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Abstract We present two path planning algorithms for mobile robots that are con-

nected by cable to a fixed base. Our algorithms efficiently compute the shortest path

and control strategy that lead the robot to the target location considering cable length

and obstacle interactions. First, we focus on cable-obstacle collisions. We introduce

and formally analyze algorithms that build and search an overlapped configuration

space manifold. Next, we present an extension that considers cable-robot collisions.

All algorithms are experimentally validated using a real robot.

1 Introduction
Mobile robots are typically untethered. This is not always desirable in household

and high-power robotics. Wireless communication can be unreliable and batteries

need to be charged regularly. These challenges can be solved by using cables for

communication and power. Currently, cables are a viable option for robots that work

in fixed environments such as homes and offices. The challenge addressed in this

paper is that cables impose additional constraints on robot motion. First, robots

cannot go further than the cable length. Second, they are blocked by the cable itself

when the robots are not capable of crossing it. We present two practical planning

algorithms that handle these constraints and validate them on a real robot system.

The first challenge is that a cabled robot’s movement is constrained by the length

of the cable. If there is no obstacle, the robot’s motion is limited to stay within a cir-

cle around the fixed end-point of the cable. If there is an obstacle in the environment,

the robot’s movement is further constrained by the interaction between the cable and

the obstacle as shown in Fig. 1(a) and (b). The locations of the robots are the same,

but the shortest paths to the goal are different because the cable configuration in

Fig. 1(b) cannot stretch to the goal. The second problem is that the robot’s move-

ment may be blocked by the cable when the robot is not capable of crossing it as

shown in Fig. 1(c). The robot must make an auxiliary motion to move the blocking

cable out of the way (Fig. 1(d)). This is difficult because the robot cannot directly

control the cable. It must indirectly control it by pulling.
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Fig. 1 The problem domain and a challenging example where the robot must untangle its cable.

In order to address these challenges, Section 3 introduces the overlapped man-
ifold representation for the configuration space of cabled robots. We develop an

efficient, resolution complete and optimal algorithm that constructs the manifold

and solves practical planning problems. To handle collisions between the cable and

the robot, Section 4 presents a second search method that applies physics-based

simulation combined with heuristics to choose intermediate subgoals that maximize

robot mobility. Section 5 experimentally demonstrates that both algorithms generate

appropriate paths for a real robot that reaches targets in the presence of a cable.

2 Related Work
The topic presented in this paper is far more complex than general path planning

[1, 2]. While the robot itself only operates in two dimensions, the cable is also part

of the complete system or plant. By including the cable, the challenge is lifted to

planning for an infinite-dimensional underactuated system. Previous work on teth-

ered robots [3] treated the problem as multi-robot scheduling. Our approach focuses

on a single agent and handles environment geometry.

Considerable research on high degree-of-freedom (DOF) robot systems such as

[4, 5] has direct applications to domains with dozens of DOF and non-holonomic

constraints. Our problem, however, requires handling even higher DOF and under-

actuation. Hence, the challenge is also distinct from deformable motion planning as

presented in [6, 7]. Likewise, cable-routing [8] assumes that shape of the cable is

directly controllable. However, a cabled robot cannot control all of its degrees of

freedom and must rely on predictions of cable motion due to stretch.

Existing planning methods for underactuated deformable objects typically focus

on local deformations [9, 10]. Studies on deformable needle steering also consider

the path to a robot configuration [11, 12] with a focus on local environment defor-

mation and curvature constraints. Our work complements these studies since our

task is to determine globally optimal robot paths. Global constraints are imposed by

the cable length, wrapping around obstacles and potentially colliding with the robot.

Typically, globally constrained underactuated planning and control is restricted to

four DOF systems as shown in [13, 14, 15]. To handle the global problem complex-

ity our domain requires a different approach based on topological path homotopy.
Existing work in knot-tying [16] plans with distinct topological states. However it

explicitly encodes and plans rope overlaps. Other planners that distinguish homo-

topic paths, [17, 18, 19], typically operate in a standard high-DOF configuration



space. Instead, we build a configuration space manifold that implicitly encodes the

homotopy of cable configuration and then search for shortest paths on the manifold.

In direct homotopic planning, [20] studies shortest paths but restricts the domain

to a boundary-triangulated space. [21] requires semi-algebraic models of obstacles.

