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Figure 1: Thin-plate forms modeled by soft folding. Subfigures visualize their corresponding fold and sewing patterns. Color
and thickness of a fold line indicates its fold magnitude and sharpness(see Fig. 5). Seams are shown as pairs of thick curves on
the border. From left to right: Water-bomb origami pattern applied on a leather sheet, a leather penholder and shoe.

Abstract
We introduce soft folding, a new interactive method for designing and exploring thin-plate forms. A user specifies
sharp and soft folds as two-dimensional(2D) curves on a flat sheet, along with the fold magnitude and sharpness
of each. Then, based on the soft folds, the system computes the three-dimensional(3D) folded shape. Internally,
the system first computes a fold field, which defines local folding operations on a flat sheet. A fold field is a gen-
eralization of a discrete fold graph in origami, replacing a graph with sharp folds with a continuous field with
soft folds. Next, local patches are folded independently according to the fold field. Finally, a globally folded 3D
shape is obtained by assembling the locally folded patches. This algorithm computes an approximation of 3D de-
velopable surfaces with user-defined soft folds at an interactive speed. The user can later apply nonlinear physical
simulation to generate more realistic results. Experimental results demonstrated that soft folding is effective for
producing complex folded shapes with controllable sharpness.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.6]: Methodology
and Techniques—Interaction Techniques;Computer Graphics [I.3.5]: Computational Geometry and Objec-
t Modeling—Geometric algorithms, languages, and systems;

1. Introduction

Thin-plate forms are obtained by deforming flat sheets.
When deformations of a planar sheet are restricted to be iso-
metric, special thin-plate forms called developable surfaces
are produced. Since different degrees of stretching are al-
lowed by various real-world materials, thin-plate forms are
ubiquitous in the real world and are easy to fabricate. De-
sign of thin-plate forms has received considerable attention
in the field of geometric modeling. For example, designer-
s may design thin-plate forms to produce bags from leather

materials, and architects may explore thin-plate forms to de-
sign architectural structures.

Because thin-plate forms are deformed from flat shapes, the
traditional interface for designing thin-plate forms is based
on deformation interfaces such as click-and-drag with phys-
ical simulation [BSG12] or geometric optimization [BK04].
However, these methods require the user to specify handles
and drag them one-by-one to create designs, which is a te-
dious process.

Reverse-engineering [KFC∗08] is another way to obtain
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Figure 2: Work flow of soft folding.

thin-plate forms by optimizing acquired geometries. Sketch-
based interfaces based on sketched contours have also been
introduced to model developable surfaces [RSW∗07]. How-
ever, these systems have a low degree of flexibility for ex-
ploring potential variants of thin-plate forms.

In origami, three-dimensional (3D) forms are designed using
fold pattern [SVWG12] [DO07]. A fold pattern in origami is
represented as a graph of lines (representing folded edges),
where connected edges form patterns called peaks (∧) and
valleys (∨). Inspired by fold patterns in origami, we here-
in propose a new interactive method, called soft folding, for
the design of thin-plate forms. Our method generalizes sharp
folds into soft, rounded folds. The user specifies the location
and sharpness of folds on a two-dimensional (2D) sheet and
the system computes a 3D folded shape based on these user-
defined soft folds.

The workflow of our method is illustrated in Fig. 2. We or-
ganize user inputs as a fold map (as illustrated by Fig. 2 left)
consisting of a set of fold curves with magnitude and sharp-
ness information(Sec. 3). The key idea of our technique is
to introduce an intermediate representation of the fold pat-
tern, called a fold field(Sec. 2). A fold field defines a fold
direction and a fold angle at each point. It generalizes dis-
crete fold graphs limited to sharp folds(as those used in rigid
origami), to continuous fields with folds of variable sharp-
ness. Our current implementation discretizes the continuous
fold field on a 2D mesh (Sec. 4.1). We locally fold the one-
ring of each vertex according to the fold field, and obtain
the globally folded shape by assembling the locally fold-
ed patches using linear rotation-invariant coordinates (LRIC;
Sec. 4.2) [LSLCO05]. We carried out an experiment to test
the efficiency of our proposed soft folding method (Sec. 5).

