative Results

Fig. 8. Not solvable without Credit. The shown solution was constructed
utilizing the basic + credit system algorithm. Robot paths are color coded
based on the object assignments that triggered the displacement. Gray
sections are displacements without actual assignments caused by the credit
method.metetetetettttttttetttttetttettttettttetttttttttttttttthodhodhodhodhhodhhhhhhhhhhhhhhhhhhhhhodhhhhhhhhhhhhhhhhhhhhhhhhhh .

Fig. 9. Cost comparison for the randomized configurations.

1) Computation Time: Fig. 7 summarises the planning

times obtained for sets 1 and 21.

Interestingly, the results demonstrate an average computa-

tion time reduction of 35% if the credit system is utilized.

Even more, Map 9, visualized in Fig. 8, was not solvable

at all using just the basic algorithm before running out of

memory. These results can be explained by the reduced

solution length if the credit method is used as discussed

below.

Additionally limiting the node expansion operations,

showed to further improve the average computation time

savings to 44%. The additional savings are obtained from

the reduced search tree depth.

2) Plan Quality: Fig. 9 shows the final plan costs for Set
1 and 2. The results confirm that the credit system reduces

the plan cost compared to the basic algorithm (25% on

average). The limited node expansion in turn showed only

slight increases in the plan costs (6% on average).

Fig. 10 shows the costs for Set 3. Comparatively, it is

observed that the plans generated by our proposed methods

exhibit similar quality to the optimal solutions. Our method

(Basic + Credit) created optimal solutions in 4 cases, and

yield only a 14% plan cost increase on average.

C. Experiments with a Physical Multi-Robot System

In addition to simulation, we conducted experiments with

robots to demonstrate the applicability of our proposed

method in a real physical environment.

Our physical system consisted of:

• A set of custom-made circular mobile robots

1Detailed results for set 3 are not included as it was manually modified
to alter computation time. On average, the full configuration space search
for Set 3 took 45 min and our proposed methods 1.2 sec.

Fig. 10. Cost comparison for manually created configurations.

• A set of circular movable objects located (as the robots)

on a tabletop

• A ceiling-mounted camera connected to a host computer

Using the camera data, the host computer tracked the location

and orientation of the objects and robots through their

attached visual markers. The environment is shown in Fig.

1.

The determined start configuration was passed to our

planning system, which outputs separate queues of move

and push primitives for each robot. The host computer then

send wireless command signals to each robot according to its

next primitive. To avoid collisions all queues were progressed

simultaneously and only after every robot had successfully

executed its current primitive. Since object drift can occur

during the execution of a push primitive, we applied our

Dipole Method [1] to overcome motion uncertainty. The

dipole method computes a dipole field around the object

which guides the robot. This ensures successful delivery.2

We found that this experimental environment enables

the robots to successfully complete the rearrangement task

according to our planner’s output.

VIII. DISCUSSION

In this work, we have proposed and evaluated an efficient

algorithm for solving the multi-robot multi-object rearrange-

ment problem. Our algorithm was shown to be effective both

in simulation and in real robot environments. Not only is

it sufficiently efficient for online use, but also it is able to

generate optimal solutions for simple domains. Finally, even

in complex domains as shown in the video, our algorithm

produces optimized emergent behaviours that clearly show

the collaboration between the robots.

We achieved this performance by first reducing the con-

figuration space search problem into the assignment space

domain. Next, we introduced the credit method to ensure that

robots would be active in pursuing their next assignments

instead of idling.

Our goals in future work are to guarantee completeness

and improve algorithm performance. Currently, the algorithm

does not guarantee completeness due to the hierarchical

approach. For instance while primitive allocation requires

space for a robot to push an object, it could generate an

object plan such that no robot can actually reach the space.

We anticipate that feedback and small perturbations to the

2To ensure that the robot does not leave its assigned space during the use
of the Dipole Method we slightly modified the method to allow for minor
displacements of the goal position. This behaviour can also be observed in
the accompanying video.

plans at each level of the hierarchy can be made to produce

a complete algorithm.

