
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2008)

M. Gross and D. James (Editors)

Puppet Master: Designing Reactive Character Behavior by
Demonstration

James E. Young1,3 and Takeo Igarashi2,3 and Ehud Sharlin1

1University of Calgary 2The University of Tokyo 3JST ERATO

Abstract

Puppet Master is a system that enables designers to rapidly create interactive and autonomous animated charac-
ter behaviors that react to a main character controlled by an end-user. The behavior is designed by demonstration,
allowing non-technical artists to intuitively design the style, personality, and emotion of the character, traits which
are very difficult to design using conventional programming. During training, designers demonstrate paired be-
havior between the main and reacting characters. During run time, the end user controls the main character and
the system synthesizes the motion of the reacting character using the given training data. The algorithm is an
extension of Image Analogies [HJO∗01], modified to synthesize dynamic character behavior instead of an image.
We introduce non-trivial extensions to the algorithm such as our selection of features, dynamic balancing between
similarity metrics, and separate treatment of path trajectory and high-frequency motion texture. We implemented
a prototype system using physical pucks tracked by a motion-capture system and conducted a user study demon-
strating that novice users can easily and successfully design character personality and emotion using our system
and that the resulting behaviors are meaningful and engaging.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and

Techniques–Interaction Techniques

1. Introduction

Characters, such as those in animated films or computer

games, or even autonomous robots interacting in the real

world, are becoming increasingly common in everyday life.

Having convincing, believable personalities and behaviors is

very important for these characters, as it strengthens com-

munication and suspension of disbelief, and ultimately re-

sults in a more rewarding, engaging, and comfortable expe-

rience [Bat94,Bre02,RN96]. In particular, it is critically im-

portant that interactive characters react convincingly to real-

time user input while maintaining a coherent personality. For

example, an aggressive merchant in a video game may chase

after the user’s character, a shy cleaning robot may hide from

humans while cleaning, and a pet robot dog may jump hap-

pily when its owner returns home.

Programming a character’s real-time interactive behavior

is a difficult problem, particularly when trying to achieve a

certain personality or interaction style. The logical, step-by-

step state-machine style endorsed by conventional program-

Figure 1: First the behavior of a reactor is demonstrated in
response to a main character’s behavior. At run time, the re-
acting character’s behavior is synthesized, reproducing the
personality and emotion demonstrated in the training.

ming languages is good for specifying goal-oriented actions,

but is not directly well-suited to the design of human-like

traits such as personality and emotion; consider how difficult

it is to program interactive shyness or anger using a series of

logical states, rules and steps. Currently, programmers have

to implement complex models to achieve believable results.

c© The Eurographics Association 2008.

J. E. Young & T. Igarashi & E. Sharlin / Puppet Master

Artists, however, such as actors, puppeteers, and so forth,

have an incredible ability to develop interactive characters

and personalities in various performance-based mediums

such as puppet shows, plays, computer avatars and even

remote-controlled robots. Unfortunately, conventional tools

available to create autonomous interactive behaviors are of-

ten inaccessible to non-technical artists, in part because of

their algorithmic nature and their incapability to explicitly

express character personality and emotion. The result is that

interactive behaviors are generated primarily by computer

software engineers using logic-based algorithms, with re-

sults often being predictable and boring.

In this paper, we introduce a programming-by-

demonstration approach to make the design of interactive

character behavior accessible to artists. In the training phase

a user (or two working collaboratively) demonstrates paired

motion of two characters, with one character reacting to the

actions of the other. At run-time, the end-user controls the

main character and the system generates, in real time, the re-

active behavior of the other character with the characteristics

observed in the training data (Figure 1). Demonstrating an

interactive behavior allows artists to encapsulate personality

and emotion that they may not be able to logically explain

using computer algorithms. Furthermore, training is quick

(average 33s in our study) and generation is done in real

time without preprocessing.

Our behavior-synthesis algorithm is an extension of the

image analogies algorithm [HJO∗01], which learns static

image filters from example image pairs and applies them to

a new input image. Similarly, our system learns reactive be-

havior from an example pair of motions and applies it to a

new input motion. Our paper describes how we extend the

original method to work for real-time, dynamic, reactionary

locomotion behavior. Specifically, we introduce meaningful

behavior-related features, a method for balancing between

the similarity and coherence metrics, and we also separately

synthesize general motion trajectory and motion texture, in-

tegrating them during the final stages of motion synthesis.

We built two prototype systems, one using a standard

mouse as input and the other using a tabletop system with

physical pucks tracked by a motion capture system. The

tabletop system allows for simultaneous control of both the

main and reacting characters, and allows the user to control

characters’ orientations. We ran a user study using the table-

top system asking one group of participants to design a set

of character behaviors and the other group to interact with

a set of designed behaviors. The results show that novice

users can design interactive behaviors quickly using our sys-

tem and successfully convey personality and emotion in the

form of interactive behavior.

