
Pacific Graphics 2013
B. Levy, X. Tong, and K. Yin
(Guest Editors)

Volume 32 (2013), Number 7

Interactive Physics-based Ink Splattering Art Creation

Su-Ian Eugene Lei1 Ying-Chieh Chen1 Hsiang-Ting Chen2 Chun-Fa Chang3

1National Tsing-Hua University
2JST ERATO Igarashi Design Interface Project / The University of Tokyo

3National Taiwan Normal University

Abstract
This paper presents an interactive system for ink splattering, a form of abstract art that artists splat ink onto
the canvas. The default input device of our system is a pressure-sensitive 2D stylus, the most common sketching
tool for digital artists, and we propose two interaction mode: ink-flicking mode and ink-dripping mode, that are
designed to be analogous to the artistic techniques of ink splattering in real world. The core of our ink splattering
system is a novel three-stage ink splattering framework that simulates the physics-based interaction of ink with
different mediums including brush heads, air and paper. We have implemented the physical engine in CUDA and
the whole simulation process runs at interactive speed.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities—Paint
systems

1. Introduction

Ink splatter is an important element in artwork creation pro-
cess. The vibrant pattern of the splattering ink not only con-
vey vigor, dynamism and grittiness but also serve as a source
of inspiration for art work creation. Artists usually create the
splattering pattern by forcefully flicking the brush toward the
paper or hovering the paint-dripping brush over the paper.
While highly experienced artists may have the skill to har-
ness the subtle shape and motion of splatter, the ink splatter’s
nature of being highly irregular and unpredictable makes the
creation of the desired pattern a time-consuming trial-and-
error process.

For such an iterative creation task, a digital painting tool
with undo and redo functions is usually desired by the artists.
However, the closest function that modern image editing
software provides so far is the digital brush with pre-defined
sets of splatter pattern, which usually exhibit visible repe-
tition. Skilled artists can hide the repetition by constantly
switching between different patterns or carefully fine-tune
the jittering parameter associated with each brush stroke, yet
it is a time-consuming process and the inspiring randomness
of ink splattering is mostly lost.

Pioneering research prototypes tackle the problem with
simplified physical simulation. Lee et al. [LOG06] focus on
the specific painting style of Jackson Pollock and Chu et

Figure 1: A sample picture created with our system.

al. [CT05] ignore ink dynamics in the air but focus on the in-
teraction between ink and paper. However, our experiments
show that the creation of realistic and organic splattering
patterns requires a physical simulation that fully considers
the physical aspects of the ink splattering process (Figure 2),
which consists of the factors of viscosity and surface tension

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Su-Ian Eugene Lei, Ying-Chieh Chen, Hsiang-Ting Chen & Chun-Fa Chang / Interactive Physics-based Ink Splattering Art Creation

Figure 2: The appearance of even a simple brush stroke is
shaped by fluid flow and surface tension. Top: A brush stroke
created by flicking the virtual brush in our system. Bottom:
A similarly shaped stroke created in real-life.

of ink, ink distribution on the brush, air dynamics of ink, and
ink-paper interaction.

We present an interactive physics-based ink splattering
system consisting of a novel three-stage ink splattering sim-
ulation framework and a dual-mode user interface imitating
real-world ink splattering skills.

The three-stage simulation framework simulates the fol-
lowing real-world ink splattering process:

• ink-brush stage that simulates the brush dynamics and
ink movement within brush.
• ink-air stage that tracks the movement of ink within the

air.
• ink-paper stage that simulates the complex interaction

between ink flow and paper.

In particular, we utilize the graphics processors (GPUs)
for the simulation of Lagrangian fluid [GSSP10, HBD10] to
simulate a wide variety of art materials, from highly viscous
oil paint to thinly diluted watercolor. To further enhance the
realism, we also simulate the flowing of pigments and fluid
on different paper materials that occurs after the ink hits the
paper.

The two interaction modes are:

• ink-flicking mode that simulates the brush motion when
artists quickly flick ink onto the paper, when stronger dy-
namic and randomness are desired.
• ink-dripping mode that simulates the dripping or splash-

ing of ink onto the paper with an ink-filled container,
where precision is the priority.

Our main contribution is a physics-based ink splattering
system to facilitate the creation of ink splatter art. Our con-
tribution goes beyond the integration of fluid simulation and
the dual interaction modes. By giving the artists a better con-
trol of the desired splattering patterns and a quick feedback
on the results, they are empowered to explore expressions
that are tedious or error-prone in real world or previous dig-
ital tools.

2. Previous Work

Paint and Paper Simulation: Physically-based simulation
of real world art materials that goes beyond simple im-
age processing technique is a commonly approached topic

in non-photorealistic rendering [CAS∗97, CT05, BWL04,
EWK∗13,DKMI13,WW07,JCM07]. Baxter et al. [BWL04]
provide a realistic simulation model for oil and acrylics
paint. However the mixture of paint mostly occurs when the
artist manually pushes different colored paints around with
the brush. The Moxi system of Chu et al. [CT05] simulates
Eastern ink drawings using a physics based fluid model to
carry and mix pigments. Their work is able to create realis-
tic ink effects such as flow patterns without manual guidance
from the artists.