[22] gives a configuration space representation that closely related to our work.

Their complex-plane mapping of paths may increase the efficiency of our methods

for single-query search. In contrast to our proposed manifold, existing techniques

do not address global cable-length constraints or cable-robot interactions.

Existing methods for manifold construction tend to focus on relationships in

recorded data [23, 24]. We present a novel, simple algorithm for global path plan-

ning with distance constraints on paths. The algorithm not only generates paths, but

a complete vector field [25, 26] for robot motion on a manifold of homotopic paths.

Our extensions to this algorithm also consider cable dynamics [27, 28] and evaluate

strategies for robot motion when the cable itself is an obstacle in the space [29].

3 Distance Manifolds: Cable-Obstacle Interaction
We present a path planner for cabled mobile robots. The initial configuration, qi,

includes initial cable displacement. The goal is any configuration qg that places the

robot at pg in a 2D environment. The robot is connected to a fixed base location,

p0, by a cable resting on the floor. The cable is a flexible, passive entity whose

shape is determined solely by the previous motions of the robot. The environment

contains fixed obstacles that restrict both cable and robot motion. For simplicity, we

assume a disk-shaped robot with a given diameter and a cable attached by a freely

rotating joint. Furthermore, we represent space by a grid where configuration space

obstacles must occupy at least one grid vertex. This section introduces an algorithm

that handles the constraint given by cable length.

First, we build the configuration space that represents the structure of the prob-

lem and then compute a vector field that guides the robot in the configuration space.

Given a static environment the configuration space is generated off-line, reducing

the cost of online planning. Sections 3.1,2 describe the space, its graph representa-

tion and formalize the problem statement. Sections 3.3,4 introduce the algorithms

for graph construction and planning. Section 3.5 proves algorithm correctness.

3.1 Configuration Space
In order to build a complete planner for tethered robots, we consider the configura-

tion space. Notice that the space must distinguish distinct homotopic paths. Some

configurations that have identical robot locations have different cable configura-

tions. If we ignore collisions between the cable and obstacles, the configuration

space is a 2D circular region defined by the 2D environment (Fig. 2a). However,

this representation cannot distinguish configurations with different cable positions

(Fig. 3 A,E). The cable location determines the region of space that is immediately

reachable by the robot. In order to differentiate between A and E, we define con-

figuration space by an overlapped manifold. The manifold is planar, but it can be

visualized with stitched or overlapped free space components (Fig. 2b,c).



cable length

obstacle

robot

cable

cable base

cable length

(a) Regular Space

stitch

(b) Stitched Partial Spaces (c) 3D Overlap

Fig. 2 Simple and overlapped manifold configuration space for tethered robots.
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Fig. 3 Example traversal of configuration space.

Distinct configurations on the manifold with the same locations represent distinct

cable configurations. A continuous region in the manifold corresponds to a set of

configurations that can be reached by continuous robot motion. In Fig. 3, straight

trajectories change the configuration from A to E via B, C, D. However, there is no

straight path that can displace the robot from A to D or B to E.

Notice that the number of overlaps in the manifold increases exponentially with

each additional obstacle. The robot has two options for circumnavigating each ob-

stacle. It can go around to the left or to the right. Hence, for n reachable obstacles,

there exist at least 2n paths or cable routes that reach the same goal. This corre-

sponds to at least 2n possible overlaps in the configuration space manifold. We say

“at least” because winding the cable around an obstacle also doubles the overlaps.

3.2 Graph Representation of Configuration Space
This section gives a formal representation of the problem domain and the problem

statement. Our algorithm constructs a graph G = (V,E) that represents the config-

uration space manifold (Section 3.3) and then searches the graph (Section 3.4) for

vector fields or paths. The key challenge is to construct a graph that completely en-

codes the configuration space. This section defines the graph properties that must be

assured in graph construction. Section 3.5 verifies these properties.

First, consider the domain definitions: Manifold vertices are located at physical

grid nodes. v0 is the vertex that represents the cable base. Di j is the manhattan

distance on the grid between vi and v j. When Di j = 1, the two vertices are referred

to as neighbors. Notice that neighboring vertices are not necessarily connected by an

edge since they may be on distinct overlapping folds of the manifold. Pi j represents

paths between vertices on the manifold and |Pi j| is path length.



