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Most of the surface parameterization methods are understood as purely geometric.
However we sometimes see continuum mechanics related aspects in them. In order to
indicate this, stress tensors implicitly chosen in several parameterization methods will
be clari�ed. As a result, it is demostrated that we can switch between the methods by
just altering material de�nitions.

1. Introduction

While most of the parameterization methods are thought to be purely geometric,
there often exists a clear relation with theory of elasticity. This is very obvious be-
cause most methods �rst de�ne an energy functional, which is an objective measure
of distortion between reference and �attened con�gurations, and try to minimize it.
By introducing a viewpoint of continuum mechanics, the common and di�erent parts
between the methods are clearly separated. The common part is the form of �rst varia-
tions of the energy functionals and the di�erent part is the constitutive laws that gives
stress tensors, i.e. material de�nitions.

We will analyze in this work �ve parameterization methods, namely discrete har-
monic mapping (DHM) [9, 4], discrete conformal mapping (DCM) [7, 3], spectral con-
formal parameterization (SCP) [8, 1], L2 geometric-stretch norm (L2G) [10] and a
strain energy minimization with controllable distortion (CLM) [2]. Consequently, ex-
plicit expressions of stress tensors are deduced. This reinterpretation allows us to use
not only triangle faces but also quadrilateral faces in surface �attening. Furthermore,
we are allowed to switch between the methods by just altering material de�nitions. In
this work we adopt Einstein summation convention.
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Figure 2.1. An example setup for a triangle element



2. General Formulae

We only discuss �nite elements that have embedded local coordinate systems. Let
Ωj ⊂ R2 be a domain of the j-th element. Let (θ1, θ2) ∈ Ωj be a coordinate. Because
(θ1, θ2) system is embedded, Ωj never changes as the element deforms. For a surface
mesh, we consider two con�gurations, namely a reference and �attened con�gurations.
For each coordinate (θ1, θ2) ∈ Ωj, we assume that four 2× 2 matrices ḡαβ, gαβ, ḡ

αβ, gαβ

are attached. The �rst two are the Riemannian metrics computed on the reference and
�attened con�gurations respectively. The last two are the inverse matrices of the former
two. We denote area elements by dv̄2 =

√
det ḡµνdθ

1dθ2 and dv2 =
√

det gµνdθ
1dθ2.

The quantities expressed with ·̄ are constants that does not subject variational operator.
Fig. 2.1 helps reader's understanding of this general setup.

On an element, a strain energy is generally expressed as

Ej =

∫
Ωj

W
(
gαβ, g

αβ, ḡαβ, ḡ
αβ
)
dv̄2.

Noting that only gαβ is independent in W , we get

δEj =

∫
Ωj

∂W

∂gαβ
δgαβdv̄

2,

where δ is a variational operator. Here δ can omit
∫
Ωj

dθ1dθ2 because we chose an

embedded local coordinate system. De�ning Sαβ = 2 ∂W
∂gαβ

, we can write

δE =
1

2

∫
Ω

Sαβδgαβdv̄
2.

This represents a small (virtual) work done by a stress �led acting on the element. In
the theory of elasticity, Sαβ is called the 2nd Piola Kirchho� (2nd-PK in the following)
stress tensor. In this work, we mainly focus on 2nd-PK stress tensor. Generally, an
explicit expression of Sαβ expressed in terms of four Riemannian metrics, i.e.

Sαβ = Sαβ
(
ḡαβ, gαβ, ḡ

αβ, gαβ
)
,

is called a constitutive law. This gives a concrete material de�nition. Di�erent strain
energy gives a di�erent constitutive law but the form of δE remains common. There-
fore, explicitly expressing such material de�nitions would be bene�cial for implementing
a general surface parameterization framework, in which a user would switch between
the methods by just altering the material de�nitions.

Further discretization schemes and numerical solves are not discussed in this short-
paper but a standard �nite element approaches can be applied.

3. Energy and stress tensors

3.1. Discrete harmonic mapping. For surface parameterization, a discrete har-
monic mapping (DHM in the following), or so-called the cotan formula, was �rst
introduced by Eck et al. [4]. Before them, the same formula was derived and ap-
plied to minimal surface problem by Pinkall et al. [9]. Both Eck et al. and Pinkall et

al. derived DHM from a Dirichlet energy. Our expression of the Dirichlet energy is

Ej =
1

2

∫
Ωj

gαβ ḡ
αβdv̄2.



Actually, this is very close to the expression of the Dirichlet energy in [5], to which Eck
et al. referred. The corresponding 2nd-PK stress tensor is

(3.1) Sαβ = ḡαβ.

This material de�nition means that, the element is always tensioned and hence all the
boundary vertices must be �xed.

3.2. Discrete conformal mapping. Levy et al. and Desbrun et al. independently
derived [7, 3] discrete conformal mappings (DCM in the following). Later, Floater et

al. and She�er et al. pointed out [6, 12] the equivalence of these two.
In [6], DCM is characterized by a conformal energy de�ned by

EC = ED − S,

where ED is the Dirichlet energy and S is the surface area. It has been known that
ED ≥ S and the equality holds when the �attened surface is conformal to the reference
surface. If a surface is approximated by discrete elements, EC = 0 is hardly achieved.
Hence, instead of EC = 0, EC → min is solved in DCM.

Because the area of an element is expressed as

Sj =

∫
Ωj

dv2 =

∫
Ωj

Jdv̄2, where J =

√
det gµν√
det ḡµν

,

our expression for EC is

Ej =

∫
Ωj

(
1

2
ḡαβgαβ − J

)
dv̄2.

