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ABSTRACT 
We study uncertainty in graphical-based interaction (with 
special attention to sketches). We argue that a 
comprehensive model for the problem must include the 
interaction participants (and their current beliefs), their 
possible actions and their past sketches. It’s yet unclear how 
to frame and solve the former problem, considering all the 
latter elements. We suggest framing the problem as a game 
and solving it with a game-theoretical solution, which leads 
to a framework for the design of new two-way, sketch-
based user interfaces. In special, we use the framework to 
design a game that can progressively learn visual models of 
objects from user sketches, and use the models in real-
world interactions. Instead of an abstract visual criterion, 
players in this game learn models to optimize interaction 
(the game’s duration). This two-way sketching game 
addresses problems essential in emerging interfaces (such 
as learning and how to deal with interpretation errors). We 
review possible applications in robotic sketch-to-command, 
hand gesture recognition, media authoring and visual 
search, and evaluate two. Evaluations demonstrate how 
players improve performance with repeated play, and the 
influence of interaction aspects on learning.  

Author Keywords 
Sketch recognition; Machine Learning; Active Learning; 
Game Theory; Communication; Cooperation. 

ACM Classification Keywords 
H.5.2. Information interfaces and presentation (e.g., HCI): 
User Interfaces: Theory and methods.  

INTRODUCTION 
When a machine learns to understand the symbol "ball!", it 
is learning an arbitrary convention, one that exists in the 
minds of a community of English speakers. Acting together, 
we establish with each other symbols that allow us to solve 
complex problems in an efficient, truly collaborative 

manner. Because individuals have no direct access to each 
others’ thoughts, they must communicate to coordinate their 
distinct mental states and get them to converge (to some 
extent) in order to work together successfully. This process 
of “alignment” is necessary even when the parts are 
rational, cooperative, speak the same language, share much 
of the same knowledge and culture, but it is essential when 
they have asymmetric knowledge – such as in current 
Human-Computer Communication.  
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Figure 1. Turn taking in the Sketch-Editing Game. 

 

In this article, we formulate a game theoretical model that 
captures some important aspects of this difficult problem. 
We introduce the model with past Human-Computer 
Communication examples and discuss its application in the 
learning and recognition of graphical symbols, where a user 
and a machine take turns modifying a joint sketch, Fig.1. 
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The goal is to establish a two-way symbolic “dialog” 
between the user and the machine in which the machine not 
only routinely learns response to cues but also actively 
creates and manipulates symbols in interaction with 
humans.   

This is an example of Interactive Learning. The problem 
has particular features not generally found in other learning 
problems. It consists of individuals that are learning about a 
process in which others are learning. And a learner in this 
situation must somehow consider not only the states of a 
physical process (medium states) but also the internal states 
of others (knowledge states). Additionally, learning must 
happen interactively (may involve turn-taking), 
transparently (players can observe and test what other’s 
have learned) and be grounded in the common 
environment. 

THE GAME 
Suppose, for example, that a user has three types of objects 
in its kitchen - mugs, glasses and bottles - and that a robot 
can pass him the objects he sketches. This defines four 
subgames: need-a-mug, need-a-glass, need-a-bottle and 
need-nothing. This can be seen as a coordination game 
because user and machine are better off playing the same 
subgame. The problem is to jointly determine the intended 
subgame, without the assumption of any prior, common 
knowledge about these objects (in special, that the robot 
knows what “mug”, “glass” or “bottle” are). A final 
solution is a symbol, a joint representation between them 
that unambiguously distinguishes the subgame for both. A 
solution is reached by a succession of symbolic proposals 
and modifications.  A strategy for each player, at a time, is 
a specific modification of the current (joint) drawing that 
makes it less ambiguous (i.e., given the player's current 
beliefs). Modifications can be contour deletions 
(scratching), completions (drawing) or substitutions 
(morphing) – and they, together, are meant as a “is this 
what you mean?” query. We take this game to be a learning 
game with many rounds; where each player observes the 
opponents’ moves and adapts its strategy until both are no 
longer uncertain about the reference. Symbolic 
communication is then a learning game where players learn 
better and better each other’s references. We suggest that 
minimizing the expected number of interactions leads to 
both an attractive new medium for communication, and an 
effective training procedure.  

Seen this way, learning and recognition are not artificially 
separated. The machine actively prompts the user for 
specific information whenever it recognizes a specific self-
consistency gap (ambiguity) in its model. With better 
models, less and less interruptions are necessary (and 
learning transitions into use).  

The game is played over a graph by two players, User (U) 
and Machine (M). The graph’s nodes are shapes and edges 
are operations a player might perform on the source node 

(transforming it into the target). A path in the graph is then 
a progressive modification of some visual structure or 
structures. Games are often described by a tree (each 
subgame, a subtree). Imagine then that M’s prior knowledge 
consists of all previous games with U. In each round of the 
current game, M proposes a subgraph of this graph (i.e., a 
subgame) as a way of reducing uncertainty about what 
subgame is being played. 

 

 

Figure 2. Game example. 

