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Summary: We developed a set of Grasshopper components which enables interactive physics simulation based on the finite element method (FEM). 
We named this add-on Ricecooker. As a computational method, it is an explicit nonlinear FEM solver that can treat material and geometric 
nonlinearities. Unlike the usual FEM software, various parameters such as weight coefficients, material coefficients, and the coordinates of the fixed 
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also defined b using the provided components, and the constraint values such as the lengths of rigid bars can be also changed during a computation. 
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1. INTRODUCTION 

Recently, in the field of architectural design, some architects radically 
challenge to highly complex geometries. With no doubt, this is based on 
the advancement of the construction technologies, decreasing initial 
implementation cost of machine tools that are used for rapid prototyping 
such as 3D printers and laser cutters, and some other innovations related 
to the digital fabrication. With this new stream, the combination of the 
Rhinoceros ® (Fig. 1) and Grasshopper ® (GH) (Fig. 2) is used by 
preference in architectural design processes, especially in the very early 
stages. 

The Rhinoceros is a commercial CAD software which is specialized in 
NURBS-based modeling but also supports various geometry types such 
as mesh surfaces and three-dimensional solids. The GH is an add-on for 
the Rhinoceros that allows us a component-based generative modeling. 
With GH, we can define a complex rule to generate geometries just by 
visually connecting components provided. Still, only few engineers are 
using the GH because the GH only supports geometric manipulations 
and the engineers are specialized in at least one theorem related to 
physics, e.g. mechanics, illumination, and thermodynamics. 

Incidentally, the GH allows us to develop custom components. We 
believe that the GH custom components are ideal for engineers from 
some reasons as a platform to quickly implement our special 
computational methods. First, from inside a GH custom component, the 
developer can access to all the geometry definitions and geometric 
manipulations provided by the Rhinoceros. Second, the user-interface 
provided with a GH custom component is always common with the GH 
standard components. This means that a GH custom component is 
always very friendly with architects who have been already familiar with 
the GH operations. Finally, because the GH custom components are 
described by C#, old Fortran subroutines can be called from them via 
C++ wrapping codes. The old Fortran subroutines are indeed obsolete 
but we still need them in some specific cases. Consequently, we claim 
that the position of the GH custom components is just on the boundary 
between the engineer’s and architect’s sides and hence we expect that 
the GH custom components written by engineers can bridge the 
engineer’s works and the architect’s works. The Kangaroo [1] and the 
Ladybug [2] are known as the pioneers of such custom components that 
provides engineering functionalities but are mainly used by architects. 

In this paper, we explain Ricecooker [3] (Fig. 3), which is a set of 
custom GH components developed by us. This enables interactive 
exploration of shapes in equilibrium. For example, both shape-finding 
problems in tension structures and large-deformation problems in hyper-
elastic solids can be solved by using the Ricecooker. This functionality 
is quite similar to that provided by the Kangaroo indeed, but our 
components are directly connected to the finite element method (FEM). 
Even though there is a gap between the Kangaroo and FEM, this gap can 
be filled up because the Kangaroo is classified as a component that is 
based on the Dynamic Relaxation (DR) method [4] and the DR method 
is potentially to be used as an explicit solver in an FEM.  

One might compare the Ricecooker with physics simulation engines that 
are built in some commercial three-dimensional modelling software such 
as Maya ® and 3D Studio Max ®. As described above, the major 
difference of our component with those is that the theoretical accuracy 
of the solutions is guaranteed by the FEM and quadrilateral and brick 
elements are provided. Note that in most physics simulation engines, 
only triangle and tetrahedron elements are supported. If it is compared to 
commercial FEM software, the Ricecooker is superior to them in that it 
provides an interactive change of various parameters in real-time. As an 
FEM, the Ricecooker is an explicit FEM solve that can  treat  geometric 
and material nonlinearities. 

 

 

Fig. 1  Rhinoceros® 

 

 

Fig. 2 Grasshopper® 
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Fig. 3 Ricecooker (Developed by us) 

 

2. IMPLEMENTATIONS 

2.1. Material and gravity definitions 

 

Because the Grasshopper has a component-based architecture, most 
components developed by us require inputting a material and gravity 
definitions. Both are provided in the form of components as shown in 
Fig. 4. Because these definitions are dimension-free, if they are input to 
a three-dimensional element such as a tetrahedron or a brick element, 
they automatically calculate an integral over a three-dimensional domain 
numerically and if they are input to a two-dimensional element such as a 
triangle or a quadrilateral element, an integral over a two-dimensional 
domain is numerically computed and so on. 