While those approaches realistically simulate the paint be-
havior, they mostly simulate the physical characteristics after
the paint is applied onto the paper and canvas. Recent works
such as [CT04, BG10] model the interaction between brush,
paint and paper extensively. However in order to simulate
paint flicking, the effect of brush and paint movement by air
resistance and brush inertia must also be modeled.

Ink Splattering Simulation

Chu et al. [CT05] provide a splash and spray tool for
Moxi, which uses the brush as a particle emitter throwing
blobs at the paper. The movement of the blobs follows ba-
sic Newtonian physics, leaving elliptic footprints on the pa-
per and depositing the ink with no fluid simulation in the
air. Also the blobs are directly "shot" from the brush, since
brush deformation in the air is not simulated. While this tool
is simple, this still creates a good effect due to the solid ink
and paper simulation, with the flow of pigments between ink
drops deposited in different timesteps creating intricate pat-
terns.

Lee et al. [LOG06] focus their simulation on recreating
the drip painting artworks of Jackson Pollock. They use a
one-dimensional fluid jet to simulate paint movement in the
air. The reason behind this is that Jackson Pollock often uses
paint with very high viscosity for his artworks, and the one-
dimensional fluid jet is a good approximation. However this
only applies when the paint is delivered in a gentle dripping
motion. It does not handle the case when the paint is vio-
lently thrown onto the canvas to create dramatic splattering
patterns.

In contrast, our system simulates the physical interaction
of paint with brushes, air and paper in real time. Users can
interactively adjust the parameters of paint material such as
viscosity and surface tension.

Fluid Simulation: The two most widely used approaches
for computational fluid mechanics are Eulerian (grid based)
and Lagrangian (particle based). While both methods sim-
ulate a wide range of materials [HK05, CMT04, CBP05],
a grid-based approach would require a very dense 3D grid
[HK05] to simulate paint dynamics in the air. A practical
choice for interactively modeling highly deformable fluid
is by smoothed particle hydrodynamics (SPH). SPH mod-
els fluid with a set of particles of which their physical
properties are smoothed by kernel functions. Until recently

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

Su-Ian Eugene Lei, Ying-Chieh Chen, Hsiang-Ting Chen & Chun-Fa Chang / Interactive Physics-based Ink Splattering Art Creation

SPH systems can only simulate a small amount of particles
(less than 1000) in real time. Recent development in pro-
grammable graphics processor (GPU) makes it possible to
operate on large amount of particles in an interactive frame
rate [GSSP10, HBD10]. Our application uses an SPH solver
implemented in CUDA [Buc07] to model the ink spilled
from the brush to the point where it hits the paper.

The Lattice Boltzmann method (LBM) [Suc01, WZF∗04]
is an increasingly popular alternative approach for grid-
based fluid simulation. LBM models the flow of a Newto-
nian fluid by simulating the streaming and collision of fric-
tive particles. An advantage of LBM is that all operations
are simple and local. Each update of cell requires only in-
formation from its immediate neighbors (similar to a celluar
automata), making this very efficient to implement on paral-
lel graphics processors. Chu et al. [CT05] used this method
to model paint flow on the paper. We base our paint and pa-
per interaction on their work since it best simulates the looks
of watercolor and Chinese ink splatters, and we extend their
paper model to include surface friction, glazing and absorp-
tion when an ink drop hits the paper.

Brush Simulation: Saito et al. [SN99] model brush dy-
namics in 3D by approximating the bristle behavior using
energy optimization on a single spine. Baxter et al. [BG10]
and Chu et al. [CT04] extend this method to simulate the
characteristics of different brush types such as the Chinese
calligraphy brush.

These methods mainly concern the appearance of the
brush footprints on the canvas. Therefore their main focus is
the interaction between brush and paper, and generally ne-
glects brush deformation in the air caused by external forces
such as gravity and air resistance. While this is acceptable
in some cases where external forces are negligible compar-
ing to brush elasticity, the quick and forceful motion of paint
flicking will cause significant deformation of brush hair. And
the movement of brush hair indeed affects the resulting splat-
tering pattern. We implement a brush model based on a
spring-mass system that simulates the full 3D deformation
of brush hair in the air according to the user movement of
the brush.

User Interface for Digital Sketching: The majority of
digital artist uses graphics tablet for artwork creation. These
tablets support variable pressure and tilt input. The interface
of [BG10] and [CT04] uses these input to deform the paint-
brush (such as spreading the brush tip hair outwards) when
the brush head touches the canvas.

Graphics tablet does not provide 3D location tracking of
the stylus, so special interface design (or hardware) is re-
quired if the artist need to manipulate paint material in 3D.
Our physical brush interface uses the pressure of the stylus
to simulate the z-axis, letting the user either hover the brush
above the canvas or create quick smacking motions based on
the pressure applied.