The problem is to build a graph G such that any shortest path from vi to vg corre-
sponds to a shortest path from qi to any qg where pg is the target and the cable does
not cross an obstacle.

Definition 1. Two paths from v0 to any point are path homotopic if and only if there

exists no obstacle in the area enclosed by the two paths. Otherwise they are not

homotopic or ahomotopic.

While grid nodes are simply positions, pi, manifold vertices, vi are defined by the

set of homotopic paths from v0 to pi. Each vertex is associated with a path of adja-

cent vertices of length less than Dmax. In every set of homotopic paths, there exist

minimal paths. Let us call them m-paths (mP(v0,vi) or mPi).

Definition 2. v2 is an m-child of v1 (v2 � v1) and v1 is an m-parent of v2 (v1 ≺ v2)

if and only if there exists a minimal path, mP2, where v1 is the last vertex before v2.

Definition 3. v1, v2 are m-adjacent (v1 ∼ v2) if and only if v1 is an m-parent of v2

or v2 is an m-parent of v1.

Definition 4. Collocated vertices v1 and v2 are manifold-equivalent, m-equivalent
(v1 ≡ v2) if and only if every path to v1 is homotopic to every path to v2.

All m-equivalent vertices are collocated, v1 ≡ v2 ⇒ v1 � v2. However, not all col-

located vertices are m-equivalent. This occurs when the paths to v1 go around some

obstacle while those to v2 do not. In this case, the distance between vertices on the

manifold can be greater than physical distance between their positions.

Definition 5. The m-distance between v1 and v2, mD12 is the length of any shortest

path between v1 and v2 such that all consecutive nodes on the path are m-adjacent.

Lemma 1. Let v1 and v2 be neighboring vertices such that D12 = 1. For any vertex,
v3, if D13 ≥ D23 then strictly D13 > D23. Likewise, mD13 ≥ mD23 ⇒ mD13 > mD23.

Proof. Any paths P13 and P23 must have distinct parity since they are separated by

one edge [30]. One path has even length while the other is odd. Hence |P13| 	= |P23|.�
Proposition 1 (Adjacency). For neighboring vertices: v1 ∼ v2 (a) if and (b) only if
there is no obstacle in the area enclosed by any mP1 and mP2.

Proof. Since v1 and v2 are neighbors, mD01 	= mD02 by Lemma 1. Without loss

of generality, consider mD01 < mD02. (a) For any path mP1, construct path P2 =
{mP1,v2}. This is a minimal path to v2 with v1 as the last vertex since mD01 < mD02

and |P2|= |mP1|+1. Hence, v1 ≺ v2 and v1 ∼ v2. (b) By contradiction: assume there

exists an obstacle enclosed by some mP1, mP2. By the premise, v1 ∼ v2 and therefore

v1 ≺ v2. Hence by Def. 2, there exists mP′
2 with v1 as the last vertex and mP1 as a

sub-path. mP′
2 and mP2 enclose an obstacle so they are not homotopic. Thus v2 	≡ v2.

Contradiction. Likewise if mD01 > mD02. �.

Consider again the problem statement: Build a graph G such that any shortest path
from vi to vg corresponds to a shortest path from qi to any qg s.t. the cable does
not cross an obstacle. Following Proposition 1, this graph must have the following

property: two neighboring vertices are connected by an edge if and only if they are
m-adjacent. Section 3.3 introduces our algorithm for constructing G.



BUILDMANIFOLD(v0,V,E)
1 Q ← ENQUEUE(v0)
2 while Q 	= /0
3 do va ← DEQUEUE(Q)
4 S ← SUCCESSORS(va,V,E)
5 for all vt ∈ S
6 do V ← INSERT(vt)
7 E ← INSERT(vt ,va)
8 if DIST[vt ]< DISTMAX

9 then Q ← ENQUEUE(vt)
10 B ← ADJACENT(ADJACENT(va))
11 for all vb ∈ B
12 do if POS[vb] ∈ NEIGHBORS(vt)
13 then E ← INSERT(vt ,vb)

SUCCESSORS(va,V,E)
1 N ← NEIGHBORS(va)
2 S ← /0
3 for all pi ∈ N
4 do if COLLISIONFREE(pi) and
5 pi /∈ POS[ADJACENT(va)]
6 then vi ← NEWVERTEX

7 POS[vi]← pi
8 DIST[vi]← DIST[va]+1
9 S ← INSERT(vi)

10 return S

Fig. 4 Manifold Construction Pseudo-code.
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Fig. 6 Illustration of overlap

3.3 Manifold Construction: Forward Search
Our algorithm in Fig. 4 incrementally adds vertices and builds graph edges by con-

necting adjacent vertices to the north, south, east and west of each vertex. SUCCES-

SORS(va,V,E) returns the set of neighboring, collision-free vertices that are not yet

in the graph. Since we assume that obstacles occupy at least one grid node, COLLI-

SIONFREE(p) returns true when a node does not intersect an obstacle.