As shown in Fig. 4 (a), the Ricecooker has four hyper-elastic material 
definitions. The three of them are the typical hyper-elastic materials, St. 
Venant solid, Neo-Hookean solid and Mooney-Rivling solid. Parameters 
in such materials such as the Young’s modulus and the Poisson’s ratio 
can be changed by a user during an iterative computation. The last 
material is a special material that can be used for shape-finding analyses 
of lightweight tension structures. If this material definition is input to 
one-dimensional elements, such as line  elements 

 ∑ ௝ܮ௝ݓ
௣ሺ࢞ሻ௝  (1) 

is added to the total strain energy function, where ݓ௝  and ܮ௝  are a 
weight coefficient (a real value) and  the length of the j-th line element 
respectively, and p is the power. Both ݓ௝ and p can be changed during 
an iterative computation. We agree that one might think that p=2 is 
always used but we think that a number that is greater than 2 such as 4 is 
sometimes useful in shape-finding analyses. The first author this paper 
once reported such examples, in which p=4 works better than p=2 [5]. 
When this material definition is input to two-dimensional elements such 
as triangle and quadrilateral elements,  

 ∑ ௝ݓ ௝ܵ
௣ሺ࢞ሻ௝  (2) 

is added to the total strain energy function, where ௝ܵ  is the area of the j-
th triangle or quadrilateral element. When p is set to 1, the sum of the 
element areas is minimized and then, a discrete minimal surface would 
be obtained. Even this works fine, the solution is not unique because if a 

node moves along the surface, the total surface area does not change. To 
let the solution be unique, p > 1 can be used. From our experience, even 
if we set p to 2, the obtained solution seems to be always sufficiently 
close to a minimal surface. 

As shown in Fig. 4 (b), the Ricecooker has three gravity definitions. The 
first one is used to just ignore the effect of gravity. The “normalGravity” 
is used in most cases, in which the volume force is proportional to the 
material density. In a large-deformation analyses of hyper-elastic bodies, 
the material density may change as the elements deform. However, in 
form-finding analyses, the material density should not change as the 
elements deform. In such a case, the “formfindingGravity” can be used 
instead. Because these gravity definitions are also dimension-free, a 
surface load can be easily defined by a combination of the 
“normalGravity” component and two-dimensional elements such as 
triangle and quadrilateral elements. 

2.2. Elements 

The Ricecooker supports two different types of elements. The first ones 
are first order elements such as line, triangle and tetrahedron elements. 
We call this group as simplex elements. The second ones are second 
order isoparametric elements such as line, quadrilateral and brick 
elements. An element in the first group has only one integrating point. 
An element in the second group has 3, 9, or 27 integrating points. 

Most components provided with the Ricecooker are to generate elements 
automatically based on the input geometries and some parameters. For 
example, a “four nodes to quadrilateral elements” component shown in 
Fig. 5 has four point type objects, two integer numbers and the 
aforementioned material and gravity definitions as input parameters. 
Then, the component distributes quadrilateral (two-dimensional 
isoparametric) elements between the input points based on the specified 
integer numbers. The material and gravity definitions are connected to 
all the elements generated by the component. The interpolating function 
used is the same shape functions used in the isoparametric elements. 

Fig. 6 shows another typical component that generates brick elements 
based on 8 point type objects input to the component. 

 

 

 

           

  (a) Material definitions          (b) Gravity definitions 

Fig. 4 Material and gravity definitions 

 

Fig. 5  A typical component provided with the Ricecooker 

 

Fig. 6  Another typical component provided with the Ricecooker 
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2.3. Rigid constraint conditions 

The Ricecooker can constrain a length, a area or a volume of an element 
to a specific value. This constraint value can be changed during an 
iterative computation. The Ricecooker can also constrain a sum of 
element lengths, element areas, or element volumes. Currently, only 
components that can constrain lengths are provided. In Fig. 7, a 
component that can constrain a distance between two points and a 
component that can constrain the total length of a polyline are shown. 
The lengths can be changed during an iterative computation. 