Our goal is to compute a folded 3D geometry that satis-
fies user-defined fold patterns by deforming a planar shape.
Simply applying physics is not enough, because it is not
clear what force and constraints need to be applied to re-
produce the user-specified folds. Thus, we derive the folded
shape in a geometric way, to help users interactively explore
thin-plate forms. The developability is implied in the fold
field representation, but not explicitly formulated as a hard
constraint in the workflow, and perfect developability is not
guaranteed. To obtain a more realistic result, we run phys-
ical simulation based on shape matching [MHTG05] as a
post-processing tool for soft folding (Sec. 4.3).

Contributions The present study makes the following main
contributions:

• A new method is proposed for interactively exploring
thin-plate forms including both sharp and soft folds.

• A computational workflow is presented that computes a
3D folded geometry from a fold map via a novel interme-
diate representation called a fold field.

• An implementation of the workflow combining appropri-
ate known techniques is provided; We study local fold-
ing operations for computing fold fields and use LRIC for
computing 3D geometry.

Related Work Shape modeling is a well-studied subjec-
t in the field of graphic design. Various modeling method-
s have been proposed for form design, such as parametric
surface design systems, sculpting systems [PIX] and sketch-
ing systems [IMT07]. Various deformation methods are also
available, including cage-based methods [JSW05], skeleton-
based methods [YBS07] and point-based methods [BK04].
However, all of these are designed for general freeform
models and are not readily useful for creating or deform-
ing thin-plate structures. What is missing is a method for
users to quickly explore various forms with sharp and soft
folds while keeping isometrically close to a planar shape.
Recently, new design interfaces have been developed to ex-
plore forms under various physical constraints [UIM12] or
geometric constraints [YYPM11]. However, in the latter sys-
tem, users are only able to explore local variants of the input
shape.

Developable surfaces have been studied mathematically in
differential geometry for years [DC76]. Algorithms have
been developed for computer-aided geometric modeling, and
these enable various features for developable surface model-
ing. For example, users can design developable spline sur-
faces [PF95] and developable surfaces with curved fold-
s [KFC∗08]. Users can also explore developable surfaces
with interpolated constraints [RSW∗07] [BW08] and com-
plex layers [IM10]. Developable surfaces can also be ob-
tained by optimizing curved surfaces [Wan08] [PHD∗10] in-
to (piecewise) developable surfaces, or optimizing face pla-
narity of their control meshes [LPW∗06]. A comprehensive
review can be found in [SVWG12] and references therein.
Since perfect developability is hard to achieve, those model-
ing techniques are either of low degree-of-flexibility or not
fast enough for exploring shape variants.

Algorithms for smoothly deforming shapes can be classified
into two categories: those for physical simulations and those
for geometric processing . Physical simulation methods for
deformable objects (e.g., shape matching [MHTG05]), as
well as cloth simulation (e.g., [EB08]), can be used to ex-
plore thin-plate forms. Various geometric processing algo-
rithms are also available for designing thin-plate forms via
deformation of a flat mesh (for more details, see [BS08] and
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[SA07]). However, these methods do not provide a conve-
nient user interface for specifying shapes with soft folds.

Origami is the practice of folding paper to make forms, and
the method consists of making sharp folds. The design rules
of origami have been reported elsewhere [DO07]. Recently,
physical simulations are introduced to origami [BWGO06]
or paper folding [NPO13]. Physically accurate results are
obtained at a cost of expensive computations.

Soft folds also appear on cloth. They can be automatical-
ly generated in physical simulation [EB08], especially at a
high resolution. In order to improve the performance, ge-
ometric methods are introduced to synthesize wrinkles on
a coarse simulated mesh [DJW∗06] [RPC∗10]. However, in
those works, soft folds are created by locally projecting or
offsetting vertices with a height map. Instead of bumping
planar sheets, our method is completely different in that we
derive global shape taking user-specified folds as inputs.

Our geometric computing is inspired by algorithms that re-
construct 3D geometry from differential quantities. 3D ge-
ometry is generated from a 2D sketching or painting by solv-
ing higher-order Laplacian equations in [AJC11] or by con-
trolling mean curvature half-density in [CPS11]. Our oper-
ation is different in that we are folding planar sheets instead
of inflating it. Eigensatz and Pauly use nonlinear optimiza-
tion to control surfaces geometry by prescribing directional
curvatures [EP09]. However, curvatures are not well-defined
across sharp edges. We instead use local folding operations
to help dealing with sharp and smooth folds in a uniform
way. Winkler et.al [WDAH10] also locally interpolate edges
and their dihedral angles and use shape matching to recover
an interpolated mesh. We go a step further by defining a fold
field for designing and exploring thin-plate forms.