Multiple manifold vertices can share a single grid position as in Fig. 3 (A,E). Our

algorithm, distinguishes grid positions, pi, from manifold vertices, vi. The position

of vertex vi is obtained by POS[vi]. The function NEIGHBORS(vi) returns the set of

four neighboring positions of the vertex. The function ADJACENT(vi) returns the set

of all vertices in V that are adjacent/connected to vi in G as follows: {v j|∃e(vi,v j)∈
E}. There are at most four such vertices. Likewise, ADJACENT(ADJACENT(vi))
returns at most eight vertices 	= vi that are adjacent to the first four.

BUILDMANIFOLD is a variant of breadth-first search or wavefront expansion.

Standard expansion adds all edges to existing neighbors when adding a new vertex.

In contrast, we add an edge to a neighbor only when there is a common vertex that

has edges to both the neighbor and the parent of the new vertex (Lines 10-13). This

is illustrated by Fig. 5. An edge is added between vt and vb since both va and vb
have edges to a common vertex vc. However, an edge is not added between vt and

vd . Likewise, in Fig. 6, no edge is added between vt and vd , generating the manifold

with overlaps as presented in Section 3.1.



3.4 Plan Generation: Backward Search
Given the graph representing the configuration space, we construct a vector field to

guide the robot from any given starting location to any desired goal. This is required

since the manifold is a roadmap that is created for all possible start and goal states.

Basic dynamic programming or wavefront expansion is used compute a distance

field over the configuration space starting from the target location. The gradient of

the distance field is used to control the robot. Note that the target location can be

associated with multiple vertices in the graph. Starting from all these vertices, we

assign minimal distance values to the remaining vertices by breadth-first traversal.

Consequently, the robot always follows the minimal path on the manifold.

3.5 Algorithm Analysis
This section analyzes the complexity, optimality and correctness of our algorithms.

First of all, the computational complexity of manifold construction is O(n) where

n is the number of vertices in the configuration space. Likewise, the computational

complexity of search is O(n). Hence the entire algorithm is executed in O(n). Fur-

thermore, manifold generation must only be computed once for static environments,

regardless of start state and goal. This yields efficient multi-query planning.

Given that G is correctly constructed and completely represents the manifold that

the robot can traverse then dynamic programming is a complete and optimal method

for finding a solution. Therefore plan generation is complete and optimal. The re-

maining task is to prove the correctness and completeness of manifold construction.

We will use Proposition 2 in the validation of BUILDMANIFOLD in Proposition 3.

Proposition 2 (Equivalence). If v1 � v2 are both m-adjacent to va then v1 ≡ v2.

Proof. Let P1 and P2 be any paths to v1 and v2. There exist shortest paths mP1,mP2

homotopic to P1, P2 respectively. Let mPa be a shortest path to va. Since v1 ∼ va and

v2 ∼ va, by Prop. 1, there is no obstacle enclosed by {mP1,mPa} and {mP2,mPa}.

Hence, there is no obstacle enclosed by mP1 and mP2, so they are homotopic. Since

v1 � v2 and all paths to v1 are homotopic to all paths to v2 we have v1 ≡ v2. �
Proposition 3. Prior to adding v3 with mD03 ≥D<Dmax, BUILDMANIFOLD main-
tains the following invariant. Let vertices v1 and v2 have mD01 < D, mD02 < D.
(a) v1 ∈ V if and only if v1 is not m-equivalent to any other vertex, v2 ∈ V.
(b) e(v1,v2) ∈ E if and only if v1 is m-adjacent to v2 (v1 ∼ v2).

Proof. We proceed by induction. Base case, D = 1, there are no edges and the only

vertex is v0, added in Line 1. The inductive step is split into the following Lemmas.