 

 

2.4. Main loop 

 

Every component that generates finite elements outputs a particle system 
(denoted by pS). All the particle systems output from components must 
be connected to a “Mainloop” component so that the Ricecooker can 
gather all information about finite elements (Fig. 8). The GH does not 
support iterative computations originally but a user can connect a Timer 
component to the Mainloop component so that one cycle defined in the 
Mainloop component is called repeatedly. 

In the context menu of a Mainloop component, there is a menu named 
“Go”. When it is hit, the one cycle is called iteratively by the Timer. The 
one cycle is one step of a simple Dynamic Relaxation (DR) method [4]. 
It is important that at the end of each one cycle, the current shape of the 
model under computation is displayed by Rhinoceros. In order to solve 
equality constraint conditions, we extended the DR method. In the 
extension, we use a Moore-Penrose type pseudo inverse matrix twice in 
each step of the DR method. The detail of this technique is excluded 
from this paper, because it is under submitting to a journal but its basic 
idea is similar to the multiplier estimate used in the projected gradient 
method [5]. In other words, even though the projected gradient method 
does not usually refer to Lagrange multipliers, the projected gradient 

method can be redefined as a steepest descent method in which 
Lagrange multipliers are estimated in each step by using the pseudo 
inverse matrices. 

Because the DR method is based on the Newtonian mechanics, when the 
hysteresis of convergence is visualized in real-time, it is likely a real 
object moving based on the laws of physics such that users may feel 
comfortable when using the Ricecooker. Besides, although the 
convergence rate of the DR method is not very high, the computational 
cost of one cycle is considerably low or almost minimum in various 
computational schemes; hence the DR method is a suitable choice to 
develop an interactive interface that allows changing parameters in real-
time. 

 

2.5. Controllable parameters 

During an iterative computation, some parameters in the material and 
gravity definitions can be changed via sliders as shown in Fig. 9. Also, a 
user can fix some nodes by using some specific components provided 
and such fixed nodes can be moved by a mouse operation during an 
iterative computation as shown in Fig. 10. 

 
 

 
 

3. EXAMPLES 

When a curve is approximated by a set of line elements and their lengths 
are constrained to an equal value and an equally distributed nodal forces 
is applied to it, a discrete catenary can be obtained as shown in Fig. 11. 
During a computation, the lengths of the line elements and the 
coordinated of fixed nodes (both ends) can be changed interactively in 
real-time. 

Fig. 12 shows an iterative computation to find a shape of minimal 
surface under constraint conditions. It is known that a soap film always 
minimizes its surface area and the shape of a soap film between two 
circles is known as catenoids. In Fig. 12, 8 strings of which lengths are 
constrained are installed to a minimal surface such that the obtained 

Fig. 7  Constraint conditions 

Fig. 8  A Mainloop component and particle systems 

 

Fig. 9  Parameters 

 

Fig. 10  Moving fixed nodes 
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surface is a minimal surface but a minimal surface under constraint 
conditions and it is different from catenoids (In Japan, this is described 
by K. Kawaguchi in [7]). 

Fig. 13 shows a parameter study of a tensioned membrane structure, 
Tanzbrunnen Koln. In this analysis, the lengths of the rigid bars were 
treated as constraint conditions and each length can be changed during a 
computation. 

Fig. 14 shows a large-deformation analysis of a Neo-Hookean solid. A 
equally distributed surface load is applied on top of the cube and its 
magnitude could be changed interactively during the computation in 
real-time. 

4. SUMMARY 

We described a set of custom Grasshopper components developed by us, 
the Ricecooker. This allows us doing physics simulation in a CAD 
software and in which continuum mechanics and nonlinear materials are 
fully considered. The Ricecooker is based on the nonlinear FEM and 
geometric and material nonlinearities can be treated. Additionally, 
without terminating computation, a user can change various parameters 
interactively in real-time such that the user can study various possible 
shapes that are in equilibrium. These characteristics are the major 
advantage to the conventional FEM software. By using the Ricecooker, 
shap-findings of catenaries, minimal surfaces, and tension structures, 
and large-deformation analyses of hyper elastic bodies can be performed. 
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APPENDIX A. FORMULATIONS 

In this section, we briefly describe the FEM formulations used by us. 