2. Related Work

There has been a great deal of work that aims for life-

like, convincing interactive behavior. A common approach

is to explicitly program the behavior model [BG95, Mae95,

Rey87], where the programmer explicitly defines what to do

for particular input scenarios. These systems require an un-

derstanding of the underlying algorithm and so are less ac-

cessible to the general artist, and do not support direct and

intuitive design of emotion and personality.

Programming by demonstration was originally used

to automate GUI operations [Cyp, MWK89, PG96], e.g.,

Pavlov [Wol97], explicitly for interactive agents, defines

the low-level stimulus-response behavior of the agent using

logical event sequences and conditionals. Similar work by

Dinnerstein et. al [DE05, DEV] focuses on collisions, plan-

ning and goals, and requires the presence of a programmer.

While successful, these systems do not provide tools to rep-

resent personality and emotion in the same way we do. Sev-

eral systems design animation by performance demonstra-

tion [DYP03, HOCS02, IMH05b, IMH05a, TBvdP04] or ap-

ply the idea to robotic motion [FSMI00,RPI04]. These, how-

ever, focus on the playback of the demonstration and do not

respond intelligently to user interaction.

Other systems focus on synthesizing new motion from

an often large, pre-processed example database in real

time [LL04, LCL07, WH97]. While some systems interac-

tively respond to user input (joystick control, moving obsta-

cles, other characters, etc), the mapping from the user input

to the output is explicitly (and often tediously) defined by

the programmer. Furthermore, the target of these systems

(e.g., [HGP04]) is primarily the physical accuracy (punch,

jump, walk, collision avoidance, etc.), not the explicit design

of personality emerging from interactive motion.

Research in human-robot interaction is shifting from

viewing robots as tools to designing affective robotic inter-

faces [Bre02,Nor04]. Robots are active participants in users’

physical environments, and so the design of their form, pos-

ture and movement play a dramatic role in the quality of the

resulting interaction [MMMI05]. Designing robotic actions

and movement by demonstration has been investigated ex-

tensively (for example, [Bre02, FSMI00, RPI04, MMMI05])

with efforts ranging from simple movement playbacks to

complex integrated actions. However, these methods target

goal-oriented design of robotic pose and motion, and do not

explicitly handle emotion or personality. Finally, it has been

shown that observers attribute emotion to simple motions

and actions [ABC, Kas82]. In our work, we enable design-

ers to control (through demonstration) what sorts of motions

and actions will be perceived.

3. System Overview

The ultimate goal is to allow the intuitive design of all as-

pects of behavior (gestures, facial expressions, eye move-

ment, pose, etc) to create believable whole-body characters.

As initial exploration this paper focuses on character loco-

motion (movement path). We implemented two interfaces

c© The Eurographics Association 2008.

J. E. Young & T. Igarashi & E. Sharlin / Puppet Master

that enable designers to demonstrate behaviors: a mouse-

based GUI and a tabletop Tangible User Interface (TUI).

3.1. Mouse-Based GUI

The mouse-based GUI (Figure 2) works on any regular PC.

The standard mouse, however, lacks a rotation sensor and is

designed for use by a single-user. This means that the main

character and reactor behaviors must be trained sequentially

and that the direction a character is looking cannot be ex-

plicitly specified, e.g., a character cannot move sideways or

back away (here, look direction is matched to movement di-

rection). With sequential training, the designer first demon-

strates an example input path to represent the main charac-

ter. Then, the system replays the main-character’s motion

path while the designer demonstrates the sample reaction.

For behavior generation, the user simply controls the main

character and reaction is generated in real time.

3.2. Tabletop Tangible User Interfaces (TUIs)

Demonstrating interactive behaviors is reminiscent of acting

or puppetry; actions generally done in the physical world,

away from traditional computers. Using a mouse mapped

to an on-screen avatar removes this direct physicality and

Figure 2: The mouse GUI. Notice the large work area and
lack of parameters and settings.

Figure 3: A user interacting with the Vicon TUI system.

forces an artist to map their intentions through the arguably

less-than-intuitive mouse interface, separating the artist ac-

tion and perception space [FBR86, SWK∗04].

Our Tangible User Interfaces (TUIs)-based tabletop de-

sign (see Figure 3) allows artists to use physical objects (the

TUIs) as handles to demonstrate behavior. The TUIs offer

immediate physical feedback of the system state, provid-

ing intuitive interaction not possible with traditional inter-

faces [IU97]. Using TUIs also allows for character orienta-

tion, and multiple TUIs can be used for simultaneous train-

ing of both the main and reacting character behaviors, either

two-handed by one designer or by a pair of collaborators.

4. Algorithm

During training, the system simply stores the paired motion

data. During generation, the algorithm compares the run-

time situation between the main and reacting character to

the training data. The training most similar to the current sit-

uation is used to direct the generation of the next character

output; the overall generation is based on a mix of training

data from various source locations. This method reacts im-

mediately to changing user input and avoids large chunks of

consecutive, static replay of training data while maintaining

the style and properties of the demonstration.

The key problems to be solved are to a) select a similarity

metric that matches behavioral similarity as end-users may

recognize it, and b) ensure the generation algorithm main-

tains the characteristics and textures given in the training

data. All of this must happen in real time.