2. Thin-plate Forms and Fold Field

In this section, we introduce fold field, an intermediate rep-
resentation for thin-plate form design. A fold field defines a
folding operation F : D ∈ R2 7→ S ∈ R3 at each vertex v on
a planar shape. A folding operation can be parameterized by
a fold direction α ∈ [0,π) and a fold angle θ ∈ [− π

2 ,
π
2 ], as

illustrated in Fig. 3. Note that α ranges in [0,π) since a fold
direction is two-symmetric. When θ > 0, the folding oper-

2D View 3D View

folded shape

fold hints

fold controls

magnitude

sharpness

Figure 4: The user interface. Blue curves represent the
boundaries of the input planar shape, and black curves rep-
resent the fold hints on it. The magnitude and sharpness of
each fold hint is mapped to the stroke’s thickness and color
respectively.

ation F forms a valley around vertex v; otherwise, a peak
forms.

Thin-plate forms are obtained by smoothly deforming planar
shapes. When the deformation is isometric, we get devel-
opable surfaces. Looking into this ideal case, a developable
surface has vanishing Gauß curvature, i.e., K = k1k2 = 0,
where k1 and k2 are principal curvatures. This indicates that
a nonplanar vertex on a developable surface can be locally
approximated by a fold along the principle direction corre-
sponding to the vanishing principal curvature. Though gen-
eral thin-plate forms are not perfectly developable, they are
still nearly single-curved. Therefore, we use a fold field to
approximately encode its geometry locally. In the following,
we define operators on folding operations which we will use
in the computation of a fold field.

Fold Difference Given two folding operations Fα,θ and
Fᾱ,θ̄ at vertex v, the rest shape around v is mapped into
S(u,v) and S̄(u,v) respectively. We measure the difference
of Fα,θ and Fᾱ,θ̄ by the L2 difference of the folded shapes S
and S̄. By expressing the difference in terms of α and θ , we
define fold difference

d
(

Fα,θ , Fᾱ,θ̄

)
= π −

π
(
(sin∆α)2 cosθ + cos θ̄

2
+(cos∆α)2 1+ cosθ cos θ̄

2

)
− sinθ sin θ̄

(
sin∆α +(

π
2
−∆α)cos∆α

)
(1)

where ∆α = |α − ᾱ |. Please see Appendix for details.

Fold Summation We define fold summation as the process
of obtaining a folding operation that minimizes its difference
between summing folds. Specifically, for a fold summation
Fα,θ = ωi ∑i Fαi,θi , its fold direction α and fold angle θ are
defined as

(α,θ) = argmin
α,θ

wi ∑
i

d
(
Fα,θ ,Fαi,θi

)
(2)
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Figure 5: Folded shapes created from fold hints with varying
fold magnitudes and sharpness.

3. User Interface

Fold Map When people fold planar sheets, they manipu-
late the sheet by touching, holding, bending, and pinching
it. Simulating this process by incorporating physics involves
complex computation of external forces and thin-shell de-
formation. Note that the design intention behind this com-
plex behavior is to specify the location and shape of the fold
creases together with their angles and sharpness. Therefore,
the input of our system is designed to be a fold map with the
rest shape of the material and fold hints specifying the indi-
vidual local folds. The geometry of the flat sheet is stored as
its freeform boundary curve, shown in blue in Fig. 4; Fold
hints define the geometry of each fold on the planar sheet
(i.e., the fold hint) with their magnitude (θ(θ ∈ [−π,π]), as
shown in Fig. 5 top) and sharpness (s(s ∈ [0,1], as shown in
Fig. 5 bottom), where s = 1 represents a sharp fold and s = 0
represents a soft fold. Fold hint geometry is represented as a
2D curve and is shown in black in Fig. 4.

Interface Our proposed system has a sketching interface
that allows a user to specify the rest shape of the planar sheet
and the fold hints on it. The magnitude and sharpness of a
fold hint are mapped to the stroke color and thickness: red
represents a large positive magnitude, blue represents a large
negative magnitude, and green represents a small magnitude.
A thin stroke represents a sharp fold and a thick stroke rep-
resents a soft fold. The user can control the magnitude and
sharpness using slider bars, while the folded shape is updat-
ed in a 3D view at an interactive speed.