A.1 Shape and displacement 

Let us compose an n-dimensional column vector from all the x, y, and z 
coordinates of the nodes in a deformed configuration as 

࢞  ൌ ሾݔଵ  ௡ሿ். (3)ݔ⋯

We do not eliminate the coordinates of the fixed nodes from x. Bothe 
coordinates of free and fixed nodes are contained in x. Similarly, we 
pack all the coordinates of the nodes in a reference configuration as 

ഥ࢞  ൌ ሾ̅ݔଵ ⋯  ௡ሿ். (4)ݔ̅

In this paper, a ⋅ ̅put on a symbol indicates that the symbol is treated as a 
constant and does not subject differentiation. Normally, an undeformed 
state is chosen as the reference configuration, on which the stress tensor 
field vanishes. A displacement vector field is defined by ࢛ ൌ ࢞ െ  .ഥ࢞
Only two of ሼ࢞ഥ, ,࢞ ,ഥ࢞ሽ are independent and we choose ሼ࢛  ሽ consistently࢞
although ሼ࢞ഥ, ሽ࢛  is chosen in many textbooks. This is because we 
consider the shape itself as the unknown variable. 

We implemented two different types of elements. The first ones are first 
order elements such as line, triangle and tetrahedron elements (Fig. 15 
(a)). We call this group as simplex elements. The second ones are 
second order isoparametric elements such as line, quadrilateral and brick 
elements (Fig. 15 (b)). An element in the first group has only one 

  

Fig. 11 Shape-finding of a catenary 

 

Fig. 12 A minimal surface under constraint conditions 

  

Fig. 13 Shape-finding of the Tanzbrunnen Koln 

 

Fig. 14 Large-deformation analysis of a hyper-elastic solid 
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integrating point. An element in the second group has 3, 9, or 27 
integrating points. 

Let ܺ ൌ ሺߠଵ,⋯ , ேሻߠ  be the local coordinate of a point on an N-
dimensional element. Let ࢘ ൌ ሾݔ	ݕ	ݖሿ் be the global coordinate (three-
dimensional Cartesian coordinate) of the point X. For either a simplex 
element or an isoparametric element, we can write 

ሺܺሻ࢘  ൌ  (5) ,࢞ሺܺሻࡺ

where ࡺሺܺሻ  is a 3ൈn sparse matrix that is a composition of shape 
functions. The global coordinate of a point 	ܺ  in the reference 
configuration can be also represented in the same manner as 

തሺܺሻ࢘  ൌ  ഥ. (6)࢞ሺܺሻࡺ

In either the simplex elements or the isoparametric elements, we use 
embedded coordinate system so that the integral domain does not change 
during deformation and some tensors such as the Green-Lagrange strain 
become simpler forms. 

 

A.2 Riemannian metric and Green-Lagrange strain 

On a point ܺ ൌ ሺߠଵ,⋯ ,  ேሻ in an element, the covariant base vectorsߠ
adjunct with the local coordinate system can be computed by 

	 ௜ሺܺሻࢍ ൌ 	,࢞௜࡯ ሺ7ሻ	

where 

௜ሺܺሻ࡯  ൌ ∂௜ࡺ.	 ሺ8ሻ 

On each point in the element, a Riemannian metric, which is an NൈN 
symmetric matrix, is computed by 

	 ௜݃௝ ൌ 	,࢞௜௝࡮்࢞ ሺ7ሻ 

where 	࡮௜௝ ൌ
ଵ

ଶ
൫࡯௜

௝࡯் ൅ ௝࡯
 ௜൯. In the following, we use the Einstein࡯்

summation convention. Additionally, we regard 	 ௜݃௝ as representing the 
matrix itself as well as its (i, j) component. In the reference 
configuration, the Riemannian metric is also computed by 