4.1. Algorithm Formalization

The variables I,R represent time-series data for the main (I)

and reacting (R) characters. Following, It ,Rt are the train-

ing time-series data used by the generation system, recorded

from the demonstration. Pseudo code is given below: Best-
Match() finds training data most similar to the current situ-

ation, and Generate() uses the selected data to direct the

next output action. New user input is not used until the sub-

sequent iteration because features used (e.g., relative charac-

ter position) require data for both characters. Our implemen-

tation operates at 40Hz so this delay is negligible.

Loop
e = BestMatch(It, Rt, I, R)
newMovement = Generate(e)
R.append(newMovement)
I.append(getNewInput())

4.2. Data and Features

Our data is a time-dependent array containing the location,

x,y, and the direction d of each entity at each time point.

We extract various features that decide what characteristics

c© The Eurographics Association 2008.

J. E. Young & T. Igarashi & E. Sharlin / Puppet Master

of behavior will be matched. We generally ignore world-

coordinates and focus on the relationship between the two

entities and changes in local state, and these features are

evaluated over a time window to encapsulate a trend over

time. We explored many features not discussed here (e.g.,

direct path data, distance and delta distance between charac-

ters), and settled on the following features, as illustrated in

Figure 4. We omit a detailed discussion on the omissions for

brevity. The use of these features is different for each algo-

rithm step as outlined in each respective section.

Velocity – the magnitude of the vector between an entity’s

position and its previous one. This captures speed and

acceleration-related aspects of behavior such as different

reactions for stopped, accelerating, or slow input.

Relative position – position of the reactor in relation to the

main character’s position and look direction (coordinate

space). This captures relational behavior such as follow-

ing, circling, and approaching. One scalar value per axis:

representing how much the reacting character is behind or

in front of, and to the left or right of the main character.

Normalized look direction – look direction normalized to

movement direction, with 0 pointing forward. This is the

relationship between where a character is looking and

moving, e.g., if it is backing up or moving sideways.

Relative look direction – the difference between the enti-

ties’ look directions. This captures turning away shyly

when observed or aggressively facing an opponent.

Absolute Movement direction – the vector from the pre-

vious world-coordinate position to the current one. This

does not involve the other entity but is used in generation

(Section 4.4) to add high frequency texture to the output.

ΔDirection – change in direction from one step to the next,

represents the shape of the locomotion path (not in rela-

tion to the other entity). This feature helps to identify sim-

ilar movement shapes and styles such as shaky or smooth.

4.3. BestMatch (Similarity Metric)

Our similarity metric is heavily based on Image Analo-

gies [HJO∗01, HOCS02] but applied to dynamically gen-

Figure 4: Data features: All features except relative position
are on both entities, but only shown on one for image clarity.

erated motion sequences. This metric has two key compo-

nents: overall situational similarity and generated path co-

herency. These are checked in parallel and combined in each

step over a given movement-history neighborhood n (40

samples (1s) in our implementation).

Situation Similarity – This is based on the relationship

between the two entities, using the relative position (input-

character centric), relative look direction, and velocity fea-

tures. It compares the n most recent pieces of user input and

generated output from I,R to a moving window of size n
over the training data It ,Rt (Figure 5(a)). At each window

location the features from each of the four paths form multi-

dimensional vectors and corresponding vectors (I vs It , R vs

Rt) are compared using Euclidean distance squared. These

distances are then summed over the window, providing a

measure of similarity at that window location. A smaller

value represents a better match.

Generated Path Coherency – This emphasizes the

shape, style and features of the generated path R in relation-

ship to the trained Rt while putting less emphasis on the re-

lationship between entities I and R. This relationship is still

important, however, as some aspects of coherency depend

on the relationship between the entities, such as when the re-

acting entity wants to finish a circle around the main entity

it must properly follow as the main character moves. This

metric uses normalized look direction, delta direction, rel-

ative position, and velocity. When there is no training data

that matches well to the current inter-entity situation (i.e.,

situation similarity is weak) generated path coherency helps

to ensure a generation that matches the characteristics of Rt .

This metric compares the recently generated data from R
over n to the regions in Rt that were used to generate the re-

cent R (the entire Rt is not searched). That is, given recently

generated elements Rk over the n, the source neighborhood

in Rt that was originally used to generate Rk is compared to

the most recently generated R (Figure 5(b)). The intuition

(a) Situation Similarity compares recent real-time data to the

entire dataset.

(b) Generated Path Coherency examines the regions of the

training data recently used in generation.

Figure 5: Metrics derived from Image Analogies [HJO∗01]

c© The Eurographics Association 2008.

J. E. Young & T. Igarashi & E. Sharlin / Puppet Master

here is to continue a patch from a previous similarity match

if the current similarity match is weak.

Similarity Balancing – The Image Analogies algo-

rithm [HJO∗01] combines the two similarity metrics by stat-

ically weighting them with a coefficient k to add bias; the

metric with the best weighted score is selected for that step.