4. Algorithm

The pipeline of our algorithm is illustrated in Fig. 6. We im-
plemented the workflow in Fig. 2 by discretizing the input
planar sheet into a triangular mesh, and computing the fold
field and folded shape for the mesh.

First, the planar shape is triangulated using 2D conforming-
constrained Delaunay triangulation, in which the border
curves of the planar shape and the fold hints are set as

input meshing

global folding 

output

soft folding
physical simulation

(optional)

fold field generation 

Figure 6: Algorithm pipeline of soft folding. The fold field is
visualized as a flow field here.
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Figure 7: Diffusing a sharp fold hint’s fold angle leads to a
soft fold hint. (a) A line folding illustration. (b) A box filter
is applied to large fold angles (show in red) and the diffused
fold angles (shown in yellow) leads to a soft fold of a plane.

the constraints of the triangulation. Vertices on the user-
specified fold curves are called constraint vertices, and un-
constraint vertices otherwise. After meshing, the algorithm
for soft folding is broken down into two parts: fold field gen-
eration and global folding.

4.1. Fold Field Generation

The goal of this stage is to find a folding operation field on
the input planar mesh that reflects the fold map. Folding op-
erations are stored on mesh vertices in our discretization. We
first compute a fold field for each fold hint and then blend
them together as the fold field of the input fold map.

Defining a fold field from a sharp fold hint is straightfor-
ward. If vertex i is on the sharp fold hint, its fold direction
is initialized as its tangent on the fold hint and its fold an-
gle is initialized as half of the user-specified fold magnitude.
Otherwise, its fold angle is set to zero.

We diffuse the fold angle when dealing with a soft fold hin-
t. As illustrated in Fig. 7a, by diffusing a fold angle distri-
bution θ(t) = θ̄ χ{t=t1}(t) (χA(t) = 1 when A holds, other-
wise χA(t) = 0) into a distribution θ(t) which is supported
in [t0, t2] such that

∫ t2
t0 θ(t)dt = θ̄ holds, we are expected to

get a soft fold with a fold magnitude θ̄ along the curve seg-
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ment l(t) : t ∈ [t0, t2]. In our implementation, a box filter is
applied to smooth the fold angles from a sharp fold hint.
When folding a planar sheet, we run a box filter to compute
the fold angle on each vertex. The fold direction of vertex
i is set as the tangent direction of its projection on the fold
hint.

Having got fold fields from each fold hint, we sum them up
to obtain a fold field corresponding to the input fold map. We
apply fold summation if an unconstrained vertex is shared by
more than one fold hints. Fold summation is local and fast
because the nonlinear optimization solved in Eqn. 2 only has
two variables. Trust region method is used in our system. We
uniformly sample points in [0,π)× [− π

2 ,
π
2 ] as initial guess-

es, and pick the optimized result with minimal summed fold
difference as the blended folding operation. In our imple-
mentation, we use n×n samples when summing up n folding
operations.

Implementation Details By setting a maximum width d,
we map the sharpness s of a fold hint into a distance (1−s)d.
When implementing a box filter on mesh, we first get a
fold region by offsetting the fold hint curve with distance
(1 − s)d. A breadth-first search from the fold hint is run
to find triangles covered by this region. Suppose the area
of triangle j is A j and the area of its overlap with the
fold region is A′

j, we weight vertex i in the fold region by
ωi = ∑ j∈Ni

A′
i/∑ j∈Ni

Ai, where Ni is the neighboring trian-
gles of vertex i. Since the integral of the fold angles Θ should
be invariant after applying a box filter, we compute it in ad-
vance by summing up fold angles on the fold hint. The fold
angle of vertex i is finally determined by ωiΘ

∑i ωi
. Other ver-

tices’ fold angles are set to zero, keeping the fold field faith-
ful to the user input. After fold field summation, we also tried
smoothing the folding operations in overlapped fold regions
by using the fold difference (Eqn. 1). But in our experiments,
we find folded shapes are quite similar before and after this
smoothing. Therefore, only fold summations are executed in
our implementation.

4.2. Global Folding

The proposed system defines a local folding operation Fαi,θi

for each vertex i. In our discrete setting, we use the one-ring
neighborhood of vertex i as the domain of the fold operation
Fαi,θi . The image of Fαi,θi is called the local fold of vertex
i. Note that fold directions are not required to be aligned
with mesh edges. The meshed structure is only used to find
neighboring vertices, whose geometry is transformed by lo-
cal folding and used to reconstruct their global position.