	 ݃̅௜௝ ൌ 	ഥ࢞௜௝࡮ഥ்࢞ ሺ9ሻ	

Let us define the inverse matrices of the Riemannian metrics by 

	 ݃௜௝ ൌ ൫ ௜݃௝൯
ିଵ
, ݃̅௜௝ ൌ ൫݃̅௜௝൯

ିଵ
.	 ሺ10ሻ 

Additionally, we define N-dimensional volume elements by  

	 dv୒ ൌ ඥdet ݃ఓఔ ଵߠ݀ 		and	,	ேߠ݀⋯ ሺ11ሻ	

	 dvത୒ ൌ ඥdet ݃̅ఓఔ ଵߠ݀ 	.ேߠ݀⋯ ሺ12ሻ	

A length, a area or a volume of the j-th element is given by 

	 ௝ݒ
ே ൌ ׬ dvே

ஐೕ
,	 ሺ13ሻ	

where	Ω௝	represents	 the	 integral	 domain	 of	 the	 j‐th	 element.	 The	
variation	of		ݒ௝

ே	is	given by 

	 ௝ݒߜ
ே ൌ

ଵ

ଶ
׬ ݃ఈఉ݃ߜఈఉஐౠ

dv୒,	 ሺ14ሻ 

where ߜ  is a variational operator. Here, we used an identity  

ඥdetߜ ݃ఓఔ ൌ
ଵ

ଶ
݃ఈఉ݃ߜఈఉඥdet ݃ఓఔ . By replacing 	݃ఈఉ  with general 

functions of ௜݃௝ 	and	݃̅௜௝, we get a general form of ݒߜ௝
ே and it is 

	 ௝ݓߜ
ே ൌ

ଵ

ଶ
׬ ܶఈఉ
ஐೕ

	,ఈఉdvே݃ߜ ሺ15ሻ 

where ܶఈఉ is a general function expressed in terms of  ൛ ௜݃௝, ݃̅௜௝, ݃௜௝, ݃̅௜௝ൟ. 
If we regard 	ܶఈఉ as a component of Cauchy stress tensor, 	ݓߜ௝ can be 
regarded as a virtual work done by the stress acting on the element. 
Actually, because the component of a Green-Lagrange strain tensor is 
expressed as 

	 ௜௝ܧ ൌ
ଵ

ଶ
ሺ ௜݃௝ െ ݃̅௜௝ሻ	,	 ሺ16ሻ	

we	 get	
ଵ

ଶ
ߜ ௜݃௝ ൌ δܧ௜௝ and by using the relation between ܶఈఉ and the 2nd  

Piola-Kirchhoff stress tensor 	ܵఈఉ 

	 ܵఈఉ ൌ ܶఈఉ ඥୢୣ୲௚ഋഌ

ඥୢୣ୲௚തഋഌ
,	 ሺ17ሻ	

we can rewrite ݓߜ௝
ே as 

௝ݓߜ 
ே ൌ ׬ ܵఈఉ

ஐೕ
 ఈఉdvത୒. (18)ܧߜ

This is nothing but the elemental virtual work that repeatidly appears in 
the nonlinear FEM. 

When a function	݂൫ ௜݃௝, ݃̅௜௝൯ such that ܵఈఉ ൌ 2
ப௙

ப௚ഀഁ
 exists, we can write 

௝ݓߜ 
ே ൌ ߜ ቂ׬ ݂൫ ௜݃௝, ݃̅௜௝൯dvത୒ஐೕ

ቃ. (19) 

In this case, ݂൫ ௜݃௝, ݃̅௜௝൯ represents a strain energy density in the element. 
Normally, we start with Eq. (19) and derive Eq. (18). In this work, we 
started with Eq. (13) and derived Eq.  (15). Then, we use Eq. (15) 
consistently. This is because we take some problems into consideration 
that do not require setting up reference configurations. The minimal 
surface problem is representative of such problems. However, 
	ܶఈఉ൫ ௜݃௝, ݃̅௜௝൯ should be chosen as that strain energy density ݂൫ ௜݃௝, ݃̅௜௝൯ 
truly exists. Such materials that strain energy densities can be found are 
called hyper-elastic materials. We implemented St.Venant, Neo 
Hookean, and Mooney-Rivlin solids. Each of them can be explicitly 
expressed in terms of four matrices 		൛ ௜݃௝ , ݃̅௜௝, ݃௜௝, ݃̅௜௝ൟ.	 