 

Fig.2 depicts M’s graph after several games (sketchings of 
cans, bottles, and glasses shown in the graph’s periphery). 
At the graph’s center (double-circled) is U’s most recent 
sketch. The first set of transformations offered by M is seen 
in depth-1 nodes (first level). They are: adding a “neck” 
(towards bottle examples), adding a “base” (towards wine 
glasses) or widening the top (towards cup). The user can 
accept one of these suggestions and (optionally) use the 
transformed shape as basis for further editions. The next 
level shows subsequent transformations if each of these 
shapes were accepted.     

As more is edited, more and more alternatives (or 
hypotheses) are ruled out as possible. Playing this game, M 
learns new symbols by learning objects’ “boundaries” (how 
they can be deformed and still receive the same name) and 
coming to share those boundaries through interaction with 
other individuals. This way, communication serves to make 
interaction more efficient. A central suggestion in this 
article is that (visual) symbols are learned to optimize 
interaction. The first-level shapes in Fig.2, for example, 
make both players imagine an often used shape at a time. 
While something less likely (like “very tall cup”) requires 
more words, or strokes, for players to jointly construct. 

In the next section, we place the work in context. We then 
turn to the model (first motivating its central concepts and 
then fully formulating them). After that, we describe an 



implementation of the model and its possible applications. 
We finally evaluate two of these applications, with an 
emphasis on learning performance.   

RELATED WORK 
The central problem relates to uncertainty and interaction, 
and thus Machine Learning (ML) and Human-Computer 
Interaction (HCI). We believe that the natural domain for 
HCI researchers interested in learning is not unsupervised 
learning (as sometimes taken as synonymous with Machine 
Learning), but semi-supervised or active learning [1,2]. 
Generally, unsupervised algorithms attempt to devise the 
most accurate classifier according to a provided exemplar 
set [3,4]. Active learning is of interest when the machine 
can, instead, query the user (or a database) for the 
classification of a given exemplar; and the intelligent choice 
of queries can improve the learning accuracy and/or speed.   
The user’s response is often called a labeling of the 
exemplar. Consider the case of shape matching. A matching 
is often used as a shape classifier by starting with U’s shape 
(or sketch) and matching it against M’s (model) exemplars 
of different object classes. The resultant (distance) 
measures lead to a classification decision. In what follows, 
we consider the problem in the opposite direction: which 
exemplars should M suggest (or query) U at a time, to 
discover the correct class. The labeling (correct shape or 
not) of each suggestion informs, in this case, subsequent 
ones and allows M to change the shapes it is suggesting 
progressively, reactively, and quickly.     

There has been a surge of research [9,7] tying machine 
learning techniques and vision problems in the past decade. 
Some researchers have, in turn, advocated the study, and 
discussed the power and difficulties of bringing these 
techniques to everyday computer use and HCI research 
[5,6]. For example, in [6] authors focused on the efficiency 
issue. They attempted to make a full re-training 
unsupervised cycle quick enough for interactive training for 
color and texture classification. For that, they used the 
popular “bag-of-feature” model [7,8,9] to represent objects 
(which ends up using over 1000 low-level image features to 
devise a classification decision). This rendered the 
interaction as a train-test cycle in a black-box fashion, 
Fig.2c. In this article, we explore an alternative connection 
between ML and HCI. Besides bringing an active learning 
perspective and game theoretical concepts to the problem, 
we address the issue of representation in learning, and we 
make the representations being learned observable and 
manipulateable by the user, Fig.2d. For the “bag-of-
features” approach this seems plain unworkable. Fig.2a 
illustrates the first three features (learned with [8]) to detect 
cups such as the one in the top. The boxes are Haar-
features, where the model expects paired high and low 
density of edge points. There are not only too many 
features, each usually at different scales, but few of them 
have any clear high-level interpretation.  

Because ML is often framed in that language, the feature-
set approach represents a straight-forward, out-of-the-box 
application of ML. To better address the unique constraints 
posed by HCI (semi-supervised, online, efficient, visual and 
intuitive representations), we believe we have to return to 
the concept of shape, which (due to the practical success of 
the feature-set approach) have lost some of its focus in 
vision. Although maybe not necessary for offline just-
detect-the-object technology, it seems that whenever a 
human user is involved, so should the concept of shape. It’s 
not yet clear, however, how to properly insert shapes into 
learning. The Shape-Editing game studied here uses the 
game formulation below and a new shape descriptor [28] to 
explore such issues in the intersection of shape 
representation and interactive learning. The descriptor 
attends to features relevant to HCI. It emphasizes shape 
regularity and the “gist” (instead of the feature) level of 
recognition. It represents shapes with a constructive process 
that recursively edits line-segments, Fig.3e. The process 
constructs rectangles, rectangles with one “bump” (or 
depression), two “bumps”, etc. which are often related to 
the recognition of affordances [36].  
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Figure 3. (a) first haar-features for a CART-tree, (b) batch 
data collection games, (c) iterative data collection and testing 

scheme, (d) shape learning scheme, (e) shape descriptor. 

 

This top-down descriptor offers an attractive compromise 
between scalability and accuracy. One implementation [28] 
can match a shape to over 500 others under a second with 
accuracy within 5% of the state-of-the-art. We think 
specialized data-structures could scale the solution further, 
towards very large datasets (e.g., 1,000,000 shapes), 
offering a shape-matching alternative (and sketch-editing) 
to current index-based search solutions [10].    