The objective at this stage is to find a shape such that for each
vertex i, its neighborhood approximates its local fold. This
is a local-to-global deformation problem. We adapt LRIC-
based mesh deformation [LSLCO05] to efficiently assemble
the local folds for a global folding. Fig. 8 illustrates global
folding.
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Figure 8: Global folding. (a) A 2D illustration. (b) Locally
assembling two 3D local folds. The overlapped wedge region
(shown in pink) fits two neighboring local folds.

Global folding involves two steps: encoding and reconstruc-
tion. Suppose each vertex vi is equipped with a frame Ci =
(Xi,Yi,Zi). Let v̄i and C̄i denote its position and frame on
the rest shape. In [LSLCO05], surface geometry is first lo-
cally encoded into relative local coordinates ci j and relative
rotations Qi j of neighboring frames, s.t v̄i − v̄ j = C̄ jci j and
C̄iQi j = C̄ j. In the reconstruction step, after the user speci-
fy positions and frames of several fixed vertices, the system
successively solves linear equations CiQi j = C j for frames
and vi−v j =C jci j for positions of free vertices. In our glob-
al folding stage, we particularly adapt the encoding step. Lo-
cal folds are used in our system. Assume the folding opera-
tion on vertex i is Fi, the encoded local coordinates are com-
puted as ci j = C̄T

j (Fj(v̄i)− v̄ j). For computing relative rota-
tions, we first locally assemble neighboring folded patches,
as shown in Fig. 8b. Specifically, shape matching from the
overlapped wedge region in the local fold of vertex j to the
local fold of vertex i is applied, see [MHTG05] for more
details on the shape-matching operation. After the best-fit
rotation matrix Ri j is obtained, relative rotations are com-
puted as Qi j = C̄T

i Ri jC̄ j. While folding planar shapes, we
simply set frame C̄i on the rest planar shape to be the iden-
tity matrix. Therefore, Qi j = Ri j . Note that Qi j = QT

ji does
not always holds, since the folding operations Fi and Fj may
be different.

Because we globally solve for the folded geometry, the user-
defined magnitude and sharpness may not exactly match
with the folds appearing in the final 3D geometry. Complex
interactions occur among all of the fold hints.

Implementation Details In the reconstruction step of glob-
al folding, we can obtain the folded geometry by solving t-
wo sparse linear systems. Given that the sparse matrix in the
vertex-solving step (solve vi −v j =C jci j for all vertices) is
computed from the triangulation of the rest shape, we can
pre-compute its inverse after meshing. As for the matrix in
the frame-solving step (solve CiQi j = C j for all frames), its
sparse structure is only dependent on the triangulation, while
its nonzero entry is computed from the fold field. Therefore,
we can pre-compute its symbolic factorization after mesh-
ing, which is reused to accelerate the numerical factorization
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when the fold parameters are adjusted. We also fix the posi-
tion and frame of the vertex at the center of the material in
global folding and eliminate it from linear systems to make
them have unique least-square solutions.

Intersected Fold Hints When two or more fold
hints intersect at vertex v, we make an infinite s-
mall hole around this vertex, as show in the inset.

f1 f2

v

f1 f2
v1 v2
v3
v4v5

v6

A similar method is used in
[AJC11]. Assume the degree of
vertex v is d after meshing. We du-
plicate the intersected vertex into
d copies and add d virtual edges
(shown in grey). After this dupli-
cation, they will have unique fold-
ing operations according to their
own fold hints. In the global folding
stage, though the duplicated ver-
tices share the same geometry in
the rest sheet, they may have differ-
ent frames and folded positions since they do not share the
same neighbors. We average the positions of those duplicat-
ed vertices as the position of v after global folding.

4.3. Post-processing

A notable characteristic of physical developable surface be-
havior is stress concentration. High stress appears at very
limited regions and exhibits fold lines. Our algorithm is es-
sentially a diffusion process and cannot produce new stress
concentration, which might be inaccurate if we see it as a
physical simulation process. However, in our framework, we
expect that users explicitly specify stress concentration as
fold lines. So it is desirable not to produce new stress con-
centration in other places if we see it as a design tool.