A.3 Equivalent nodal force vector 

Let us define the gradient vector of a real-valued function of ࢞ by 

݂׏  ൌ ቂ
ப௙

ப௫భ
⋯

ப௙

ப௫೙
ቃ.	 ሺ20ሻ	

Then, the gradient vector of ௜݃௝ can be computed by 

׏  ௜݃௝ ൌ 	.௜௝࡮்࢞2 ሺ21ሻ	

An equivalent nodal force vector that can balance with the given Cauchy 
stress field can be obtained by just altering ߜ  with ׏ in ݓߜே and it is 
expressed as 

 ௝࣓ሺ࢞ሻ ൌ
ଵ

ଶ
׬ ܶఈఉ
ஐೕ

	.ఈఉdv୒݃׏ ሺ22ሻ 

In general, Eq.  (22) cannot be computed analytically and hence the 
Gaussian quadrature is commonly used. The numerically approximated 
௝࣓ሺ࢞ሻ obtained by the Gaussian quadrature is  

 ෥࣓௝ሺ࢞ሻ ൌ
ଵ

ଶ
∑ ߶௎ൣܶఈఉ݃׏ఈఉඥdet ݃ఓఔ൧௎ ሺ௝,ூೆሻ

,	 ሺ23ሻ 

Fig. 15 Elements (local coordinates are represented with () and 
node indices are represented with ○) 
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where U and  ߶௎ are the index of an integrating point and its weight 
coefficient. Additionally, ሾ∘ሿሺ௝,ூೆሻ represents the value inside the square 
brackets at the U-th integrating point in the j-th element.  

A.4 Geometric and material nonlinearities 

Let us examine the 2nd order derivatives of ݃ఈఉ in order to clarify what 
kind of nonlinearities are considered. 

First, we rewrite ෥࣓௝ as 

	 ෥࣓௝ሺ࢞ሻ ൌ
ଵ

ଶ
∑ ߶௎ൣܵఈఉ݃׏ఈఉඥdet ݃̅ఓఔ൧௎ ሺ௝,ூೆሻ

	 ሺ24ሻ	

Second, ෥࣓௝ሺ࢞ሻ is differentiated and we get 

	 ׏ ෥࣓௝ሺ࢞ሻ ൌ
ଵ

ଶ
∑ ߶௎ ൤൬ܵఈఉ׏ଶ݃ఈఉ ൅

பௌഀഁ

ப௚ംആ
ఊఎ்݃׏ ఈఉ൰ඥdet݃׏ ݃̅ఓఔ൨௎

ሺ௝,ூೆሻ
.	ሺ25ሻ	

Here, ׏ଶ݂ is the Hessian of a real-valued function ݂ሺ࢞ሻ. The ݃׏ఈఉ  is 
corresponding to a strain-displacement matrix in a linear FEM (often 

denoted by B). The 
பௌഀഁ

ப௚ംആ
 is corresponding to a stress-strain matrix (often 

denoted by D). As the result, the second term in 	ሾ ሿ is corresponding to 
the linear stiffness matrix often expressed by 	࡮ࡰ்࡮. In addition, the 
first term in 	ሾ ሿ  is nothing but the matrix that is called geometric 
stiffness matrix in the nonlinear FEM. This means that ׏෥࣓௝ሺ࢞ሻ  is 
nothing but the matrix that is called tangent stiffness matrix in the 
nonlinear FEM. Hence, if ෥࣓௝  is used, even though geometric stiffness 
matrix is not computed explicitly, it means that the geometric stiffness is 
taken into account. 

Additionally, because the ෥࣓௝  only contains ܵఈఉ  and does not contain  
பௌഀഁ

ப௚ംആ
, ܵఈఉ does not need to be continuous with respect to ௜݃௝ . In other 

words, if only a one to one mapping from ௜݃௝ to ܵఈఉ or ܶఈఉ is given, ෥࣓௝ 
can be computed. Hence, the Ricecooker (or the DR method in general) 
can treat various types of nonlinear materials such as shown by Fig. 16 
(a)-(d). As an exception, materials that depend on hysteresis as shown 
by Fig. 16 (e) cannot be treated by the Ricecooker. In addition, the 
Ricecooker can treat a rigid material as shown by Fig. 16 (f). This is 
described in the body. 

 

 

 

Fig. 16 Various nonlinear materials 

(a) Hook’ s spring (b) Minimal surface (c) Form-finding
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(d) Plastic material (e) Invalid material (f) Rigid constraint