This did not work with our application and resulted in a

problem we call coherence loops: when coherence match is

used to generate output for several consecutive steps then

the result of generation, by design, will be increasingly sim-

ilar to the training data. The improving coherence match is

eventually exclusively used, with situation similarity being

ignored, and the reacting entity starts to loop through sec-

tions of Rt . This issue does not occur in Image Analogies

and Curve Analogies because all data is given at the begin-

ning, allowing the use of multi-resolution approaches. Multi-

resolution is difficult in our system, however, as we are gen-

erating in real time and cannot look ahead in our input data.

We initially tried to mesh both metrics in several ways (e.g.,

average, trend-vs-detail, staggered sample rate), but did not

get satisfactory results. Our solution is given below, but this

is a rich area for future work.

We change the previously-static weight coefficient k to a

dynamic value to target a situation-similarity-to-coherency

match ratio t. Then, k is automatically tuned each gener-

ation step to bias the results so that over time we keep t
balanced. In our implementation, we use a 1:1 target ra-

tio and k is tuned linearly. A similar algorithm is used in

texture synthesis systems to match the overall color his-

togram [KFCO∗07]. Following, the data from Rt immedi-

ately following the source region is passed to the genera-

tion system. One problem with this balancing approach is

noise. Instability in the similarity metrics (jumping between

regions) and switching rapidly between situation similarity

and coherence can cause large, rapid variations in the source

data passed to the generation system, resulting in distracting

rapid character movements. We explain our solution below.

4.4. Output Generation

The generation system receives the piece of training data

(target data) to be used from BestMatch and generates the

next entity output. The naïve approach is to simply copy this

data directly to the output as in texture synthesis. The prob-

lem with this is that many features depend on history and

are relative to the other entity and it is impossible to solve a

movement that matches all features. Also, when the training

data jumps between drastically different states over consec-

utive steps this approach does not provide a meshing mecha-

nism to generate intermediate data. These jumps suggest that

transitions are missing from the training data, and the gener-

ator function must handle discontinuities while maintaining

the texture, personality, and character that was demonstrated.

Our generation approach, a key technical contribution of

this paper, is to decompose emotion (the motion) into its

low-frequency (intentional move to certain relational posi-

tion) part and high-frequency (texture of the motion) part

and treat them separately. While Fourier analysis has been

done on motion paths before (e. g., [UAT95]), we are the first

to use it in terms of emotion and personality.

General Trajectory Generation – Motion is generated

using relative position, normalized look direction, and ve-

locity. Normalized look direction is copied directly to out-

put, and a vector is constructed to move the entity from its

current location to the target relative position and then scaled

to the target velocity (Figure 6). Although the entity moves

toward the target position rather than be at that position, the

velocity scaling in combination with the high generation rate

helps to create very convincing results. Here we deal with the

noise resulting from the BestMatch instability by apply-

ing a simple linear smooth (average) over a history of three

samples. The results of this are very convincing and result

in a more stable, consistent generation. The problem, how-

ever, is that by removing the high-frequency noise we also

remove the high-frequency data, such as the movement de-

tail and texture. We implemented a fix for this described in

the next section.

Another problem is that, even with smoothing, normal-

ized look direction is very noisy. This happens because of the

nature of the normalized look direction itself: if a character

keeps a static look direction in the world, but rapidly changes

movement direction, the normalized look direction (based

on movement direction) changes rapidly between drastically

different values. An entity moving rapidly forward and then

backward has data that alternates between 0 and π. Our so-

lution to this is to limit rate of change of the actual world-

coordinate look direction. This lowers the amount of noise

in resulting look direction, but some jitter remains. This is

an important problem for future work.

Detail Incorporation – To restore detail removed by

smoothing we do frequency analysis using Haar wavelets,

extracting the high-frequency detail from the target and di-

rectly incorporating it into the output. We apply Haar de-

composition on the motion direction feature as this captures

path texture irrespective of velocity. A single application of

the discrete Haar decomposition scales our path data to half

resolution and stores the removed high-frequency detail sep-

arately. This gives a frequency cut at fs/2 where fs is the

Figure 6: To avoid drastic jumps, the reactor moves towards
the target position with the velocity taken from training data.

c© The Eurographics Association 2008.

J. E. Young & T. Igarashi & E. Sharlin / Puppet Master

sampling rate: given k cumulative decompositions, this cut

is at fs/2k. The resulting k high-frequency datasets (one per

decomposition) can be re-composed to form a single high-

frequency-only signal that we use in our generation. Our sys-

tem uses four-level Haar decompositions, a frequency cut of

fs/16, or about 2.5 samples /s We found this to capture suf-

ficient detail without affecting general trajectory.

The high-frequency data from the target is used to perturb

the generated (but smoothed) trajectory. While smoothing

compensated for BestMatch instability in trajectory gen-

eration, high-frequency source data cannot be smoothed in

the same fashion and so this instability remains, where in-

terweaving detail from rapidly alternating training locations

results in noisy output not coherent to the training. Our so-

lution applies the detail in patches of 16 samples: a patch is

used in subsequent steps until the end when a new patch is

selected. These are 0.4 seconds long so the delay between

changed behavior and matching path detail is minimal.