If users need to obtain more realistic results, an optional
physical simulation can be applied as a post-processing step.
However, it is not trivial to compute forces that can repro-
duce user-specified folds. Therefore, we developed a variant
of physical simulation based on shape matching [MHTG05]
to refine the folded shape. Simply applying a simulation
based on shape matching will make the folded result flat a-
gain. Our solution is to reuse the local fold derived from the
fold field as the rest shape. Specifically, we minimize

∑
k

∑
i∈N(k)

||vi −RkFk(v̄i)||2,

where N(k) is the one-ring neighborhood of vertex k, Rk is
the best transformation which fits the local fold of N(k) to
its deformed shape, and FK is the folding operation at vertex
k. We use standard dynamics in [MHTG05] to optimize this
nonlinear energy.

Note that the physical simulation is nonlinear and too slow
to globally fold a planar sheet from the beginning. It iter-
atively updates vertex positions by computing local forces

Figure 9: Top row: From left to right, thin plate forms from
increased fold magnitudes. Bottom row: From left to right,
thin plate forms (inspired by David Huffman’s design) from
decreased fold sharpness.

Figure 10: Folding sheets with different materials can be
modeled by varying fold sharpness.

and it takes time to obtain a folded shape especially when
the fold magnitude is large. We therefore use a linear geo-
metric algorithm to quickly obtain a good approximation of
the globally folded shape to support interactive exploration
of thin-plate forms. A physical simulation can be completed
at a higher resolution to optimize the result when users are
satisfied with the designed form.

5. Results

We show thin-plate forms designed by soft folding in this
section. Subfigures embedded in each figure visualize the in-
put fold maps. Note that traditional click-and-drag interface
is ineffective to model most of these shapes.

5.1. Experimental Results and Comparisons

Both straight folds and curved folds that are either soft or
sharp are supported by soft folding, as shown in Fig. 9. Be-
sides, users can interactively explore thin-plate forms’ vari-
ants by adjusting fold magnitude (Fig. 9 top) or fold sharp-
ness (Fig. 9 bottom).

Fig. 10 shows an example with intersected fold hints. By
constraining maximum fold sharpness, soft folding can be
used to design shapes with materials that are hard to bend.

Traditional origami intensively studies fold patterns’ layout.
In addition to their layouts, soft folding also provides an in-
teractive tool for studying fold angles in origami. Fig. 11 left
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Figure #V #F #CV pre-processing fold field generation global folding
9 top left 487 908 56 70ms 1ms 74ms

9 bottom right 407 749 79 61ms 3ms 65ms
10 left 1187 2252 207 140ms 0.2ms 161ms

10 right 1187 2252 207 140ms 1ms 163ms
11 top right 970 1842 171 134ms 0.1ms 167ms

11 bottom right 970 1842 171 187ms 7ms 274ms
11 left 1960 3834 672 322ms 0.4ms 496ms

Table 1: Model statistics and timings of soft folding. #V, #F, and #CV represent the number of vertices, faces, and constraint
vertices, respectively. All timings were measured on a laptop with a 2.8GHz CPU, 4Gb RAM.

Figure 11: Two origami results modeled by soft folding.

Figure 12: Thin-plate forms designed by soft folding with
varying mesh resolutions.

shows an origami bud design. We use the 2D layout designed
by Jeannine Mosely and generate a folded shape with spec-
ified fold magnitudes. When a fold map in soft folding is a
valid fold pattern in origami, plausible folded shapes can be
created. The top right shape in Fig. 11 gives a thin-plate form
designed from the water-bomb pattern in origami. Besides,
we can further estimate the folded shape if the same pattern
with soft folds is applied, as shown in the bottom right in
Fig. 11. By gradually changing fold magnitudes, soft fold-
ing can also be used to generate animations for non-rigid
origami.

Soft folding is not sensitive to varying resolutions, as shown
in Fig. 12. Therefore, we can use soft folding on a low reso-
lution mesh to quickly explore shape variants. Table. 1 lists
statistics of examples modeled by soft folding in Fig. 9, 10
and 11.

As for post-processing, the nonlinear physical simulation
proposed in Sec. 4.3 on a higher resolution mesh can be
applied if more realistic and detailed results are required.

Gauß curvature Gauß curvature

stretch stretch 

GaGaGa

Figure 13: A thin-plate form designed by soft folding with-
out (left) and with (right) post-processing.

Figure 14: Thin-plate forms designed by soft folding(left).
Their nonlinear physical simulation results with (middle)
and without (right) soft folding as initialization.