Following the unsupervised paradigm, games have been 
used as a setting to acquire ground-truth data for images 



[11,12] and sketches [13]. After collected, data is then to be 
used as input for an unsupervised algorithm of choice. The 
process is one-way and non-interactive (Fig. 2b), and the 
model being constructed drives in no way the data being 
collected. We have observed that the process is 
dramatically accelerated when the model’s uncertainty is 
clearly visualized by the user. This way, the interaction is 
an integral part of the solution (as opposed to the final-
product’s uninteresting last step). An exception comes from 
work in automatic translation or transcription [14], which 
often does have both the model and the user in the loop. 

In the online formulation that follows the specific 
performance measure (otherwise traditionally the error rate 
[2]) is substituted by the game length (the expected number 
of interactions in the game).  Optimization of large, perfect-
information games have been studied in networking 
domains [24,25], while learning in games to a much lesser 
extent [26]. Models for games of incomplete information 
remain “laboratorial” (typically non-extensive), dating to 
Lewis’ original signaling game formulation [16]. We 
studied large coordination games among low-income users, 
solving common problems, with cooperative (coalitional) 
game theoretical concepts with very positive results [27].  
We are unaware of any other practical use of cooperative 
concepts, such as the Shapley value [23] used below. The 
relatively small quantity of game-theoretical concepts in 
HCI research is surprising, since it studies, by definition, a 
multi-party (cooperative) phenomenon.  

Lee et al.  [29] frame human-robot interaction as a “game” 
but say little about learning, uses no game theory, starts 
with idealized features, and is mostly descriptive. The 
solution is similar to work with no “games”.  Our basic 
premise (next section) is that people cope with joint 
problems by adopting hypotheses of what others are 
thinking and revising these hypotheses with interaction. 
This adds “cognitive” and “closed-loop” dimensions to 
general games, and leads to an explicit optimization 
criterion that doesn’t require external models (e.g., 
markovian matrices) and that is related to principled game 
theoretical concepts.  

In a broader scope, we place importance in mixed-initiative 
interaction [15], the study of interfaces that support 
efficient, natural interleaving of contributions by people and 
computers, aimed at converging on solutions to problems. 
Our main interest in this direction is to explore a new 
framework (targeting the visual, instead of the usual 
conversational medium). The framework developed allows 
machines to be positioned in a more active stance, ready to 
obtain information that they need (in as few queries as 
possible), as opposed to simply receiving information.  

The game model proposed takes the user as an adapting 
creature, and we are interested in user learning (as opposed 
to assuming that only the machine is changing with 
interaction). A central motivation in the Shape-Editing 
game is to study more approachable ways for users to 

analyze, visualize and modify learned models. We see our 
work as an extension of efforts in that direction, in special 
in gesture-based interfaces [17,18]. James and Novins [19] 
study morphing animations in recognition, aimed at 
visualization, Lee et al. [20] overlay a cloud of 
(“completion”) strokes recovered from large image datasets 
as guides for freehand drawing, and Igarashi et al. [21] 
suggest online candidate interpretations as result of fixed 
beautification procedures (not editing) for geometric 
design. The interaction is single-pass and fixed, and does 
not involve the back-and-forth construction of mutual 
understanding around complex models. The work here 
generalizes and enhances these paradigms. 

Finally, we explore the issue of representational grounding, 
how can we represent the user’s knowledge, without pre-
encoding it in some way? The key seems to be to evolve 
that knowledge progressively and in collaboration, such that 
what the user refer to is always grounded in the 
environment – and so U and M’s knowledge can be 
progressively aligned (i.e., made increasingly similar) 
through actions in the real world. Work in this direction 
comes especially from Human-Robot systems. For 
example, the goal of the Ripley system [30] is to support 
collaborative human-robot interaction; however, most of 
the work so far has concentrated on the development of 
fixed mental models (e.g., perspective taking), involving 
very little learning and no across-interaction optimization. 

HUMAN-COMPUTER COMMUNICATION EXAMPLES 
In this section we illustrate how typical Human-Computer 
communication (HCC) problems can be seen as games. We 
use the examples listed in Fig.4b to motivate and introduce 
key concepts. We do not study the game here as a general 
model for HCC, but feel that considering past HCC 
approaches is essential to better present and contextualize 
the work. 

We see that cooperation, whatever its setting, involves a 
progressive modification of some structure (the medium). 
The main components of the model (Fig.4a) are two players 
(and their knowledge states) and a medium (and the medium 
state). The crux of the problem for players is that they can 
play many different games, and must coordinate 
unequivocally which they want to play at a time, through 
the medium. We call each a subgame to differ from the 
overall game. A player initially has incomplete information 
about which subgames the other wants to play. To reduce 
uncertainty, he changes the medium in some way so as to 
signal his intentions. The other respond similarly, and turn-
taking takes place until they are ready to play a common 
subgame. Subgames are deterministic games with a fixed 
payoff structure, where players have shared and settled 
expectations and behaviors (no uncertainty).  