5. Evaluating Puppet Master

Our evaluation consisted of two parts. The first part, the

artist study, asked participants to design new behaviors us-

ing our system. The second part of the study, the end-user
study, asked participants to interact with behaviors created

in the first study. Our goals were to identify weaknesses in

our algorithm and interface, to get general user feedback and

to determine how much (and what sorts) of characteristics,

emotions, and personality traits are captured by our system.

We initially conducted a pilot study to evaluate the study

protocol and procedure. 5 participants (2 female, 3 male)

joined the artist pilot and 2 participants (1 male, 1 female)

joined the end-user pilot. These pilots exposed language and

questionnaire wording that was confusing or strongly biased

users toward particular responses.

5.1. Experimental Testbed

The experiments used the tabletop TUI interface (Sec-

tion 3.2) running a Pentium 4, 3.0 GHz PC, maintaining

40fps for up to 80s of training data (a behavior generally

requires less, as described below). We used the graphics in

Figure 7 as static textures and a SMART Technologies 4’10”

x 3’7” high-resolution (2800x2100) rear-projected tabletop

display with pucks on the top to control input (Figure 3). The

pucks are tracked at 100fps by a six-camera Vicon motion-

tracking system, and the character graphics are drawn on the

tabletop surface directly below the pucks in real time.

5.2. Methodology

Participants – Twenty students (10 per study) from vary-

ing disciplines were selected from our university population

and paid $15 for participation. All users reported some to

extensive programming experience and strong confidence

with computers. In the artist study (2 female, 8 male),

four participants reported artistic experience with three hav-

ing formal training and one identifying herself as an artist,

and three users reported basic animation experience. Ages

ranged from 19 to 32 (M=22.8, SD=3.8). In the end-user

study (4 female, 6 male), nine participants reported artistic

experience with five identifying themselves as artists, and

four users reported animation experience (two extensive).

Ages ranged from 19 to 27 (M=23.7, SD=2.71). All partici-

pants had no prior exposure to the system and no participants

from the artist study took part in the end-user study.

Procedure – The artist study explored how general users

can use our system to create interactive behaviors. In one-

hour sessions, participants were first asked to design five

particular interactive character behaviors given the follow-

ing keywords: lover, bully, playful friend, stalker, and afraid.

Participants completed a short written survey about the result

and experience after each behavior. Following, we evaluated

the internal validity of the design by loading the five cre-

ated behaviors each participant created in a scrambled order

(fixed across participants) and asking them to interact with,

and recognize, each behavior. Participants were not notified

ahead of time that they would be revisiting their own de-

signed behaviors.

The end-user study observed how general users react to

the behaviors created using our system, and whether a sense

of character emotion and personality emerged. We subjec-

tively selected five behaviors created by participants in the

artist study (one per each of the five behavior types), and par-

ticipants were asked to “interact with and explore the char-

acters” for each behavior in a fixed order, and to “describe

the character” in a questionnaire. Care was given to avoiding

affective or anthropomorphic language when presenting the

task to the end users, avoiding words such as “personality”,

“behavior”, and “emotion”. In the second part participants

were asked to interact with a set of “other” behaviors which

were in-fact a scrambled set of the previous behaviors. This

time users were asked to match each of the behaviors to the

list of “correct” behaviors as given in the artist study.

5.3. Artist-Study Results

Eight of 10 users in this study identified 100% of their own

behaviors. Further, in 74% of the cases (using 5 point Likert)

users agreed or somewhat agreed they were satisfied with

the resulting behavior, and in 22% of the cases they neither

Figure 7: The graphics used in our evaluation, designed
generically to avoid particular emotion or personality.

c© The Eurographics Association 2008.

J. E. Young & T. Igarashi & E. Sharlin / Puppet Master

agreed nor disagreed. The mean training time of accepted

behaviors was 32.5s (SD=18.0s, min=9s, max=85s). The av-

erage number of trials required before accepting a behavior

was 1.7 (SD=0.9, mode=1 at freq.=56%, max=4 trials). The

average amount of time a user spent testing a result before

accepting it was 70.0s (SD=68.2s). In 46% of the cases users

disagreed that the generated behavior felt mechanical with

26% neither agreeing nor disagreeing. In 48% of the cases

users agreed that the behavior felt human-controlled (42%

somewhat) with 26% neither agreeing nor disagreeing.

In the post-test questionnaire, on seven-point Likert, all 10

artist users agreed (5 strongly) that they enjoyed using the

system, while 7 disagreed that the system was frustrating to

use (1 strongly, 2 somewhat), all reported that the characters

were fun to play with (6 strongly, 2 somewhat) and 6 users

reported that movement jitter was distracting. The two users

who failed to recognize their own designed behaviors were

also the only two users who did not use puck orientation

during behavior training, resulting in poor quality behaviors.

Four artist users were notably immersed in the interface.