Figure 3: Two common splattering patterns. Left: Outward
scattering patterns. Right: Continuous trails.

Lee et al. [LOG06] employ a simpler interface by letting
an artist create a paint bucket object in 3D space, then guide
it using a 2D tablet. We have implemented a similar ink-jet
interface, by setting the height of the brush, then controlling
the paint being splashed out based on tablet input.

3. Interaction Mode

In real world, artists create the splattering art with two types
of motion: flicking and dripping. For the former, the artist
flicks the brush at high speed toward the paper, which results
in an outward scattering pattern with different distribution of
droplets depending on the flicking angle. For the later, the
artist loads the brush (or any type of container, e.g. a spoon)
with a large amount of paint, then let it naturally drips onto
the canvas. While gravity does most of the work, one can
direct the flow in mid-air by subtle motions. Figure 3 shows
splatters created by these two types of motion.

To model these motions using the graphics tablet and its
stylus, first we need to understand the input data they can
provide. A graphics tablet and its stylus provide five degrees
of freedom: the stylus location (in 2D), tilt, bearing (both in
degrees) and pressure on the tablet. The stylus controls a cur-
sor in 3D space at location x, where xx and xy corresponds
to the 2D coordinates of the stylus on the tablet. The ve-
locity of the stylus, qvelocity, is calculated by measuring the
displacement of x between two timesteps. At each timestep,
the coordinates x, qvelocity, qtilt and the pressure qpressure are
sampled from the stylus. Using these data, we can devise a
3D controlling scheme for both the ink-flicking and the ink-
dripping interfaces.

3.1. Ink-Flicking Mode

The first interaction mode emulates a virtual brush, which
correlates directly to the stylus motion. Besides the flicking
motion, the amount of ink loaded by the brush also affects
the resulting pattern. We design a paint bucket interface,
where users can dip the brush and control the loaded ink
amount. In order to simulate 3D motions with a pen tablet,
we use the stylus pressure to control the height of the brush
(Figure 4).

xz = cheight(1.0−qpressure) (1)

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

Su-Ian Eugene Lei, Ying-Chieh Chen, Hsiang-Ting Chen & Chun-Fa Chang / Interactive Physics-based Ink Splattering Art Creation

where

0≤ qpressure ≤ 1 (2)

and cheight is a variable that denotes the maximum height
of the brush. The orientation and angle of the brush directly
reflects the tilt of the stylus qtilt .

Figure 4: Up: The input we received from the graphics tablet,
and its corresponding path of the brush. The size of the red
dots denotes the pressure applied on the tablet by the sty-
lus. Down: A sudden application of pressure creates a fast
smacking motion.

3.2. Ink-Dripping Mode

The ink-dripping mode emulates a stylus-controlled ink-jet
that dispenses ink based on the stylus angle. Similar to the
common digital painting software, the stylus pressure con-
trols the size of the paint nozzle, with xz = cheight which is
controlled using the mouse wheel. The amount of paint be-
ing released is directly proportional to qpressure. To create
"directional" splats, we use qtilt to control the orientation of
the ink-jet. We also use qvelocity to affect the velocity of the
jet to simulate momentum (Figure 5).

Figure 5: Left: The input we received from the graphics
tablet. Right: The corresponding path of the ink-jet, with u
being the velocity of emitted particles and cheight a user de-
fined parameter.

Sometimes it is more desirable to let the artist control
where the paint would land on the paper, while the location
of the paint source would be calculated accordingly. In this
mode, the stylus controls a cursor on the paper, which indi-
cates the location where the paint would ultimately land. As
in the basic configuration, the pressure and tilt of the stylus
control the size and direction of the paint jet. This in turn

gives the control over the final size and general splash direc-
tion of the splatter pattern. Given the target position y, the
position of the paint jet x is calculated by:

xz = cheight (3)

x(x,y) = y(x,y)+u(x,y)tdrop (4)

tdrop =
2xz

uz +
√

u2
z +2gxz

(5)

tdrop indicates the estimated time it takes for a particle
to fall on the paper after being emitted from the paint jet.
We follow the basic equations of motion for its simplicity.
While individual particles created with this method may not
land exactly at the target, the drop path of the fluid volume
does not deviate too much from basic equations of motion.
Therefore this is an acceptable way to create splatter pat-
terns at pre-defined positions. Figure 6 shows ink splatters
following roughly the same paths but created with different
parameters.

Figure 6: Three splatters following roughly the same drip-
ping path. Left: With the stylus tilted left, creating splatters
mainly to the left side. Center: With the stylus tilted right.
Right: With highly viscous paint. Notice the lack of splat-
ters.

4. Simulation Framework

Our simulation framework consists of three consecutive
stages:

• Ink-brush stage: We initialize the simulation based on the
information gathered from the user interface. If the ink-
flicking interface is chosen, this stage also simulates the
dynamics of brush head and loaded paint.