This can be viewed as a series of subgame proposals made 
by the machine, followed by corrections made by the user, 
until an unambiguous solution is found for both. We 



consider strategies for the players, each considering the 
other’s knowledge state. The players’ knowledge states are 
always subgames subsets (i.e., the set of subgames that a 
player is considering to play). Careful observation of 
successive structural modifications generally reveals a basic 
set of structural medium operators or editions (x in Fig.4a). 
The game’s risk is the risk of miscoordination (or mis-
reference) between players. We sometimes refer to a 
player’s “opponent” to mean “the other player”. And we 
call a user’s edition (a correction of the current medium) an 
error in the game.  
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Figure 4. (a) main elements, (b) example games, (c-e) WIMP 
example, (f) sketch example hypotheses-sets. 

 

Ballot design is a very simple example of such a game. The 
medium is typically a paper formulary; the players are the 
voter and the official interpreting the ballot. The 
hypotheses-sets for both players are candidate sets (e.g., 
{Bush, Kerry}). The subgames are vote-for-kerry or vote-
for-bush. The medium is typically graphical boxes or 
containers, and operators are marks. Poor designs lead to 
confusion and potentially miscoordination between a large 
numbers of voters and their government.  Like in all 
examples here, the risk is a measure of visual confusion 
(that tells how well medium states visually distinguish the 
two hypotheses).   

Voting is a simple example because it is a one round/turn 
game (uncertainty is, supposedly, resolved with a single 
action). Like voting, WIMP interfaces have also a very 
simple medium (designed for easy discrimination) and 

operators, but can have typically more rounds. Media are 
graphical widgets, and operators are mouse clicks (for U) 
and pre-coded state changes (for M). In the simple dialog 
box in Fig.4c, players can play the subgames close, print-
on-A and print-on-B. The game’s operators are used to 
construct a graph representation in the next section, Fig.4d. 
To play print-on-A, the user may start by clicking on the 
combo-box (use operation x2 ), the machine respond by 
changing the widget to a popped state, the user click on “A” 
( x3 ), the machine change the combo to unppoped (and 
possibly the “print” button to enabled), which the user 
clicks ( x4 ). To play this game U must also keep track of the 
machine’s knowledge state (i.e., interaction deteriorate 
when states are not clear).                    

These are all graphically mediated interfaces. Search engine  
interfaces (e.g., google) are contrasting cases with a textual 
medium (a search string). Operators are often string-edit 
operations (character insertion, deletion and substitution). 
The case is interesting because the number of subgames is 
much larger, and the engine must effectively guess what’s 
on the user’s mind. The engine is adaptative (in the long 
term, across games) but there are typically few turns (within 
a game), with the engine simply listing its best, current 
mining matches.  

The number of possible medium states is small in this case 
compared to graphical media. Gestural and sketch 
recognition interfaces deal with natural input and thus 
larger medium variation. Subgames are classes over gesture 
or sketch exemplars.  The hypotheses for M in this case are 
the entire set of objects it “knows”. The hypotheses-set for 
the user is the object he wants (or intends to sketch). This 
can be a set of exemplars of an object (e.g., a “cup”) or a 
more specific set (e.g., a certain cup or any large cup). 
Fig.4f shows example hypotheses-sets for the former case. 

Players specify what they are willing to play with their 
hypotheses-sets. In games here, M starts with a full set H 
and rule hypotheses out until it finds U’s playable subset in 
H. For the voting and WIMP games, U wants to typically 
play a singleton set (i.e., choose respectively one candidate 
or action). For others, U can specify (with its hypotheses 
set) a satisficing criteria (i.e., a set of acceptable subgames). 
The players’ hypotheses-sets need not be identical, and 
learning is necessary if they are not. As result, we can say 
players “align” their representational sets through learning.          

Sketch recognition is typically addressed by pre-training a 
gesture or sketch classifier, possibly from the two sets of 
exemplars. This is not convenient, however, when sets (e.g., 
what the user wants) change with the situation. 
Approaching the problem this way (offline, or in batch), 
learning also occurs outside of the interaction.   

The previous examples differ in this way from Human-
Human interaction where learning can emerge on-line, 
spontaneously, in response to interaction errors. Natural 
Language (NL) dialogue is an interesting example of a 



game that, because of a very large number of subgames, 
relies on mechanisms of self-adjustment, turn-taking and 
repair [31]. With larger and more diverse graphical 
lexicons, errors are always possible and we can expect 
mechanisms that allow machines to similarly resolve 
graphical uncertainties online.  

That requires both an online learning model and interaction 
design (i.e., how to present, accept and reject hypotheses 
online). We present a model next and then an interaction 
design for the case of sketches (designs for GUIs and other 
domains are not currently studied).   

MODEL 
The game is described by a Graph G = V,X . Graph nodes 
V  are medium states, edges X  are medium operators. An 
edge x ! X characterizes a (significant) difference between 
its two connecting nodes. Training (i.e., learning from 
previous games) is described by previous graph instances 
G1,G2,f,Gl  and constitute the player’s hypotheses-set,  
H = G1,G2,f,Gl# - . The game is more naturally described 
in extensive form (as opposed to a single payoff matrix). 
The players’ payoff is the game duration.  Since players 
will stop playing only after they have resolved all their 
individual uncertainties, players must consider each other’s 
knowledge states to minimize the game’s duration. And 
they coordinate on paths with small expected duration for 
both.  