Some made exaggerated faces, noises, and spoke to the

characters while training. One artist used the “jaws” theme

while training the “afraid” behavior, and another commented

“what a jerk!” when observing their “bully” character. Users

generally expressed excitement about and satisfaction with

the capabilities of the system: “the system responded ac-

curately and behavior was smooth, human-like, with a hu-

man touch”, “it’s even a better stalker than I am!”, “it almost

looks as if someone is controlling it.”, “it did exactly as I

wanted! Very entertaining! (maybe it’s just me?)”, “nailed

it!”, “I like it! I can see its bright future”, “the playful friend

is a hoot!” Several users commented on the robustness of

the system, and one user was excited that it “even reacted

consistently with what [he] thought of after the fact.” Also,

users enjoyed the tabletop system, finding it “super easy and

intuitive to operate. Instant results.”

On the other hand, several users reported issues with the

system, commenting on the resulting generation as well as

the simplicity of our system: “it felt a bit mechanical with

some movements”, “as complexity of behavior rises it feels

more mechanical”, “if you pause to catch your breath, the

system takes it as deliberate behavior”, “I need to try more

complicated behaviors”, “this setup cannot interpret smaller

actions that well”, “he doesn’t have hands so I can’t punch”,

“difficult to imagine what one pretty slime does to bully an-

other pretty slime.” Further, six of the ten users had issues

with occluding the Vicon markers on the controller puck.

5.4. End-User-Study Results

In the first part of the end-user study users were simply asked

to interact and describe prototype characters (without be-

ing prodded to look at behaviors or emotions). Here, on a

six point scale titled “the character felt...” ranging from “ex-

tremely mechanical” (1) to “somewhat mechanical” (3, 4) to

“not mechanical at all” (6) the average response across all

behaviors was 4.04 (SD=1.19,Mode=4 at 36% frequency).

On another scale ranging from “a human is controlling it”

(1) to “somewhat lifelike” (3, 4) to “not lifelike at all” (6),

the average response was 3.4 with a mode of 5 at 24%.

To our pleasant surprise, out of the 50 cases (5 behav-

iors across 10 participants), characters were identified us-

ing the exact keywords used in the artist study 9 times,

and another 10 times using very similar words (for exam-

ple, “girlfriend” instead of “lover”, “naughty, trying to bug

me” instead of “bully”). Out of the 10 participants, 2 did

not match any behaviors, 2 matched 1 behavior, 3 matched 2

behaviors, 1 matched 3 behaviors, and 2 users matched 4 be-

haviors correctly. Furthermore, in the open-ended question-

naires 52% of all end-users behavior descriptions were using

social and behavioral descriptions (28% purely social), 34%

of all the descriptions were using mechanical language (18%

purely mechanical), with 14% being roughly a half-half mix.

For the second part of the end-user study, participants were

asked to match the five behaviors against the original key-

words used. The results are given in Table 1, with the di-

agonal showing the number of end-users, out of 10, who

matched the pre-designed behavior to its exact keyword.

On the final questionnaires, 4 users agreed that the char-

acters were sometimes confusing (1 somewhat), 1 neither

agreed nor disagreed, and 5 users disagreed (1 strongly, 1

somewhat). One strong observation throughout the study

was that users tended to see social characteristics and used

anthropomorphic language. For example, end users men-

tioned: “the guy who kept sucker-punching”, “each one

could bring to mind some real-life analogy”, “he needs more

confidence”, “I liked the part when it came close to my char-

acter ... kind of like a dog who is happy to see you”, “He

keeps trying to either hit you or kiss you”, “like an annoy-

ing kid brother in my face”, “he [the stalker] seemed like

he wanted to approach me, but he was too shy”, “facing it

and watching it panic like it had been discovered somewhere

where it shouldn’t be was fun”, “she [playful friend] is like

a little sister who wants to talk to me.“

Users were asked on the final questionnaire to describe the

things they liked and disliked about each character. While

Table 1: How behaviors were matched to original designs.

c© The Eurographics Association 2008.

J. E. Young & T. Igarashi & E. Sharlin / Puppet Master

some of these comments were analysis oriented, such as

“actions were vague, subject to interpretation”, many of the

comments referred to the participant’s opinion of the char-

acter’s personality. For example, for the afraid character

(which stayed away from the participant’s character) one

user wrote “I didn’t really like anything, didn’t even give me

a chance to get to know him”, and others complained that

it “tries to invade my personal space. I like a nice personal

space bubble”, or “it doesn’t feel friendly!”

Similar to the artist study, some participants commented

that the characters felt a bit fake when the jitter was too no-

ticeable and several participants complained that the person-

alities were too simple: “the personalities were very blunt,

they were easy to see”, “I wish they could touch each other”.

All end-user participants enjoyed the experiment (6 strongly

agreeing). 7/10 users reported the pucks frustrating to use

(all of these users commented on how easy it was to occlude

the Vicon markers), with the remaining 30% disagreeing

or strongly disagreeing. However, several users commented

that the table was “easy to use” and “intuitive”.