• Ink-air stage: We simulate the trajectory of splatter-
ing inks in the air and their self-interaction using the
smoothed particle hydrodynamics (SPH) model, neces-
sary in creating realistic splattering patterns.

• Ink-paper stage: When the ink hits the canvas, we simu-
late the dispersion and absorption between the ink and the
paper using the Lattice-Boltzmann Method (LBM) model.

Figure 7 shows an overview of the process.

4.1. Ink-Brush Stage

Before the fluid particles are created, we need to simulate the
physical behavior of the brush. We use a spring-mass system
to simulate our brush head. Brush deformation is modeled

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

Su-Ian Eugene Lei, Ying-Chieh Chen, Hsiang-Ting Chen & Chun-Fa Chang / Interactive Physics-based Ink Splattering Art Creation

Figure 7: The process flow of our system.

using individual spines, where each spine is a series of con-
nected springs. In a spring-mass system, each node ni has a
mass of mni and position xni . Each spring segment i (between
nodes ni and ni+1) has a rest length of ri (Figure 8).

Figure 8: Left: A spine of the brush head. Right: The spring-
mass system of a single segment, where m is the mass of a
node, and r is the rest length of the segment.

Basically, each node is susceptible to an external force F
such as gravity. Therefore at each timestep, the displacement
of node i is calculated by:

∆xni = (1.0−ζ)∆lastxni +ani t
2 (6)

ani =
F

mni

(7)

where ∆lastxni is the displacement of xni in the last timestep,
and t is the length of the timestep. ζ < 1.0 is a damping term,
which heuristically accounts for the gradual loss of velocity
due to air resistance and friction.

If the current length of the segment li = |xni xni+1 | does not
equal to the rest length ri, a correction vector di is applied to
move both node back into place:

di = (xni −xni+1)(1−
ri

li
) (8)

x∗ni = xni +di (9)

x∗ni+1 = xni+1 −di (10)

Equations 8,9,10 are looped through all nodes for cstiffness
times to incrementally correct the position of the nodes so
the distance between consecutive nodes converges to rest
length ri. The variable cstiffness denotes the stiffness of the
spring-mass system. The higher the value, the less elastic
the brush hair is.

To model the load of the paint brush, each node i contains
a volume of absorbed paint Vi, with a maximum of V maxi.
Also we assign the weight of the brush hair mhairi to each
node. Therefore with a paint of density ρ0, we have:

mpaint i
= ρ0Vi (11)

mni = mhairi +mpaint i
(12)

In our brush model, the paint is dislodged from the brush
head once the force of a node Fi = mni ai exceeds a threshold
ξi. The amount of paint leaving brush node i would be:

mdislodgei
= mpaint i

− ξi

ai
(13)

Figure 9 shows the process of paint dislodging. The
threshold ξi is a function of brush hair sorptivity S(m√

s), paint

viscosity µ(kg
m·s), surface tension σ(N

m) and the current seg-
ment length li(m). Sorptivity is related to the density and
inner-friction of the bristles of the brush, while viscosity is
the internal friction of the fluid. Both values inversely affect
the ease of paint dislodging. Surface tension also pulls the
liquid inwards to prevent dislodging. Therefore the thresh-
old can be written as:

ξi = cd1 S2µ+ cd2 σli (14)

where cd1 and cd2 are dislodging constants that affect the
amount of paint leaving the brush based on viscosity, tension
and sorptivity.

Also, the paint within the brush hair slowly seeps down-
ward due to gravity. For each timestep:

∆Vi =Vi cosθi · cseep (15)

V∗i =Vi−∆Vi (16)

V∗i+1 =Vi+1 +∆Vi+1 (17)

where cseep is the rate of downward seeping, and θi is the an-
gle between segment i and the z-axis. If Vk >V maxk, where
k is the last node (the tip of the brush), the paint that exceeds
the limit is also dripped down from the brush.

Now that we know the amount of paint that dislodges
from the brush at each timestep, we need to create its corre-
sponding particles for the SPH simulation. In SPH, the initial
placement of the particles is crucial to the stability of the sys-

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

Su-Ian Eugene Lei, Ying-Chieh Chen, Hsiang-Ting Chen & Chun-Fa Chang / Interactive Physics-based Ink Splattering Art Creation

tem. The particles must be uniformly distributed according
to the rest density (ρ0) and particle mass (m) of the fluid:

d = 3

√
3m

4πρ0
(18)

We use a simple approach to initialize the particles. At
each node that mdislodgei

> 0, we create a cubic blob of uni-

formly distributed particles with length lci =
3
√

mdislodgei
ρ0 at

each side. To avoid overlapping of particles (thus introduc-
ing instability), a particle is only generated if there are no
other particles within its interaction radius h. The initial ve-
locity of the particles within a cube is equal to the velocity
of the node that dislodges the paint. The blocky appearance
of the initial fluid volume is quickly smoothened by the SPH
simulation in about 3 timesteps (Figure 9).

Figure 9: Left: The movement force of each node in the
brush head, and an approximate representation of ink dis-
lodge amount. Right: The actual particles created based on
this amount.