Winning Paths 
We first review the game’s combinatorial structure, which 
is similar to [27]. We then introduce new concepts (next 
section) to formulate an optimal many-rounds game. Let h 
be the set of operators applied previously by a player (a 
“path” in G). A player’s knowledge state p h_ i  is a set of 
possible hypotheses or exemplars (e.g., different objects M 
thinks U might be thinking of, at a time). The knowledge 
state can be fundamentally described by a set 
function, p : h " 2 H , denoting the set of possible 
hypotheses at a time (note this is merely a convenient 
functional form for a subset of H). This way, we endow a 
player with some private information, which is summarized 
by p h_ i . Before applying an operator, the player then 
believes that what is truly being sketched is in the set 
p h_ i . After the operation, the player reviews this set by 
observing the other’s response, and so on.  

Our overall approach is to first assume that the function 
p h^ h separates hypotheses perfectly (i.e., that no 
hypothesis is ruled-out erroneously). We then formulate and 
minimize a risk measure (which indicates the probability of 
misclassification). Humans often make decisions with 
nothing close to a complete statistical model. The emphasis 
here on model selection alleviates the often unpractical 
data-requirements of ML applications (e.g., [8] or [7] 
require hundreds of thousands of images, and sometimes 
days, to generate a classifier). 

Let p U h_ i  be U's knowledge state after path h. A path is 
winning to M only if U has no more possible plays. That 
is, the game ends when the opponent has no further 
possible operations to apply to the medium, which 
happens when p U h_ i = 8" , , or schematically 
h : p U "8 . We then say two operations xi  and xj  are 
dependent for M if p U xi,xj# -` j =8 . The set vWt H_ i  of 
all winning paths of size t (in a game with hypotheses 
H) are the set of bases of a matroid [32,27] (which is a 
generalization of independence in vector spaces). Bases 
are the matroid maximal independent sets (i.e., sets that 
become dependent on adding any new element). The set 
of bases of all sizes up to T (a game parameter) is 
denoted simply vW H_ i . 

The winning paths are an equilibrium solution in the 
game (i.e., neither player has incentive to deviate). 
Since the bases are the possible (final) plays in a game 
with hypotheses H, players must coordinate on one such 
path. They can estimate the opponent’s likelihood of 
playing each path as a discrete probability distribution 
over the set of bases, P B_ i = 1

B! vW H_ i
/ .  

The structure will allow to calculate efficiently several 
useful measures. Before devising the game’s expected 
duration (payoff), reconsider Fig.4d. Name the subgames 
1, 2 and 3 (close, print-A and print-B). M starts with 
hypotheses 1,2,3# - , if U applies x2 , M reviews the set to 
2,3# - . Application of x4  makes the set 2# - . The path 
x2,x3,x4# -  is a basis because the use of any other operation 

makes M’s hypotheses set void. Other bases are x1# -  and 
x2,x3,x5# - .   

Expected Length and Risk 
With the bases-set vW H_ i , it’s simple to calculate the 
expected duration, or length, L1  of a game with hypotheses 
set H:  

  L1 H_ i = P B_ i # Length B_ i
B! vW H_ i
/        (1) 

where  Length B_ i = B  in this case1

H = 1,2,3# -

.  The game’s 
expected duration is given by its bases, which correspond to 
a set of paths in a graph. The expected duration of the game 
in Fig.4d, for example, is 1.67 (with  and 
equiprobable bases).  
This is the payoff of a game with fixed initial hypotheses-
set, H. The expected duration can be drastically reduced in 
games where errors are possible (and informative). This is 
especially true in large games. In this case, players start 
with a subset of hypotheses, and, in case of errors, review 
the set (letting interaction feedback control the game). 
                                                           
1 We assume that operators are associative and contiguous edges 
belonging to the same set of bases can be, at no cost, combined into a 
single edge (with length one). 



Consider first a game with 2 rounds (and that “\” is typical 
set contraction). An error is the rejection (by the opponent) 
of a proposed operation x. The error can be informative, 
leading the player to reject the set of hypotheses H\p x_ i . 
An operation x can then be seen by M as a statistical test 
performed on U (with a risk r x_ i ). The min-expected 
length L2  of  a game with 2 rounds is then: 

  
L2 H_ i = 1 +

min
x

1 - Pe x_ i_ iL1 p x_ i_ i + Pe x_ iL1 H\p x_ i_ i7 A    (2) 

where Pe x_ i  is the probability of x being rejected. The 
application of operation x splits the game in two, with 
probabilities Pe x_ i  and 1 - Pe x_ i  of being played and 
lengths L1 H\p x_ i_ i  and L1 p x_ i_ i . For example, in the 
game of Fig.4d consider that P B2_ i & P B3_ i . In this case, 
Eq.2 selects x5 . Players first assume that hypotheses are 
1,2# -  (close and print-to-A), and in case of error 3# - . This 

corresponds to a design where the combo-box in Fig.4c has 
a default value (and U is forced to further operate the 
medium to reach the subgame print-to-B). Players agree 
(Fig.4e) then to carry the game over the subgraph with 
edges x1,f,x4# -  first, and move to the subgraph with 

x1,f,x5# -  as needed. 
We can extend this solution by recursion to many rounds, 
Lt H_ i , and to encompass the players’ risk. In the second, 
the player, instead of incurring a cost of 1 at each round, 
incurs a risk r x_ i . See [28] for a detailed discussion on the 
implementation of Eq.2 and its elements in the visual 
domain (in special, shape operators and bases’ risk and 
probability).  This is a computational formulation of the 
game solution. We relate it now to a cooperative solution 
concept in game theory. Arrange Eq.2 in the following way  