6. Discussion

These results help to support our claims about Puppet Mas-

ter. The fact that 80% of the artist participants recognized

100% of their behaviors and were satisfied with the results

suggests that our algorithm successfully supports some level

of expression, and captures sufficient personality-related

characteristics for recognition by the designer. That this was

accomplished without training at on average 32.5s shows,

even for outliers (e.g., the 85s case), our algorithm allows

artists to create recognizable behaviors in significantly less

time than it would take to program. Finally, that this was

accomplished in on-average 1.7 attempts by novices shows

that designers are able to satisfactorily and easily create be-

haviors, and that the real-time re-training and generation en-

abled the artists to flexibly explore design possibilities.

The end-user part of our study demonstrated that in 38%

of the cases behaviors not only emerged but closely matched

the artist keywords, based on motion only (Table 1). We be-

lieve that this supports our claim that our algorithm captures

the personality and style of the demonstrated behavior. Fur-

ther, the results in Table 1 seem to hint at crosstalk between

similar behaviors: for example, afraid and stalker are of-

ten mistook for each other while lover, bully, and friend are

rarely mistaken for stalker or afraid. This shows that, even in

the cases where behaviors are not matched properly, there is

still a strong component of feeling and style captured from

the demonstrated data.

Both studies suggest a strong sense of user engagement.

The explicitly positive study results, the verbal excitement,

as well as the extensive use of social and anthropomorphic

language suggests that the participants were interested and

mentally involved with the design process.

7. Limitations and Future Work

Our current implementation does not handle dynamics over

a large time scale and will fail to accurately represent an an-

gry character gradually calming down. Perhaps this could

be explored through high-level features and multi-resolution

searches. It is also useful to consider how this work can com-

bine with other behavior models and systems for a multi-

level solution, and to understand the absolute limitation of

our approach, that is, when high-level behavior changes may

be better designed using scripting and explicit states.

Accounting for environmental issues (wall, tree, etc)

would improve the versatility of Puppet Master. Related, ex-

tending to several simultaneous entities would allow swarm-

like behavior with individual personalities, e.g., to train a

group of archers and knights to storm a castle. Systems that

learns crowd behavior from examples [LCHL07, LCL07]

mainly focuses on collision avoidance while we want to al-

low artists to interactively design more intentional crowds.

Perhaps our work could be applied to the design of robot

behaviors, e.g, replacing physical pucks and tabletop dis-

plays with mobile robots such as curlybot [FSMI00]. Phys-

ical movement can give stronger impression of personality

and emotion than virtual characters, but introduces severe

constraints on motion (e.g. robot cannot jump to distant po-

sition). However, many of the techniques developed in this

work such as similarity-coherence balancing and trajectory-

texture separation should be applicable to real robots, too.

Our ultimate goal is to design all aspects of character behav-

ior, not just locomotion, responding to various input such

as dancing to music, sword-swing against an opponent, and

meow noise of a cat responding other meow noise.

8. Conclusion

Believable, convincing, and stylistic interactive behavior is

an important aspect of any computerized entity that must in-

teract with humans, such as avatars, video game characters,

or even robots. Traditionally, the creation of such a system

has been left to logical, step-by-step computer algorithms;

tools generally out-of-reach for non-technical artists and ill-

designed for the creation of stylistic behaviors. In this pa-

per we presented the first system that enables the program-

ming of interactive behaviors by demonstration with real-

time generation, making the creation of believable, stylistic

interactive characters accessible to the non-technical artist.

Acknowledgements

This work supported in part by NSERC, iCore, JSPS, JST,

and the University of Calgary.

References

[ABC] AMAYA K., BRUDERLIN A., CALVERT T.: Emo-

tion from motion. In Proc GI ’96, pp. 222–229.

c© The Eurographics Association 2008.

J. E. Young & T. Igarashi & E. Sharlin / Puppet Master

[Bat94] BATES J.: The role of emotion in believable

agents. Comm. ACM 37, 7 (July 1994), 122–125.

[BG95] BLUMBERG B. M., GALYEAN T. A.: Multi-level

direction of autonomous creatures for real-time virtual en-

vironments. In Proc. SIGGRAPH ’95 (1995), pp. 47–54.

[Bre02] BREAZEAL C.: Designing Sociable Robots. MIT

Press, 2002.

[Cyp] CYPHER A.: Eager: programming repetitive tasks

by example. In Proc. CHI ’91 (NY), pp. 33–39.

[DE05] DINERSTEIN J., EGBERT P. K.: Fast multi-level

adaptation for interactive autonomous characters. ACM
Transactions on Graphics 24, 2 (2005), 262–288.

[DEV] DINERSTEIN J., EGBERT P. K., VENTURA D.:

Learning policies for embodied virtual agents through

demonstration. In Proc. IJCAI ’07, pp. 1257–1262.

[DYP03] DONTCHEVA M., YNGVE G., POPOVIĆ Z.:

Layered acting for character animation. ACM Trans.
Graph. 22, 3 (2003), 409–416.

[FBR86] FJELD M., BICHSEL M., RAUTERBERG M.:

Build-it: a brick-based tool for direct interaction, 1986.