4.1.1. Ink-Dripping

The ink-brush stage for the ink-dripping interface is much
simpler than the ink-flicking interface. The tilt of the stylus
controls the direction of the paint leaving the brush, while
the pressure controls its size and power. The velocity of the
stylus movement also affects the direction and power of the
paint thrown, to simulate momentum. Therefore, a set of par-
ticles are initialized with the initial velocity u:

u = (cpressureqpressure+ctilt)×qtilt +cvelqvel
|xixi−1|

t
(19)

Where xi is the position of the paint jet at timestep i,
cpressure, ctilt and cvel are user adjustable parameters which
control how much tilt and stylus velocity affect the jet di-
rection and power, qtilt , qvel and qpressure are the tilt vector,
velocity vector and pressure of the stylus respectively, and t
is the length of the timestep (Figure 5).

We provide an option to let the user create a continuous
stream of ink or a string of droplets while creating a brush-
stroke in the air. For a continuous stream we use the method
described by [Str86] to generate brushstrokes in 3D space.

We then fill each segment of the stroke uniformly with par-
ticles using a basic scanline method (Figure 10). To create a
stable initial condition, the fluid must have a 3D volume. We
achieve this by simply replicating the original set of particles
along the z-axis, with a depth of hi =

cPi+cPi+1
2 , as shown in

Figure 10, where c is a scalar controlling the brush width,
and Pi and P(i+ 1) are the stylus pressure of two consecu-
tive samples.

Figure 10: A sample brushstroke. Each slice corresponds to
a sample from the graphics tablet.

4.2. Ink-Air Stage

In the ink-air stage, we simulate the ink dynamics in the air
and its splattering on the paper. The paint is defined by a set
of particles initialized in Section 4.1, where each particle i
carries mass(mi), position(ri) and velocity(ui). The first step
in SPH simulation is to calculate the density at each particle
site i.

ρi = ∑
j

m jW (ri− r j,h) (20)

where W is the smoothing kernel and h is the interaction
radius. Then the pressure at i is determined.

f pressure
i =−∑

j

m j

ρ j

pi + p j

2
5W (ri− r j,h) (21)

5W is the gradient of the smoothing kernel. pi is the pres-
sure at particle i, where pi = kρi and k is the internal stiffness
of the liquid. Viscosity of the fluid, which is caused by in-
ternal friction between particles [MCG03], is calculated by

f viscosity
i = µ∑

j
(u j−ui)

m j

ρ j
52 W (ri− r j,h) (22)

where 52W is the Hessian of the kernel function, and µ is
the viscosity coefficient, which defines the strength of how
viscous the fluid is. By modifying this value we can simulate
different types of paint ranging from oil paint to thin wa-
tercolor. The definition of W , 5W and 52W can be found
in [Kel06].

In the last stage of the simulation, the velocity of each
particle is updated.

dui

dt
=

Fi

ρi
(23)

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

Su-Ian Eugene Lei, Ying-Chieh Chen, Hsiang-Ting Chen & Chun-Fa Chang / Interactive Physics-based Ink Splattering Art Creation

where Fi is the sum of internal forces (pressure, viscosity)
and external forces (gravity, surface tension).

Each particle, depending on the choice of material, also
represents a mixture of an amount of water (ρa) and pig-
ment (pa). These particles run through the SPH simulation
in Equations 20 to 23. When a particle reaches the canvas
surface, there is a chance that it would be absorbed by the
canvas. If it is not, it would bounce back when its velocity is
sufficiently high:

u∗i = ui− (1+ cR)(u ·n)n (24)

where 0 < cR < 1 is the coefficient of restitution that damp-
ens the bounce back velocity. If the velocity along the z-axis
(the vector pointing directly away from the canvas) is below
a certain threshold, the particle will be "stuck" to the can-
vas, its velocity dampened by friction of the current site for
each iteration. Each particle below a certain height on the z-
axis is considered "touching" the canvas, and leaves behind
a footprint according to Section 4.2.1 until it is completely
absorbed by the canvas.

We model the absorption of the particle by using its
age. The absorption rate of the current site λ on the paper
generally represents the amount of paint absorbed in each
timestep. We simply add this rate divided by current frame-
per-second to the particle’s age until it is larger than 1.0, at
which point the particle will be considered completely ab-
sorbed and be removed from the simulation.

4.2.1. Point Splatting

The shape left behind by each particle on the canvas deter-
mines how realistic the end result would be. Using point
splatting [Wes91] to render the particle footprints with the
following strategy produces good result:

uplane(i) =
[

ux(i)
uy(i)

]
(25)

S1(i) =
uplane(i)
|uplane(i)|

(26)

S2(i) = S1(i)
⊥ (27)

rS2(i) = 1.0+uz(i)× cdropvel× rand(0,1)×

cpressure

√
f pressure
i

(28)

rS1(i) = (1+ cplanevel×|uplane(i)|)rS2(i) (29)

For each particle i, uplane(i) is the velocity projected on
the x-y plane (the canvas). The splat is an ellipse with its
major axis S1(i) aligned to uplane(i). The lengths of its major
and minor radii are rS1(i) and rS2(i) respectively (Figure 11).