L2 H_ i = 1 + min
x

L1 H_ i - Pe x_ i L1 H_ i - L1 H\p x_ i_ i7 A# -
L2 H_ i = 1 + min

x
L1 H_ i - S H,x_ i# - 

where S H,x_ i = Pe x_ i L1 H_ i - L1 H\p x_ i_ i7 A. 
Suppose the probability of error of an operation x, Pe x_ i , 
is the sum of probabilities of bases that contain x. Then (see 
[34], proof of theorem 4.2): 

S H,x_ i =

T - B + 1_ i T + 1

B
f p

P lB_ i
lB ! W H\x_ i
/

B ! W H/x_ i
/ L1 p x_ i_ i - L1 H\p x_ i_ i7 A  

In a game with 2 rounds, S H,x_ i  corresponds to the 
game’s Shapley value [23,35] for operation x over the 
defined matroid structure. Under this interpretation, the 
solution removes first the operation with lowest expected 
Shapley value. Players consequently assume a hypotheses-
set with high Shapley value, considering the 
complementary set with lower value in case of error 
(requiring, in this case, more editions and thus minimizing 
the expected number of operations). The Shapley value is 

an ideal measure and generally too expensive to calculate. 
Due to the matroid structure, the value can be calculated 
efficiently [33,27].    

Figure 6. Prototype screenshot. 

 

This view mirrors some intuitive aspects of human 
communication in general, where we assume at first the 
most likely aspects of a joint action and negotiate online, as 
needed, aspects that need alteration. The first-level shapes 
in Fig.2 correspond to a reduced-hypotheses (or many-
rounds) game. Reference to other (less likely) objects 
requires extra editions and further rounds.   

PROTOTYPE INTERACTIVE SYSTEM 
We have built a prototype interactive system to embody the 
game. Fig. 6 shows a screenshot. It consists of a 
sketchboard and a model panel. While the game is played 
on the sketchboard, the lower bar visualizes the current 
models and shows recognition in live video.  

As U sketches, M presents and updates in realtime its 
suggestions (shown as a pop-up button list to the side of 
U’s sketch, Fig.6 light-gray). Since each is an alternative 
set of shape operators, they are shown with morph-scratch-
draw (substitute, erase, complete) animations on strokes. 
On hover, the user gets a quick morph (with fade) so he can 
quickly examine his choices. Each pop-up button 
corresponds to a set of hypotheses in the (reduced) game 
selected by Eq.2 (and in the order of Shapley values). The 
user can erase or complete contours at any time, observing 
how changes affect M’s hypotheses-set and ordering. By 
choosing one interpretation, the user rejects all others. 
Optimization is carried online, stroke-by-stroke (as opposed 
to a sketch-and-submit model). The user’s scratch gesture is 
pre-trained and cannot be changed. 

Either M or U can declare the end of the game at any time. 
M declares the end when its hypotheses-set is empty and 
there are no more possible suggestions. U  declares the end 
by choosing an additional (“new”)  hypothesis, which is 
always offered. In both cases, M offers U to add the current 
sketch as a new hypothesis and name it. 



USE CASES 
We now discuss use cases we have explored for the 
prototype.  

Mobile Robot Sketch-to-Command 
M is a mobile robot. U sketches a command for M to 
execute. Initially, U  draws something that carries no 
meaning to the robot. Through learning, they can establish a 
common symbolic lexicon. We have prototyped the case 
where the user can sketch objects, locations, and arrows 
(Fig. 7a). The first two refer to live visual objects in front 
of both players, and the third to a single action (move 
source-to-destination). Fig. 7b shows data (hypotheses) 
collected in this scenario for household objects. Fig. 7c 
shows the 4 suggested transformations to the ambiguous 
user sketch in Fig. 7a. An interesting aspect of this scenario 
is that joint attention, like in human communication, can 
accelerate dramatically the reference game. Users can 
“snap” the diagrams to reality, or play the game “grounded” 
(i.e., M only disambiguates among recognized objects – or 
objects that it “sees”). Although we, for example, may 
know the shapes for a multitude of objects, there are few 
that we expect to see in particular joint action situations and 
places.    

(a)

(b)

(c)  

Figure 7. (a) sketch to command, (b) hypotheses, (c) 
suggestions. 

 

Hand Gesture Recognition  
The prototype can be readily used for pen or mouse gesture 
recognition. We have observed that allowing users to 
examine the variations or possible deformations in their 
gestures (similar to Bau’s Octopocus technique [22]) makes 
the process more transparent. This is true for training and 
for use. The issue of recognition error is important and has 
been recognized for gestures [18]. The work here offers an 
alternative way to visualize the error and use it for learning.   

Cooperative Sketch Completion  
We studied games where users take turns completing 
sketches “forward”. M learns such completions and use 
them in new games (i.e., with the next players). This way, 
with each new player, the shape editions grow richer and 
more imaginative and M constructs progressively, from 
playing, a “catalogue” of possible editions. As a first step, 
we designed a game where M  starts with a number (Fig.8) 

and U is asked to creatively complete it. Children find 
playing this game after some training a lot of fun.  