[FSMI00] FREI P., SU V., MIKHAK B., ISHII H.: curly-

bot: designing a new class of computational toys. In Proc.
CHI ’00 (NY, USA, 2000), ACM, pp. 129–136.

[HGP04] HSU E., GENTRY S., POPOVIĆ J.: Example-

based control of human motion. In SCA ’04 (Switzerland,

2004), EG, pp. 69–77.

[HJO∗01] HERTZMANN A., JACOBS C. E., OLIVER N.,

CURLESS B., SALESIN D. H.: Image analogies. In Proc.
SIGGRAPH ’01 (2001), pp. 327–340.

[HOCS02] HERTZMANN A., OLIVER N., CURLESS B.,

SEITZ S. M.: Curve analogies. In Proc. EGRW ’02
(2002), pp. 233–246.

[IMH05a] IGARASHI T., MOSCOVICH T., HUGHES J.:

Spatial keyframing for performance-driven animation. In

Proc. SIGGRAPH ’05 (July 2005), pp. 107–116.

[IMH05b] IGARASHI T., MOSCOVICH T., HUGHES J. F.:

As-rigid-as-possible shape manipulation. ACM Trans.
Graph. 24, 3 (2005), 1134–1141.

[IU97] ISHII H., ULLMER B.: Tangible bits: towards

seamless interfaces between people, bits and atoms. In

Proc. CHI ’97 (NY, 1997), ACM, pp. 234–241.

[Kas82] KASSIN K.: Heider and simmel revisited: causal

attribution and the animated film technique. Rev. Pers.
Soc. Pschol. 3 (1982), 145–169.

[KFCO∗07] KOPF J., FU C.-W., COHEN-OR D.,

DEUSSEN O., LISCHINSKI D., WONG T.-T.: Solid tex-

ture synthesis from 2d exemplars. ACM Tran. Graph. 26,

3 (2007), 2:1–2:9.

[LCHL07] LEE K. H., CHOI M. G., HONG Q., LEE J.:

Group behavior from video: a data-driven approach to

crowd simulation. In SCA ’07 (Switzerland, 2007), EG,

pp. 109–118.

[LCL07] LERNER A., CHRYSANTHOU Y., LISCHINSKI

D.: Crowds by example. Comp. Graphics Forum 26, 3

(2007), 655–664.

[LL04] LEE J., LEE K. H.: Precomputing avatar behavior

from human motion data. In Proc. SCA ’04 (Aire-la-Ville,

Switzerland, Switzerland, 2004), Eurographics Associa-

tion, pp. 79–87.

[Mae95] MAES P.: Artificial life meets entertainment:

lifelike autonomous agents. Comm. ACM 38, 11 (1995),

108–114.

[MMMI05] MATSUI D., MINATO T., MACDORMAN

K. F., ISHIGURO H.: Generating Natural Motion in an

Android by Mapping Human Motion. In Proc. IROS ’05
(USA, 2005), IEEE, pp. 1089–1096.

[MWK89] MAULSBY D. L., WITTEN I. H., KITTLITZ

K. A.: Metamouse: specifying graphical procedures by

example. In Proc. SIGGRAPH ’89 (NY, USA, 1989),

ACM, pp. 127–136.

[Nor04] NORMAN D. A.: Emotional Design. Basic

Books, NY, 2004.

[PG96] PERLIN K., GOLDBERG A.: Improv: a system

for scripting interactive actors in virtual worlds. In SIG-
GRAPH ’96 (NY, 1996), ACM, pp. 205–216.

[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A

distributed behavioral model. In Proc. SIGGRAPH ’87
(NY, 1987), ACM, pp. 25–34.

[RN96] REEVES B., NASS C.: The Media Equation.

CSLI Publ., UK, 1996.

[RPI04] RAFFLE H. S., PARKES A. J., ISHII H.: Topobo:

a constructive assembly system with kinetic memory. In

Proc. CHI ’04 (NY, USA, 2004), ACM, pp. 647–654.

[SWK∗04] SHARLIN E., WATSON B., KITAMURA Y.,

KISHINO F., ITOH Y.: On tangible user interfaces, hu-

mans and spatiality. Personal Ubiquitous Comput. 8, 5

(2004), 338–346.

[TBvdP04] THORNE M., BURKE D., VAN DE PANNE M.:

Motion doodles: an interface for sketching character mo-

tion. In Proc. SIGGRAPH ’04 (New York, NY, USA,

2004), ACM, pp. 424–431.

[UAT95] UNUMA M., ANJYO K., TAKEUCHI R.: Fourier

principles for emotion-based human figure animation. In

SIGGRAPH ’95 (1995), pp. 91–96.

[WH97] WILEY D. J., HAHN J. K.: Interpolation synthe-

sis of articulated figure motion. IEEE Comp. Graph. and
App. 17, 6 (/1997), 39–45.

[Wol97] WOLBER D.: Pavlov: an interface builder for de-

signing animated interfaces. ACM TOCHI 4, 4 (1997),

347–386.

c© The Eurographics Association 2008.