The reason behind this strategy is that in that each particle
holds a certain amount of fluid. We use uz(i) to determine

Figure 11: A splat generated by a particle.

whether this particle impacts on a paper or simply grazes it.
In the case of an impact, the fluid volume represented by the
particle is squashed and flattened on the paper, leaving a big-
ger footprint; whereas in the latter case, the particle leaves a
smaller footprint since surface tension pulls the volume into
a spherical shape. In either case, the splat is also stretched
along uplane(i).

However, when a cluster of particles hits the canvas, many
particles will end up hitting and be absorbed at the same po-
sition, creating many overlapping splats. To get a more real-
istic result, we need to determine the size of the cluster since
a larger one naturally will leave a bigger footprint. Particle
pressure f pressure

i is a good indicator since a higher value
means the particle is deeper within the fluid, therefore im-
plying that it belongs to a larger cluster.

Using this strategy, we can create highly realistic splat-
ters that accurately reflect real-world behavior, such as the
bowling-pin and crown shaped drops (Figure 12). The user
can control how much uz(i), f pressure

i and |uplane(i)| affect
the splatting size using the parameters cdropvel , cpressure and
cplanevel respectively. A comparison between our method,
uniform-sized splats and no splatting is shown in Figure 13.

Figure 12: Comparison between splatter pattern created in
real-world (a, b) and in our system (c, d). (a) Crown shaped
drops created by dripping paint on the paper. (b) Bowling-
pin shaped drops created by flicking paint at an angle. (c)(d)
Similar patterns created using our system.

4.3. Ink-Paper Stage

When the ink hits the paper, we use the LBM fluid model
to simulate its interaction with the canvas. A fluid simula-
tion at this stage is necessary to simulate the more com-
plex flow patterns, since simple diffusion cannot account for

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

Su-Ian Eugene Lei, Ying-Chieh Chen, Hsiang-Ting Chen & Chun-Fa Chang / Interactive Physics-based Ink Splattering Art Creation

Figure 13: Comparison between circular drops created with
different splatting approaches. (a) Without splatting. (b)
Uniform-sized splatting. (c) Our splatting strategy based on
both particle speed and pressure.

cases when pigment flow is impeded by paper fibers or ac-
cumulation of ink constituents [CT05].

In LBM models, the fluid is composed by pseudo parti-
cles, which perform propagation and collision process over a
regular lattice mesh. We use a 2D uniform grid for our simu-
lation, which is classified as the D2Q9 model. Each cell con-
tains nine distributions fi, which denote the expected num-
bers of particles moving along lattice vectors ei (Figure 14).
For each timestep, two operations are performed at each cell:

Figure 14: The D2Q9 lattice model and the 9 vectors of a
sample cell.

Propagation: fi are propagated to the neighboring cells
along the vectors ei.

Collision: fi that arrive at the same site are collided and
redistributed toward their equilibrium functions f (eq)

i .

The propagation and collision in the D2Q9 are described
as:

fi(x+ ei4 t, t +4t) = (1−ω) fi(x, t)+ω f eq
i (x, t) (30)

In the incompressible fluid modei, f (eq)
i is

f (eq)
i = wi

{
ρ+ρ0

[
3
c2 ei ·u+

9
2c4 (ei ·u)2− 3

2c2 u ·u
]}
(31)

where wi is the weight. wi is 4
9 for i = 0, 1

9 for i = 1,2,3,4
and 1

36 for i = 5,6,7,8. c is the propagation speed on the
lattice, which we set to c = 1. Fluid density ρ and velocity u
are simply determined by

ρ =
8

∑
i=0

fi (32)

u =
1
ρ

8

∑
i=1

ei fi (33)

Our paper model is seperated into two main layers: the
footprint layer and the simulation layer. The footprint layer
has a much higher resolution since ink splattering creates
highly detailed patterns. The simulation layer closely fol-
lows those defined by [CT05], which further separates the
paper into three sub-layers: surface, flow and fixture.

When the particle touches the paper, it creates a footprint
using point splatting on the footprint layer. This splat is then
down-sampled and converted into a composition of water
and pigment in the surface layer. This composition gradu-
ally seeps into the flow layer. The flow layer is where the
fluid simulation takes place. Water flows (and evaporates)
within this layer according to the LBM process (Equations
30 to 32). Pigment redistributes to adjacent cells based on fi
(particle distribution along vector ei):

p∗f (x) =
1
ρ

8

∑
i=1

fipf(x− ei) (34)

where pf and p∗f is the amount of pigment in the flow layer in
the current and next timestep respectively. For each iteration
a certain amount of pigment of the flow layer is transferred
to the fixture layer, where they no longer move along with
the fluid.