Fig. 13 shows the effect of physical simulation. We visu-
alize the stretch and developablity as a color map on the
shapes. Stretch is measured based on an area-weighted av-
erage of ARAP distortion [MZ12], and developability error
is measured based on an area-weighted average of discrete
Gauß curvature [Gri06]. From Fig. 13, we can see that the
designed forms from soft folding are almost developable ex-
cept on the fold curves. Physical simulation introduces ex-
tra wrinkles on the folded shape to drastically reduce the
stretch of the folded shape. Fig. 13 also shows that soft fold-
ing works on planar sheets with holes.

Soft folding provides good initialization for nonlinear phys-
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Figure #V #F #CV averK maxK averS maxS timing
13 926 1725 116 6.3e-3(5.2e-3) 0.12(0.11) 3.9e-4(0.9e-3) 6.0e-3(1.4e-1) 4.0s

14 top 520 953 71 2.4e-2(5.2e-2) 0.38(0.92) 2.28e-3(3.75e-2) 7.9e-2(2.4e-1) 1.7s
14 bottom 2471 4697 511 9.1e-3(1.0e-2) 0.23(0.26) 5.1e-4(6.0e-3) 1.8e-2(8.2e-1) 8.3s

Table 2: Statistics of post-processing. Average absolute Guaß curvature(averK), maximum absolute Guaß curvature(maxK),
average stretch(averS) and maximum sketch(maxS) after and before(data in bracket) post-processing are given. Timings for
post-processing are measured in seconds.

Figure 15: Several shapes from [SVWG12] and [KFC∗08]
are reproduced by soft folding.

ical simulation as shown in Fig. 14 middle. The global fold-
ing effects disappear if simply using unfolded 2D shapes as
initialization (Fig. 14 right). A correct way to apply nonlin-
ear physical simulation on unfolded 2D shapes is to divide
the folding operation into small time steps. However, it is
computationally expensive and not suitable for design explo-
ration. Statistics on the effects of post-processing are listed
in Table 2.

Several results in [SVWG12] and [KFC∗08] are reproduced
by soft folding in Fig. 15. Though soft folding does not guar-
antee generating developable surfaces, similar shapes are
quickly produced at a tradeoff of perfect developablity. The
nonlinear optimization techniques in [KFC∗08] can be used
to optimize the results from soft folding if piecewise devel-
opable surfaces are desired. Besides, the fold pattern regu-
larization introduced in [SVWG12] can be considered as a
pre-processing tool to correct invalid input fold maps when
all fold hints are sharp and connected.

5.2. Extensions

Adding Linear Constraints Two linear systems are solved
to recover the geometry of folded shapes in the global fold-
ing stage (Sec.4.2). Therefore, we can further add linear con-
straints in the linear systems to model other effects. For ex-
ample, snapping two vertices vi and v j in the folded shape
can be modeled by adding a hard constraint vi = v j. After
eliminating variables from those linear constraints, we can
get folded shapes with stitched vertices, as shown in Fig. 16.

Folding Curved Surfaces Though our fold operations are
defined on planar shapes, we tested them on curved surfaces.
Specifically, we first import a curved shape and parameter-
ize it. The input fold map is then drawn on its parametric

Figure 16: Thin-plate forms designed by adding linear con-
straints in soft folding. Stitching edges are color-coded on
the 2D patch boundary.

Figure 17: A mask model (left) and buckling effects on a
trouser leg (right) designed by soft folding on curved sur-
faces.

domain. After generating a fold field on the parametric do-
main, the folded shape is finally computed by replacing the
flat unfolded shape with the predefined curved surface in the
global folding stage(sec.4.2). Soft folding shows its possi-
bility in folding curved surfaces, as shown in Fig. 17. By
using the folded shape in Fig. 16 left as the rest shape and
a complex fold pattern reproduced by referring Roy Iwaki’s
design [Iwa00], we generate a mask model in the left. In the
right figure, buckling effects are modeled by drawing soft
curved folds on a cylindric rest shape.

6. Limitation and Future Work

As a design and exploration tool for thin-plate forms, soft
folding does not guarantee perfect developability. At fine s-
cale, soft folding tends to smooth out sharp features, while
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Figure 18: Left: A thin-plate form designed by soft folding
from an inappropriate fold pattern. Right: Extra wrinkles ap-
pear after physical simulation.

in physics they’re unavoidable due to stress concentration.
Though designed forms from soft folding can be further op-
timized to piecewise developable surfaces, it remains chal-
lenging to effectively model developable surfaces. Besides,
our computational model is essentially based on a heuris-
tic though various experiments verifies the proposed system.
We are also going to theoretically analyze our computational
model in the future.