For Lemmas 2-5 assume Prop. 3. Prior to adding any v3 such that mD03 ≥ D+ 1:
(BMY and SY refer to Line Y in BUILDMANIFOLD and SUCCESSORS respectively)

Lemma 2. If v1 ∈ V then v1 is not m-equivalent to any other vertex, v2 ∈ V.

Proof. BUILDMANIFOLD adds v1 to V by expanding va only if va has no edge to

any vertex at its position, p1 (S5). By assumption, va is not m-adjacent to any vertex

at p1. Hence, v1 is the only vertex at p1 such that va ≺ v1. Therefore it is the only

vertex with a minimal path mP1 such that va is the last vertex. �
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Fig. 7 Illustrations for the proof of Lemmas 4,5. Straight lines indicate precise grid displacements.
Curves represent paths that preserve relative position but not necessarily distance.

Lemma 3. If ∃v1 (mD01 ≤D) not m-equivalent to any other vertex in V then v1 ∈V.

Proof. By contradiction: Suppose v1 /∈V. v1 is an m-child of some va where mD0a =
mD01−1. By the assumption, mD0a < D so va ∈V and by BM9, va ∈ Q. Since there

are finite vertices with mD0a < D, va is dequeued and expanded in BM4. Since v1

is a neighbor of va one of the following must hold: (1) By S4, v1’s position is not

collision free. Contradiction. (2) By S5 and the inductive assumption, va has an

m-adjacent vertex, v2 � v1. By Prop. 2, v2 ≡ v1. Contradiction. �

Lemma 4. If E contains edge (v1,v2) then v1,v2 are m-adjacent.

Proof. Without loss of generality, suppose v1 is added after v2. An edge is added at

(a)BM7 or (b)BM13. (a) v2 = va and v1 is newly defined and implicitly associated

with minimal paths homotopic to mP1 = {mPa,v1}. Since v2 is the last vertex on

mP1, v2 ≺ v1. (b) v2 = vb. By BM7 there exists va ≺ v1. By BM10 and the inductive

assumption there exists vc such that va ∼ vc ∼ vb. Given that vb ∼ vc and vc ∼ va and

va ∼ v1, Prop. 1 states that there is no obstacle between any mPb and mP1 as shown

by regions (bc),(ca),(a1) and R in Fig. 7(a). Hence, by Prop. 1 v2 = vb ∼ v1. �

Lemma 5. If v1,v2(mD01,mD02 ≤ D) are m-adjacent, E contains edge (v1,v2).

Proof. By the inductive assumption: v1,v2 ∈ V. Without loss of generality, v2 ≺ v1.

(a) mD01,mD02 < D then (v1,v2) ∈ E by the inductive assumption.

For the remaining cases mD01 = D and mD02 = D−1 by Lemma 1.

(b) v2 = va is the first m-parent of v1 added to V. Then (v1,v2) ∈ E by BM7.

For the remaining cases there exists va ≺ v1 (va 	= v2) that was added prior to v2.

Since v1 ≡ v1, there are two minimal paths mP1(a) = {mPa,v1} and mP1(2) =
{mP2,v1} that enclose a region R with no obstacles. By Prop. 2 there are three

relative positions for v2 	≡ va. Due to symmetry of Fig. 7(b), that yields two cases.

(c) In the case of Fig. 7(b) there exists vc, neighbor of va and v2 contained in R.

Extend two straight paths P3c and P4c opposite va and v2 respectively. Since

R is closed, these paths must intersect mP2 and mPa at some vertices v3, v4



respectively. Since P3c is straight, |P3c|< |P32|. Hence, the path S2 = {P03,vc,v2}
has length |S2| ≤ |mP2|. Therefore vc ≺ v2. Likewise, since P4c is straight, |P4c|<
|P4a|. Hence, Sa = {P04,vc,va} has length |Sa| ≤ |mPa|. Therefore vc ≺ v2. Thus

there exists vc such that v2 ∼ vc ∼ va. This satisfies BM10-13, thus (v1,v2) ∈ E.

(d) In the case of Fig. 7(c) there exists vc neighbor of v1 that is contained in R.