5. Implementation

All our results on this paper were generated using a desktop
computer with an Intel Core i7 CPU, an NVIDIA GeForce
GTX 680 GPU, and a Wacom Intuos 2 graphics tablet. Our
SPH code is based on the open sourced FLUIDS v.3 by R.C.
Hoetzlein [Hoe12], released under the Z-lib license. We also
used CUDA to implement the LBM fluid simulator, and used
OpenGL and NVIDIA Cg 3.1 for the final rendering. In our
examples, we used a canvas with a resolution of 40962, and
the LBM paper-and-ink simulation were performed on a res-
olution of 5122. Each brush stroke is simulated with 8000 to
16000 particles in SPH. We have an overall system frame
rate of 40 to 70 frames per second, depending on the number
of particles currently being simulated in SPH.

6. Discussion

We conducted a pilot study on our system with several pro-
fessional artists. Figures 1 and 17b are the artworks created
by them, where each creation process took less than 15 min-
utes. In Figures 1 and 17b, the artists used the ink-dripping
interaction to apply splatters around a stencil mask (a popu-
lar splattering creation skill in real world) and create highly
stylized artworks. We summarized their feedback in the fol-
lowing section.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

Su-Ian Eugene Lei, Ying-Chieh Chen, Hsiang-Ting Chen & Chun-Fa Chang / Interactive Physics-based Ink Splattering Art Creation

6.1. User Interface and Resulting Patterns

Our collaborating artists found the ink-dripping mode easier
to adopt to. Because in this mode, the cursor, which indi-
cates where the inks would land, moved along the paper;
the control is similar to the ordinary digital paintbrush func-
tion. However those who have experience in ink splattering
art prefer the more intense and dynamic patterns generated
with ink-flicking mode. For example, in Figure 15a and 15b
we show two splatter patterns created by thrusting the sty-
lus forward under the ink-flicking and ink-dripping mode.
The ink-dripping mode generates a more stable and regular
pattern whereas the ink-flicking mode generate the patterns
with more subtle variation in orientation, speed and distribu-
tion of the droplets.

Figure 15: Comparison between splatters created with dif-
ferent modes (a) ink-flicking mode (b) ink-dripping mode
(c) splatters in real-world.

The reason is that the action of ink splashing involves
vigorous brush movement, which in turn causes vibration
in brush hair, splashing paint in a way that is hard to repli-
cate when using the ink-dripping interface. Figure 15c shows
a real-world splatter example created by flicking a loaded
brush. The resulting pattern shows characteristics similar to
those created with the ink-flicking interface.

6.2. Comparison with Other Methods

Comparing with Chu et al.’s splash and spray tool [CT05],
our 3D fluid simulation creates much more realistic and
complex splatters. Combined with an ink-paper model that
takes into account the grazing and absorption of individual
ink drops, we can create inter-flowing splattering patterns as
shown in Figure 17b.

In Lee et al.’s work [LOG06], they used a statistical model
to create drops and splatters in user defined locations. This
model creates a number of "fingers" based on the velocity
and diameter of the drop, creating crown or claw shaped pat-
terns. Our full 3D simulation can create much more realistic
and organic splattering patterns (Figure 16).

Also, as discussed in the previous section, an ink-dripping
interface similar to the approach of [LOG06] may not be ad-
equate to convey the full range of dynamics shown in Pol-
lock’s artwork. Our ink-flicking interface, by simulating a
full 3D range of brush motion, can create the subtle effects
like those in Figure 15 which are often observed in ink splat-
tering artworks.

Figure 16: Comparison with other methods. (a) Sample
splatters created using Lee’s statistical model. (b) Sample
splatters created using our full 3D fluid simulation and splat-
ting. (c) Splatters created using Chu’s splash and spray tool.
(d) Splatters created using our system.

7. Conclusion

We present an interactive system for ink splattering art. The
ink-dripping and ink-flicking interaction modes imitate the
real-world artistic skills; artists can extend their real-world
exprience and adapt to our digital system easily. The core
three-stage ink splattering framework simulates the interac-
tion of ink-brush, ink-air and ink-paper. We show that our
system could generate more realistic organic patterns by
comparing with previous works and real-world splatters. In
the future, we will explore the possibility of using the 1D
fluid simulation of [LOG06] to more accurately model paint
movement within the brush hair, in order to create a bet-
ter initial particle distribution when paint dislodges from the
brush.

8. Acknowledgements

This work is supported in part under the "Embedded soft-
ware and living service platform and technology develop-
ment project" of the Institute for Information Industry which
is subsidized by the Ministry of Economy Affairs (Taiwan),
and by National Science Council (Taiwan) under grant NSC
102-2219-E-003-001.