In the current implementation, folded shapes are directly re-
constructed from fold fields without considering collisions,
making it possible to cause self-intersections. Generating a
collision-free fold field will be an interesting research topic
for future work.

Soft folding bridges origami and thin-shell simulation. An-
other research avenue will be developing algorithms incor-
porating origami theory. A study from origami theory may
further improve thin-plate form design by correcting input
fold maps. Our current user interface does not provide mech-
anisms to prevent users from drawing inappropriate inputs,
such as the one shown in Fig. 18. Though soft folding strives
to create a folded shape that has relative lower stretch ener-
gy and better developability even if bad inputs are provided,
unrealistic shapes are still unavoidable because soft folding
keeps faithful to the user inputs. A study from the wrinkles
generated from physical simulation (Fig. 18 right) may also
benefit researches in origami.

Finally, instead of using constrained Delaunay triangulation,
anisotropic Delaunay meshing guided by the fold field is
expected to further improve the modeling system [NPO13].
One challenge here is to design fast anisotropic meshing al-
gorithms for this interactive system. Another future line of
research will be a theoretical study of fold fields on curved
surfaces. Our experiments show the possibility to extend soft
folding for folding curved surfaces. It may be even possible
to extend our system to simulate general deformation with a
new user interface.
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Appendix A:

Here we derive the fold difference of two folding operations
Fα,θ and Fᾱ,θ̄ on vertex v. We make a disk centered at v as
the domain D of the folding operations. Using a polar coor-
dinate system with v as its origin, the folded shape Sα,θ (r,β )
from Fα,θ has a parametric form

Sα,θ (r,β ) = r

 cosα cos(β −α)− sinα sin(β −α)cosθ
sinα cos(β −α)+ cosα sin(β −α)cosθ

|sin(β −α)|sinθ



Considering a neighboring patch with radius ε , the L2 dis-
tance between Sα,θ (r,β ) and Sᾱ,θ̄ (r,β ) is∫ π

−π

∫ ε

0
||Sα,θ (r,β )−Sᾱ,θ̄ (r,β )||

2drdβ .

Substituting the parametric equation of Sα,θ (r,β ), this L2

distance can be represented in an explicit form

4
3

ε3d
(

Fα,θ ,Fᾱ,θ̄

)
where d(Fα,θ ,Fᾱ,θ̄ ) is written in Eqn. 1.

Having got the formulation Eqn. 1, the following properties
of our proposed formulations for fold difference and fold
summation can be verified:

• d(Fα,θ ,Fᾱ,θ̄ ) ≥ 0. when θ ̸= 0, d(Fα,θ , Fᾱ,θ̄ ) = 0 if and
only if α = ᾱ and θ = θ̄ .

• d(Fα,θ ,Fᾱ,θ̄ ) is independent of α and ᾱ when θ̄ = 0.

• When α = ᾱ , it is true that Fα,θ + Fα,θ̄ = Fα,(θ̄+θ)/2;
When θ̄ = 0, Fα,θ +Fᾱ,0 = Fα,θ/2 holds.

Since a folding operation can be decomposed into two rota-
tions of angle ±θ along fold direction α , blending rotations
might be another choice to sum up folding operations. We
tested quaternion blending techniques by treating Fα,θ as a
rotation Rα,θ . Similar summed folding operations are ob-
tained except when the difference of two folding directions
are near π . For example, R0◦,90◦ +R170◦,90◦ = R85◦,10◦ , while
F0◦,90◦ +F170◦,90◦ = F175◦,89.6◦ . The blended folding better
preserves the user input by using the proposed fold sum-
mation. Though our formulation for fold summation work-
s well, it is still possible to derive other formulations from
a study of blending rotations. To help understanding fold
summation, two fold field summations are supplemented in
Fig. 19.

+

+ +

=

=

Figure 19: From up to bottom: close-ups of fold field sum-
mations in Fig. 16 left and 11 bottom right . Fold fields are
visualized as flow fields, in which the line integral convolu-
tion shows fold directions and the background color visual-
izes fold angles.
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