Extend a straight path P3c from v3 opposite v1. Since R is closed, P3c must

intersect either mP2 or mPa at some vertex v3 respectively. Without loss of gen-

erality, assume it intersects mP2. Since P3c is straight, |P3c| < |P32|. Hence, the

path S = {P03,vc,v1} has length |S2| ≤ |mP2|. Since S is a path from v0 to v1

homotopic to mP1(2), we have mD1 < |mP2|+ 1. Thus mP1(2) is not a mini-

mal path. Contradiction. Likewise, if P3c intersects mPa, we find mP1(a) is not

a minimal path. Contradiction.

In all valid cases where v1 ∼ v2, E contains the edge (v1,v2). �

Lemma 6. The algorithm terminates when all vi : mDi < Dmax are added to Q.

Proof. Every new vertex, vi increments DIST[vi] by 1 from its parent (S8). For any

D there are a finite number of vertices that are not m-equivalent with mDi < D.

Since no vertices are added to Q with DIST[vi] ≥ DISTMAX (BM7) and each step

dequeues, BUILDMANIFOLD terminates. �

By Lemmas 2-6, BUILDMANIFOLD is proven to add all the vertices on the man-

ifold to V and all the edges between m-adjacent vertices to E prior to guaranteed

termination. Therefore, the manifold generation algorithm is correct and complete.

3.6 Implementation Details
The presented algorithm computes Manhattan distance between the base and each

vertex in the graph. This is a low-order approximation of physical distance. We

therefore also allow diagonal moves when computing the distance value, creating

an 8-connected lattice and obtaining a better approximation. The experiments in

Section 5 demonstrate that it performs well in robot experiments.

In order to include diagonal moves, Line 7 of SUCCESSORS uses d instead of 1,

where d =
√

2 for diagonally connected vertices. Furthermore, Q in BUILDMANI-

FOLD is a priority queue rather than a FIFO in order to always select vertices with the

minimal distance from v0. This approach increases computation time to O(n logn)
due to priority queue operations.

4 Cable-Robot Interaction
Section 3 introduced a novel formulation of the configuration space for tethered

robots and presented a complete solution to path planning for robots that are re-

stricted by cable length. The proposed configuration space allows us to go further

and consider additional constraints on robot motion. In this section, we examine the
case where the robot cannot cross the cable. Cable-robot collisions present further

algorithmic challenges that are not solved by existing methods. We evaluate two

solutions and propose a novel algorithm in Section 4.3.
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Fig. 8 Illustration of a cable blocking the path to the target.

4.1 Preliminary Algorithm
Simple domains such as Fig. 8(a) can be solved by adding the current cable shape

as an obstacle to future motion[29]. We implemented an algorithm that incremen-

tally removed vertices from the graph that were within the robot radius of the cable

through wavefront expansion. The online controller continuously updated the vector

field as the cable shape changed during motion.

In our experiments, the initial path typically remained valid during robot motion

because the deformation of the cable occurred behind the robot. When the plan be-

came inaccessible, the system replanned the path. This approach required continu-

ous tracking of cable shape. Since this is difficult in practical environments we used

physical simulation to predict the current shape of the cable based on the motion

history of the robot. Section 5 shows that this approach works well in practice.

Notice, however, that this simple method is not sufficient when the cable com-

pletely blocks a path to the target as shown Fig. 8(b). Removing cable vertices from

the configuration space blocks all path to the goal. We present two approaches that

handle such cases. First, we consider a hardware solution in which the system re-

tracts the cable. Second, we introduce a novel algorithm for feasible path planning

that clear blocks through auxiliary robot motion.

4.2 Hardware Solution: Cable Retraction
First of all, the problem in Fig. 8(b) can be solved by continuously retracting the

cable to make the cable as short as possible while allowing free robot motion. This

approach requires additional hardware, but simplifies planning. Given cable retrac-

tion, the robot would simply need to follow the cable to the cable base until the path

to the target is cleared. This can be accomplished by searching for a shortest path

on the manifold to the base and directing the robot to move along that path.

The hardware implementation is not trivial because one must develop a special

device than retracts the cable with appropriate force for the particular robot and

cable type. The force must be simultaneously strong enough to pull a long cable

and sufficiently weak to allow robot motion. Furthermore, it may be necessary to

constantly adjust the force depending on the robot and cable status. We have not yet

implemented this solution, however it remains an exciting topic for our future work.