References

[BG10] BAXTER W., GOVINDARAJU N.: Simple data-driven
modeling of brushes. In Proc. Symposium on Interactive 3D
Graphics (I3D 2010) (2010). 2, 3

[Buc07] BUCK I.: Gpu computing with nvidia cuda. In ACM
SIGGRAPH 2007 courses (2007), SIGGRAPH ’07. 3

[BWL04] BAXTER W. V., WENDT J., LIN M. C.: IMPaSTo:
A realistic model for paint. In Proc. of Symposium on Non-
Photorealistic Animation and Rendering (NPAR) (June 2004),
pp. 45–56. 2

[CAS∗97] CURTIS C. J., ANDERSON S. E., SEIMS J. E., FLEIS-
CHER K. W., SALESIN D. H.: Computer-generated water-
color. In Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques (1997), SIGGRAPH
’97, pp. 421–430. 2

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

Su-Ian Eugene Lei, Ying-Chieh Chen, Hsiang-Ting Chen & Chun-Fa Chang / Interactive Physics-based Ink Splattering Art Creation

(a) Bunny, drawn using our system.

(b) Ink splattering art using two masks. We apply precise
splatters in user defined locations using the backward pro-
jection technique. This showcases the use of ink splatters as
a design element.

Figure 17: Sample pictures created with our system

[CBP05] CLAVET S., BEAUDOIN P., POULIN P.: Particle-based
viscoelastic fluid simulation. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation
(2005), SCA ’05, pp. 219–228. 2

[CMT04] CARLSON M., MUCHA P. J., TURK G.: Rigid fluid:
animating the interplay between rigid bodies and fluid. In ACM
SIGGRAPH 2004 Papers (2004), SIGGRAPH ’04, pp. 377–384.
2

[CT04] CHU N. S. H., TAI C.-L.: Real-time painting with an
expressive virtual chinese brush. IEEE Comput. Graph. Appl.
24, 5 (Sept. 2004), 76–85. 2, 3

[CT05] CHU N. S.-H., TAI C.-L.: MoXi: real-time ink disper-
sion in absorbent paper. ACM Trans. Graph. 24, 3 (July 2005),
504–511. 1, 2, 3, 8, 9

[DKMI13] DIVERDI S., KRISHNASWAMY A., MECH R., ITO
D.: Painting with polygons: A procedural watercolor engine.
IEEE Transactions on Visualization and Computer Graphics 19,
5 (2013), 723–735. 2

[EWK∗13] ECHEVARRIA J. I., WILENSKY G., KRISH-
NASWAMY A., KIM B., GUTIERREZ D.: Computational
simulation of alternative photographic processes. Computer
Graphics Forum (Proc. EGSR 2013) 32, 4 (2013). 2

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B.,
PAJAROLA R.: Interactive SPH simulation and render-
ing on the GPU. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2010), SCA ’10, pp. 55–64. 2, 3

[HBD10] HERAULT A., BILOTTA G., DALRYMPLE R.: SPH on
GPU with CUDA. Journal of Hydraulic Research 48 (2010),
74–79. 2, 3

[HK05] HONG J.-M., KIM C.-H.: Discontinuous fluids. In ACM
SIGGRAPH 2005 Papers (2005), SIGGRAPH ’05, pp. 915–920.
2

[Hoe12] HOETZLEIN R. C.: Fluids v.3: A large-scale, open
source fluid simulator., 2012. URL: http://fluids3.com.
8

[JCM07] JIN X., CHEN S., MAO X.: Computer-generated mar-
bling textures: A gpu-based design system. IEEE Computer
Graphics and Applications 27, 2 (2007), 78–84. 2

[Kel06] KELAGER M.: Lagrangian fluid dynamics using
smoothed particle hydrodynamics, 2006. 6

[LOG06] LEE S., OLSEN S. C., GOOCH B.: Interactive 3D fluid
jet painting. In Proceedings of the 4th international symposium
on Non-photorealistic animation and rendering (2006), NPAR
’06, pp. 97–104. 1, 2, 3, 9

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation (2003), SCA ’03, pp. 154–159. 6

[SN99] SAITO S., NAKAJIMA M.: 3d physics-based brush model
for painting. In ACM SIGGRAPH 99 Conference abstracts and
applications (1999), SIGGRAPH ’99, pp. 226–. 3

[Str86] STRASSMANN S.: Hairy brushes. In Proceedings of the
13th annual conference on Computer graphics and interactive
techniques (1986), SIGGRAPH ’86, pp. 225–232. 6

[Suc01] SUCCI S.: The Lattice Boltzmann Equation for Fluid Dy-
namics and Beyond. Clarendon Press, Oxford, 2001. 3

[Wes91] WESTOVER L. A.: SPLATTING: A Parallel, Feed-
Forward Volume Rendering Algorithm. Tech. rep., Chapel Hill,
NC, USA, 1991. 7

[WW07] WANG C.-M., WANG R.-J.: Image-based color ink dif-
fusion rendering. IEEE Transactions on Visualization and Com-
puter Graphics 13, 2 (Mar. 2007), 235–246. 2

[WZF∗04] WEI X., ZHAO Y., FAN Z., LI W., QIU F.,
YOAKUM-STOVER S., KAUFMAN A.: Lattice-based flow field
modeling. IEEE Transactions on Visualization and Computer
Graphics 10 (2004), 719–729. 3

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd

http://fluids3.com