The applicability of the algorithm is currently limited to

small scale systems with up to 4-5 robots and objects. This

limitation steers from the large branching factor during the

node expansion operation. In future work we will therefore

investigate techniques to reduce the branching factor such as

only considering up to n robots within a vicinity of each

object as possible assignments during the node expansion

operation.

ACKNOWLEDGEMENTS

This research was partially supported by NSF grant IIS-

1017076. We thank Youichi Kamiyama for providing the

robots.
REFERENCES

[1] T. Igarashi, Y. Kamiyama, and M. Inami, “A dipole field for object
delivery by pushing on a flat surface,” in ICRA, 2010, May 2010, pp.
5114 –5119.

[2] N. Fujii and J. Ota, “Territorial and effective task decomposition for
rearrangement planning of multiple objects by multiple mobile robots,”
Advanced Robotics, vol. 25, pp. 47–74(28), January 2011.

[3] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[4] N. Fujii, R. Inoue, Y. Takebe, and J. Ota, “Multiple robot rearrange-
ment planning using a territorial approach and an extended project
scheduling problem solver,” Advanced Robotics, vol. 24, pp. 103–
122(20), January 2010.

[5] D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams
of autonomous robots,” in Intelligent Robots and Systems 95.’Hu-
man Robot Interaction and Cooperative Robots’, Proceedings. 1995
IEEE/RSJ International Conference on, vol. 1. IEEE, 1995, pp. 235–
242.

[6] Z. Wang and V. Kumar, “Object closure and manipulation by multiple
cooperating mobile robots,” in ICRA 2002, 2002, pp. 394–399.

[7] A. Yamashita, T. Arai, J. Ota, and H. Asama, “Motion planning of
multiple mobile robots for cooperative manipulation and transporta-
tion,” IEEE Transactions on Robotics and Automation, vol. 19, pp.
223–237, 2003.

[8] N. Oyama, Z. Liu, L. Gueta, and J. Ota, “Rearrangement task of multi-
ple robots using task assignment applicable to different environments,”
in ROBIO 2010, December 2010, pp. 300 –305.

[9] N. Fujii, T. Chou, and J. Ota, “Rearrangement task realization by
multiple mobile robots with efficient calculation of task constraints,”
in ICRA 2007, April 2007, pp. 8 –13.

[10] R. Inoue, N. Fujii, R. Takano, and J. Ota, “Realization of a multiple
object rearrangement task with two multi-task functional robots,”
Advanced Robotics, 25, vol. 11, no. 12, pp. 1365–1383, 2011.

[11] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[12] P. Caloud, W. Choi, J.-C. Latombe, C. Le Pape, and M. Yim, “Indoor
automation with many mobile robots,” in IEEE International Workshop
on Intelligent Robots and Systems ’90, 1990, pp. 67 –72 vol.1.

[13] N. Kalra, R. Zlot, M. B. Dias, and A. Stentz, “Market-based multirobot
coordination: A comprehensive survey and analysis,” Tech. Rep., 2005.

[14] A. Yamashita, J. Sasaki, J. Ota, and T. Arai, “Cooperative manipulation
of objects by multiple mobile robots with tools,” in Proceedings of the
4th Japan-France/2nd Asia-Europe Congress on Mechatronics, 1998,
pp. 310–315.

[15] M. Stilman and J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” in Journal of Hu-
manoid Robotics, 2004, pp. 322–341.

[16] G. Wilfong, “Motion planning in the presence of movable obstacles,”
in SCG ’88: Proceedings of the fourth annual symposium on Compu-
tational geometry. New York, NY, USA: ACM, 1988, pp. 279–288.

[17] M. Stilman and J. Kuffner, “Planning among movable obstacles with
artificial constraints,” in WAFR 2006, 2006, pp. 119–135.

[18] E. Demaine, J. O’Rourke, and M. L. Demaine, “Pushpush and push-1
are np-hard in 2d,” in In Proceedings of the 12th Canadian Conference
on Computational Geometry, 2000, pp. 211–219.