4.3 Algorithmic Solution: Untangling
Given that the robot cannot retract the cable mechanically, it must perform auxiliary

motions to clear the path blocked by the cable. We refer to this procedure as untan-
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Fig. 9 Auxiliary motions open the path to the target. Each step is computed by our algorithm.

gling. Consider Fig. 1(c). The robot must first move to the left to clear the path to

the target on the right. More complex domains, such as Fig. 9, have goals that are

blocked by the cable multiple times along a single path. The algorithm is required

to find a sequence of untangling motions. In contrast to Section 3, evaluating all

possible motions was computationally infeasible. Instead, we developed a heuristic

method that efficiently computes untangling motions and performs well in practice.

When our system identifies that there is no open path to the target from the cur-

rent robot location, it selects an intermediate target and moves the robot towards it.

Motion to the intermediate target is chosen to displace the blocking cable from the

path of the robot to the goal (Fig. 9a). If the goal becomes accessible during travel to

the target, the online algorithm discards the intermediate target and moves directly

to the goal. If the intermediate target becomes inaccessible or if the robot reaches

the target, the system computes the next target. This process repeats until the goal

becomes accessible. Fig. 9 shows a complete untangling procedure.

For each step in the untangling process, we choose the intermediate target from

several candidates. The most promising one is selected by internal physics-based

simulation as in Section 4.1. First, we identify the region in the configuration space

accessible from the current robot position (Fig. 10). We then relate each vertex in

the configuration space graph to the minimum of the distance from the vertex to

the region’s graph center and that to the current robot position. Local maxima of

the computed distances are chosen as candidates (Fig. 10 left). For each candidate,

we compute a simulated robot motion where the robot moves towards the candidate

pulling the cable, and test whether or not the motion clears the path. We use a simple

spring-mass model to simulate the behavior of a cable. If a candidate clears the path

in simulation, we select the candidate as the intermediate target. If no candidate

clears the path to the goal, we choose the candidate that is expected to maximize the

accessible region after the robot arrives at the target (Fig. 10 right).

The proposed algorithm is heuristic and is not guaranteed to find a solution if

there is a solution. An alternative, systematic approach is to construct a search tree

by recursively sampling candidates for the intermediate targets and search for a

successful sequence of intermediate targets as in many path planning algorithms

[1]. We did not implement such systematic approaches because our simple heuristic

successfully found a path to the target via multiple intermediate targets in our ex-

periments (Section 5) when there was a solution. When there is no solution, neither

our heuristic method nor systematic approach can find one.
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Fig. 10 A search for the most promising candidate. Candidates (left) and their accessible regions
(right). Candidate 4 is selected in this case.

4.4 Deadlock Prevention
The algorithm described in the previous subsection cannot find a path when the

robot is already trapped in a deadlock configuration as shown in Fig. 11 (left). The

robot is trapped in the closed region and none of the auxiliary motions described

above are able to open the way to the goal. To prevent this problem from occurring,

we augmented the algorithm with a preprocessing step that removes configurations

that can cause deadlocks from G. We then use the previously described runtime

algorithms to find a deadlock free path to the target. This algorithm preforms well

(Section 5) but does not guarantee deadlock avoidance. It is our future work to

develop a complete run-time algorithm for deadlock prevention.

Starting from each graph node, the algorithm follows the path to the cable base

by picking each adjacent vertex with minimum distance to the base. It identifies

graph vertices that are in contact with an obstacle, yet their parents are not adjacent

to an obstacle. These contact vertices are potential locations where a deadlock can

occur (stars in Fig. 11 right).

Having identified contact vertices, the system examines whether or not the con-

tacts are resolvable as follows. First, we compute a region in the configuration space

separated by the path to the cable base and accessible from the contact vertex (gray

area in Fig. 11). We then compare the maximum distance to any vertex in the region

from the contact vertex and the remaining cable length. This is computed by sub-

tracting the distance from the cable base to the contact node from the overall cable

length. If the maximum distance is longer than the remaining cable length, then the

contact is resolvable by moving the robot to the most distant position. Otherwise, the

contact causes a deadlock. In this case, our system prevents the robot from causing

the deadlock by removing all the configuration space vertices in the accessible area

for which the distance longer than the one to the contact points (shaded in Fig. 11).