 

Figure 8. cooperative sketching. 

 
Media Authoring  
We have also used the prototype to assist users draw and 
animate. To help users draw, we foresee games where U  
draws something (e.g., a circle), and M suggests next steps 
(e.g., add a neck or a leg). Fig.9a-b shows editions learned 
from users drawing animals. To help users animate, we 
applied the previous framework to shape interpolation. In 
this case, animations were not only the system’s means of 
communication, but also the final output. Each one of U’s 
deletions was taken to be a new model object. Fig.9c 
depicts an example: U drew the first frame, then deleted the 
arrow (a new model is created); he then drew only the 
arrow’s shaft, which M completed with feathers. This was 
repeated a few times to make 1-stroke keyframes for the 
arrow wobbling animation. Since animation often 
compromises the recursive modification of sketch parts, 
learning parts’ models can be useful.    

U M
(morph)

U
(complete)

M
(complete)

U
(complete)

M
(complete)

U
(erase)

U
(complete)

M
(complete)

(a)

(b)

(c)

 

Figure 9. (a,b) assisted drawing, (c) animation.  

  

Interactive Visual Web-Query  
We have finally used the prototype to investigate a 
simplified version of the web search game (Fig.4b). Users 
sketch queries and ambiguity is resolved interactively (with 
sketch editing). For illustration, consider a simple example. 
We googled the terms “apple”, “tomato” and “lemon” and 
selected as M’s possible hypotheses the top 3 related 
queries in each case. We used the goggle hit counts as 
probabilistic priors (see [28]). Fig.10a shows one run and 
Fig.10b lists M’s hypotheses with subsequent rounds. As in 
the previous games, the editions are learned from previous 



users’ sketches. In the next section, we evaluate this and the 
sketch-to-command scenarios in further detail.         

U M
(morph)

M
(complete)

U
(erase)

M
(morph)

M
(complete)

{ tomato, tomato soup, tomato cart
apple, apple corp., apple store
lemon, lemonade, lemon cola }

{ apple, apple corp. } { apple corp. }p =

(a)

(b)
 

Figure 10. (a) query example, (b) M’s knowledge states .  

 

EXPERIMENTS 
We study learning and sketch-editing in two user trial 
studies with 70 participants playing 2 games. Our main goal 
is to subject the model to actual use – in special, to 
elucidate how many turns would prove necessary (in avg.) 
after some initial training and with natural input (which 
speaks directly to the model’s applicability). Other relevant 
side discussions are also offered: that the designed 
interaction has an observable effect on these results, a 
curious benchmark on how humans would play the game, 
and a very favorable qualitative user evaluation for the web 
search scenario. 

Machine Player (M) 
We ran pilot user studies for the sketch-to-command and 
visual web-query use cases. The goal of these first 
experiments was to assess M’s longitudinal performance 
across different interactions and games. In the first 
condition (U-M), users played instances of the two games 
(15 household objects and web query trials each), and we 
examined the game duration across time (or users). With 
learning, we expected a progression of reducing game 
durations. For a baseline, (paired) users played the same 
games (U-U). 

Participants were volunteers, aged 17-28, with little or 
intermediary tablet experience. Before the trials, they were 
given a 20 minutes training session on its use and the 
scratch gesture. At the end they were asked to complete a 
set of 5 exercises completing and erasing a set of shapes. 
The experiment was performed on two quad-core 2.8 and 
2.6 GHz PCs, each connected to a Wacom Cintiq 12WX 
pen display.  

For U-M, users were told to imagine they were playing a 
game where a computer would try to guess an object (or 
web query) from his/her sketches. They were told to help as 
much as possible, but that they could end the game at any 
time. They were asked to press one button for that case and 
another for a correct guess. Players were told that writing 
was against the game’s rules (including numbers). No 
further instructions were given, and the experimenter did 
not answer questions during sessions.  Before beginning, 
participants received a printed list of objects or queries in 
the games (which they were asked to read beforehand). The 

list was made available to account for the experimental 
constraint that M only discriminates among objects in the 
experiment (while U in a U-U trial, without the list, would 
consider a much larger number). 

U received M feedback (hypotheses’ labels and editions) 
with each of his/her strokes, but limited in the trial to a 
single suggestion. The game ended when either M guessed 
the object correctly, or, U or M ended the game. In the latter 
case, the trial was declared learning-only.  

The U-U game reproduced U-M’s setup with a Wizard-of-
Oz design. The (randomly assigned) initiating user 
proceeded stroke-by-stroke. The non-initiating user was 
asked to guess (label) and/or make any number of 
corrections to the other’s sketch (editions). In U-M, M’s 
feedback was presented in less than 2 seconds (after the end 
of a stroke), while U in U-M and U-U could take any time.   
Note that this experiment’s goal was to study M’s 
performance and not U’s perception (of the game). Users 
could not see each other, only the GUI in Fig.6, with added 
“end” and “correct!” buttons, and a “your turn” indicator.  
Since the response time is very different, we use the 
number of gestures (and not the more usual time-to-
completion) as performance measure. The measure also 
accounts for U’s gesture errors. 