Using δJ = 1
2
gijδgijJ, we get the corresponding 2nd-PK stress tensor as

Sαβ =
(
ḡαβ − gαβJ

)
.(3.2)

Both Levy et al. and Desbrun et al. noted that at least two points should be �xed
in DCM. Levy claimed that the ideal number of �xed vertices is 2. However, if two
vertices are �xed, the conformality would be distorted because of the reaction forces
acting on the �xed vertices.

3.3. Spectral conformal parameterization. Because DCM requires at least two
vertices �xed, a method that does not require �xed vertices is expected. Mullen et al.

proposed [8] a spectral conformal parameterization (SCP in the following), which is
an extension of DCM, and which does not require �xed vertices. Later Alexa et al.

polished [1] the method and proposed constraining the total area of a surface mesh
instead of �xing two vertices. This approach is characterized by

EC (x) = ED (x)− S (x) → min,

s.t. S (x) = S̄,

where S̄ is a prescribed total area to which S is constrained. Alexa et al. reduced
this problem to a generalized eigen-value problem as well as Mullen et al. Instead, we
preferred to deduce a stress tensor from this problem. Instead of applying the Lagrange
multiplier method, we used a penalty term and our reinterpretation is

Ej =
∑
j

∫
Ωj

(
1

2
ḡαβgαβ − J

)
dv̄2 +

1

2S̄

(
S − S̄

)2 → min,



Because

δE =
∑
j

1

2

∫
Ωj

(
ḡαβ +

(
S

S̄
− 2

)
gαβJ

)
δgαβdv̄

2

we get the corresponding 2nd-PK stress as

(3.3) Sαβ = ḡαβ +

(
S

S̄
− 2

)
gαβJ.

Note that S must be computed in advance of the computation of Sαβ.

3.4. L2 Geometric stretch norm. Sander et al. have been using [11, 10] an L2

geometric stretch norm for surface parameterization (L2G in the following). Our ex-
pression for L2G is

Ej =
1

2

∫
Ωj

ḡαβg
αβdv̄2.

Using ∂A−1

∂x
= −A−1 ∂A

∂x
A−1, where A is a non-singular matrix, we get the corresponding

2nd-PK stress as

(3.4) Sαβ = −ḡµνg
µαgβν .

The minus sign in Sαβ indicates that elements are always in a compression state. Hence,
as well as DHM, all the boundary vertices have to be �xed.

3.5. Strain energy minimization with controllable distortion. Clarenz et al.
developed [2] a special material de�nition for parameterization (CLM in the follow-
ing). Their work is very important in that it indicated the possibility of designing
special materials for each particular objective. The material has many parameters
{αl, αa, αc, β, p, r, s, t} but the authors mainly discuss the cases with p = r = s =
2, t = 1. Additionally, it is indicated that β = αl/αa + 1. Thus the parameters are
reduced to {αl, αa, αc}. These parameters are used to control the length and area
preservability, and conformality, respectively. In the following, we denote {αl, αa, αc}
by {wL, wA, wC}. Because Clarenz et al.' s work was also based on theory of elasticity,
our expression for this special material is very close to the original expression and it is

Ej =

∫
Ωj

[
wLIC + wA

(
J2 + βJ−2

)
+ wC

(
I2CJ

−2 − 4
)]

dv̄2,

where IC = gij ḡ
ij. By using δIC = ḡαβδgαβ and δJ = 1

2
Jgαβδgαβ, we get

(3.5) Sαβ = wLS
αβ
L + wAS

αβ
A + wCS

αβ
C ,

where

Sαβ
L = ḡαβ − gαβJ−2

Sαβ
A = gαβ

(
J2 − J−2

)
Sαβ
C = 2

(
ḡαβ − 1

2
gαβIC

)
ICJ

−2.



Figure 4.1. Example mesh surface

Figure 4.2. Results

4. Evaluation

Aiming to compare the deduced stress tensors, we conducted direct energy min-
imization with a quadrilateral mesh surface shown in Fig. 4.1. For evaluation, an
objective measure of distortion is needed and it should not be stress tensors. We
simply used a large strain tensor de�ned by

(4.1) Eij =
1

2
(gij − ḡij) .

Because matrix Eij itself does depend on local coordinate system, we carried out a
generalized eigen-value decomposition, which is characterized by

(gij − ḡij)V
j = λgijV

j.

From V j, we computed

V =
V jgj√
V αV βgαβ

,

where g1, g2 are base vectors adjunct with (θ1, θ2) system in a �attened con�gura-
tion. Note that V is normalized. As the result, two pairs of principal strain and
directions{λ1,V 1} and {λ2,V 2} are obtained. Note that V 1 and V 2 are orthogonal to
each other. When signs of eigen-values meet and |V 1| = |V 2| is achieved at somewhere
in a mesh surface, the �attened mesh surface is locally conformal to the reference mesh



surface at that point. When λi > 0, this means that the element is locally stretched
along V i and if λi < 0, it is locally compressed. Fig. 4.2 shows minimization results of
(a) DHM, (b) DCM, (c) SCP, (d) L2G, (e) CLM with wL = wA = wC = 0.5, (f) CLM
with wL = wA = 0, wC = 0.5. In the �gure, {λ1V 1, λ2V 2} are plotted with magenta
color when λi > 0 and with cyan color when λi < 0. If some vertices are �xed, reaction
forces acting on the vertices are also plotted with red color.

During direct minimization, it was possible to obtain di�erent parameterization
results by switching material de�nitions without terminating computation.

5. Conclusion

We deduced explicit expressions of stress tensors that have not been yet clearly rep-
resented in the previous works. Now, because only material de�nitions are uncommon
parts between the methods and other parts remain common. Consequently, we are
allowed to switch between the methods by just replacing material de�nitions.
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