5 Experiments
In order to validate the practical effectiveness of the proposed algorithms, we con-

ducted a series of experiments on a physical robot. We examined the basic case
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Fig. 11 Deadlock configuration (left) and the detection of potential deadlocks (right). Left contact
(star) is resolvable, but the right contact (star) is not resolvable. When a potential deadlock is
detected, we remove the affected area from the configuration space (shaded area).

Fig. 12 The physical environment and the cabled robot used in our experiments.

involving overhead tracking for robot position and a robot with no hardware for ca-

ble retraction. The cable configuration was not tracked but predicted by means of

internal physics-based simulations for the algorithms in Section 4. Hence, our robot

was not guaranteed to avoid cable-robot collision 100%. However, the experiments

demonstrate that our algorithm significantly reduced the occurrence of collisions.

We evaluated the proposed algorithm using a cabled robot on a flat floor. An

iRobot CREATE robot was connected to a cable that provided power and control

signal for a total of 5 bundled wires. The location of the robot was tracked by a

vision-based motion capture system (Motion Analysis). The system consisted of 8

infra-read high speed cameras that observe the motion of retro-reflective markers

attached to the robot. The control PC (Dell Latitude) received the robot location

from motion capture and sent control commands to the robot via the cable.

Fig. 12 gives an overview of the physical environment. It is a standard office

floor covered by carpet. The layout mimics an open office or home environment

with obstacles such as columns and furniture. The size is 5m× 3m. Our algorithm

represented this space with 50× 30 grid. Fig. 13 shows the layouts used in the ex-

periment. In each trial, the robot was placed near the cable base with a compactly

assembled cable. It visited six given targets in a given order. The system judged that

a target visit was complete when the distance between the robot center and the target

center was less than the robot diameter. We ran 10 trials for every combination of

a given algorithm and layout. We prepared a set of 10 random permutations of 6

targets and used the same set for all combinations.



Fig. 13 Experimental layouts: dark gray circles are obstacles and plus marks are targets.

Fig. 14 Configuration space boundaries for two experimental layouts.

5.1 Experimental Results
Table 1 shows the statistics of our results. The basic algorithm completed the tasks

with 100% success. The extended algorithm without deadlock prevention failed in

some cases (50 − 80% success). However, adding deadlock prevention achieved

100% success. Collisions between the robot and the cable did occur even when we

used the extended algorithm. However the number of collisions was significantly

reduced compared with the basic one. Fig. 14 shows the configuration space for

the first two layouts. Fig. 15 shows an example of untangling observed during the

experiments. It demonstrates that our algorithm successfully identified an appropri-

ate sequence of intermediate targets. Video of the experiments and demonstration

software are available at: http://www.designinterface.jp/en/projects/cable.

Basic Algorithm Extended Algorithm Deadlock Prevention

Task1 Task2 Task3 Task1 Task2 Task3 Task1 Task2 Task3

Success Ratio 100% 100% 100% 80% 50% 80% 100% 100% 100%

Average Time (s) 83.9 100.4 88.5 100.9 103.2 93.0 89.4 110.4 92.5

Avg. Cable-Robot Collisions 1.8 1.7 2 0.25 0.4 0.125 0.4 0.3 0.2

Table 1 Results from the experiments. We ran 10 trials for each combination of algorithm × task.

6 Conclusion
Our work shows that path planning for cabled robots yields significant insight into

homotopic path planning. We developed a configuration space formulation that dis-

tinguishes between robot positions with distinct cable configurations. We proposed

complete algorithms that compute the configuration space manifold and plan opti-

mal paths given cable length constraints. Furthermore, we studied a practical exten-

sion of our algorithm given that the robot is not permitted to cross its cable. These

algorithms were validated on a real robot platform in a series of experiments.
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Fig. 15 Sample robot experiment with untangling: a) Initial configuration and goal (red circle) b)
Approaching the first intermediate target (red dot) c) Approaching the second intermediate target.
d) Arriving at the second intermediate target. e-f) Approaching and arriving at the goal.

This paper opens the door to numerous variations of planning homotopic paths

and cabled robotics. Immediate future work is the development of runtime looka-

head detection of deadlocks. An interesting variant is path planning for robots that

grasp or push the cable [31]. Another interesting problem is optimal placement of

the cable base for a given environment to minimize deadlocks. Similar analysis

would identify problematic obstacles that can cause deadlocks and warn the user.
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