(a) (b)

(c) (d)

(complete)(erase) (complete)  

Figure 11. (a) object games examples, (b) learning-only trial, 
(c,d) web query edition disambiguation examples.  

 

U-U had 20 participants (10 sessions), and U-M had 25 (25 
sessions). A session consisted of the two games in 
succession (in random order). In the household objects 
game, 15 grasp/pushable objects in our lab with obvious 
names were selected. They were jar, camera, cell-phone, 
book, glasses, hat, knife, spoon, fork, stapler, plant vase, 
pen, crayon, tomato and orange. The order of the 15 objects 
was random. In the web query game, queries were selected 
(and randomly assigned) from the top 16 google searches in 
our location. They were “cerebral palsy”, “Serena 
Williams”, “World Trade Center”, “Ronald Reagan”, 
“college football rankings”, “Jacksonville Jaguars”, “9/11”, 
“September 11”, “flight 93”, “mermaid”, “Patriots”, “Dr. 
Phil”, “White House”, “super bowl 2011”, “presidencial 
debate” and “NHL”. Two of the searches, “9/11” and 
“september 11”, were merged into one.  

Fig.12a shows the percentage of learning-only trials (i.e., 
without a correct guess) with time for the household object 



game. Fig.12c shows the average number of gestures for 
the 15 objects over time. In this game, there is a trend 
towards 1-2 average gestures. The trend is present in U-U 
and emerges in U-M after a number of trials. More than one 
trial (i.e., exemplars) is often necessary to encompass 
different users’ shapes and pose variations (e.g., Fig.11a).  

Learning is “slower” in the web-query game (U-M), 
Fig.12b. It takes 9 users/sessions for M to guess correctly 
all queries for the first time (while only 3 for the household 
object game). The number of gestures, in both U-M and U-
U, is (on average) also significantly larger for the web-
query game, Fig.12d. Both observations can be explained 
by the abstraction level of concepts in this game (which 
leads to a larger variation on U’s depictions). Fig.11c-d 
highlights two trials, where users sketched to disambiguate 
“Ronald Reagan” and “Serena Williams” and “World trade 
center” and “11/9”. Fig.11b shows a trial ended by U 
(learning-only) for “11/9”.   
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Figure 12. (a,b) average % of learning-only trials resp. in the 
object and web-query games , (c,d) average number of strokes.  

 
The system is shape-bound and unable to use color and 
texture cues directly. One could argue that heavily 
articulated or amorphous objects (e.g., “coat”) would take 
lots of exemplars to learn. Users seem to stick, however, to 
a surprisingly small set of (prototypical) shapes and poses, 
making the problem easier. This is arguably intrinsic to how 
we act together (and expected by the model).  

User Player (U) 
While the previous study addressed M’s learning 
performance, we addressed “user learning” and 
representational transparency next. We repeated the U-M 
setup in a two-factor study for 25 users. The control players 
played with word labels only (as opposed to labels and 
visual editions). Visual learning happens in the same way 
(but M’s editions are not visualized by U). Fig.13 shows the 
results. A (paired) t-test for the percentage of correct 
guesses over trials indicates significant differences (p = 
0.0181 and p = 0.0104) between the distributions in the two 
conditions, in the two games. The editions induce U to 
directly address M’s models (and often demonstrate 
relevant difference among objects or queries), which is 
useful to learning. 
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Figure 13. (a,b) average % of learning-only trials resp. in the 
object and web-query games , (c,d) average number of strokes.   

 

These results point to an interaction between the 
representation and learning speed in the absolute. They 
favor the shape over the black-box model (Fig.3c-d) in the 
current tasks. That is, suppression of information about M’s 
current model (summarized by M’s editions) has immediate 
effect on learning performance. As implication, black-box 
models (where U cannot visualize M’s model in any 
practical way) miss an important aspect of the problem. 
These results suggest, in turn, the relevance of interaction 
aspects to the problem of learning. In the future, we plan to 
study learning efficiency across alternative representations. 

The shape model has a direct effect not only on the 
resulting training data, but also on user engagement. A 
post-study survey asked participants to rank in a 5-point 
Likert scale if they would use the game to make a web-
search (with 0 “not at all” and 5 “definitely”). Participants 
ranked the shape-model (Mean 4.69, SD 0.83) considerably 
more favorably than the black-box model (Mean 3.1, SD 
0.95). 

CONCLUSION 
Everyday interaction is misleading in its simplicity. In our 
initial example game, unlike U, M does not know what 
“cup” means (a largely visual concept). Even when it does, 
does U mean that tall cup over there or the one with 
flowers? Uncertainty is part of any joint action, under any 
modality. We made the case for a way to address 
uncertainty in interaction (visually, in special). To articulate 
uncertainty visually (“tall? with flowers?”) is often very 
powerful (we had users screaming/laughing in surprise, in 
web and drawing games) and natural (underlies all our 
GUIs). We demonstrated how such new sketch-based 
interaction paradigm can improve sketch-based learning. 
We will study further interaction and representation aspects 
of U and M learning performances. We believe that the 
work can also help understanding other modalities, machine 
mind-reading (and “writing”), and communication in 
general. 
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