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In this paper, we review the maximum likelihood method for estimating the statistical parameters which specify
a probabilistic model and show that it generally gives an optimal estimator with minimum mean square error
asymptotically. Thus, for most applications in information sciences, the maximum likelihood estimation suffices.
Fisher information matrix, which defines the orthogonality between parameters in a probabilistic model, naturally
arises from the maximum likelihood estimation. As the inverse of the Fisher information matrix gives the
covariance matrix for the estimation errors of the parameters, the orthogonalization of the parameters guarantees
that the estimates of the parameters distribute independently from each other. The theory of information geometry
provides procedures to diagonalize parameters globally or at all parameter values at least for the exponential and
mixture families of distributions. The global orthogonalization gives a simplified and better view for statistical
inference and, for example, makes it possible to perform a statistical test for each unknown parameter separately.
Therefore, for practical applications, a good start is to examine if the probabilistic model under study belongs to
these families.
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1. Introduction

Mathematical modeling provides a powerful way to understand and forecast natural phenomena. While differential
equations work for modeling time evolutions of the systems whose mechanisms are clear and deterministic [17,25,29],
probabilistic models are needed to treat unclear and stochastic phenomena appropriately [8—11, 15, 26].

When we want to get some useful information for stochastic events, it is quite helpful to have statistical distributions
of the events. Although drawing histograms helps to find a tendency in data, it requires a lot of observations to obtain a
smooth and reliable estimate of the distribution. Thus, it is in general more convenient to use a parametric model to
estimate the distribution when any constraints on the shape of the distribution are known. In this case, a distribution is
estimated by specifying a set of statistical parameters based on the observed data.

The most natural and popular way to estimate the parameters is the maximum likelihood estimation where the
parameter values that are most likely to generate the observed data [8,28] are chosen. As far as applications to
information sciences are concerned, the maximum likelihood estimation gives an optimal estimator for most problems.

A metric, Fisher information matrix, naturally arises in the maximum likelihood estimation as a measure of
independency between estimated parameters [2,3,6,23]. As the inverse of the Fisher information matrix gives the
covariance matrix for the estimation errors of the parameters, the orthogonalization of the parameters guarantees that
the estimates of the parameters distribute independently from each other. However, diagonalizing Fisher matrix by
linear algebra “locally” or at specific parameter values does not make sense because the parameter values are unknown
and to be estimated.

The theory of information geometry tells us how to find an orthogonal parametrization for many probabilistic models
including the exponential and mixture families, where the new parameters are orthogonal to each other “globally” or at
all parameter values. This global orthogonalization gives a simplified and better view for statistical inference and, for
example, makes it possible to perform a statistical test for each unknown parameter independently.

In these lecture notes, after we review some basic properties of the maximum likelihood estimation, we will discuss
Fisher information matrix and demonstrate how to diagonalize it for specific examples.
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2. Maximum Likelihood Estimation

The maximum likelihood method is the most popular way to estimate the parameter 6 which specifies a probability
function P(X = x|6) of a discrete stochastic variable X (or a probability density function p(x|6) of a continuous
stochastic variable X) based on the observations xi, x, . . ., X, which were independently sampled from the distribution.
Note that for a continuous stochastic variable X, the probability density function p(x|6) satisfies

PX < r|0) = /7‘ p(x|0)dx. @))

The maximum likelihood estimate is the value 6 which maximize the likelihood function which is defined by
L(O) = TT_ | P(X = x;|0) = P(X = x1|0)P(X = x210) - - - P(X = x,,0), 2)
when X is a discrete stochastic variable and
L(©) = IT_, p(xil0) = p(x110)p(x216) - - - p(xal6), 3)

when X is a continuous stochastic variable. That is, the maximum likelihood estimation chooses the model parameter 0
which is the most likely to generate the observed data.

The maximum likelihood estimation is a heart of mathematical statistics and many beautiful theorems prove its
optimality rigorously under certain regularity conditions [8,28] as we will see in the next chapter. Therefore, as far as
the applications to information sciences are concerned, the maximum likelihood estimation works and suffices for most
problems.

2.1 Example: Hypergeometric distribution

Let us try to estimate the total number N of raccoons in Mt. Aoba by the capture-recapture method [10].
First, N, raccoons are captured, labeled and then released. Next, r raccoons are randomly captured. Then the
probability that x out of r captured raccoons are labeled is given by

N —N;\ (N
()0
N .
(7)
Note that there are (V) different patterns of capturing r racoons out of the total N racoons. Similarly, there are ()

different patterns of capturing x labeled raccoons out of the total N; labeled raccoons and (*-"') different patterns of
capturing r — x unlabeled raccoons out of the total N — N; unlabeled raccoons.

P(X =x|N,N,r) = “)

Table 1. Meaning of symbols in hypergeometric distribution.

N —N; Number of total unlabeled raccoons
r—x Number of unlabeled raccoons captured for observation
N, Number of total labeled raccoons
X Number of labeled raccoons recaptured for observation
N Number of total raccoons
r Number of raccoons captured for observation

Suppose that N; = 25, r = 25, and x = 7. Then the maximum likelihood estimate, N is the value which maximize

the likelihood
N —25 25
25 -7 7

(2s)

Figure 1 shows that L(N) has the maximum at N = 89. Actually, this result can be also derived analytically by
considering if LN) ¢ larger than 1. In fact, the ratio,

L(N—-1)
LN)  (N=N)IN—r)
LIN—1) (N—=N,—r+xN’

L(N) = )

(6)

gets smaller than 1 when N > % = 89.28571. This leads to N = 89 because N must be an integer.
Finally, note that this example has all discrete variables and only one observation for X.
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Fig. 1. Likelihood function L(N) in (5) as a function of number of total raccoons in Mt. Aoba. The hypergeometric distribution with

Ny =25, r =25, and x = 7 was used. The gray cross denotes the peak whose location is N = 89.

R code for Fig. 1

X=T7,

N1=25;

r=25;

L=1:200%*0;

for (N in r:(200+r)) L[N-r] = dhyper(X,N1,N-N1,r);

N=r+1:200;

# postscript("Figl.eps”,width=3.3,height=3.7 horizontal=F,onefile=F,paper="special );
# par(oma=c(0,0,0,0), mar=c(5.4,4,1.5,0),cex=2/3,cex.main=1);
plot(N,L,ylab="L(N): likelihood function’,xlab="N: Number of total raccoons’);
points(which.max(L)-+r,L[which.max(L)], pch="x",cex=3,col="gray’);

# dev.off()

2.2 (Counter)example: Normal distribution
Let us try to estimate the mean p and the variance o of a normal distribution:

L
e 202

2
palp,0) = == =
o

)

When X, X5, - - -, X, are sampled from the distribution independently, the likelihood for each observation is given by

1 2
—5 7 (X1—p)”
pXilu, o) = e 20° ,
2no?
1 Ly
p(Xalp,0) = a7t
2no?

1

| S I
PXalit, 0) = ——=e 27 %",
" N 2mo

LS}

Sometimes this is rewritten as X; ~ N (u, o) for simplicity. The likelihood L is defined by
L(p, 0) = pXilp, 0)p(Xalp, 0) - - - p(Xalpt, 0).

Instead of maximizing the likelihood L itself, one can maximize the log likelihood without loss of generality:

®)

€))
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log L(p,0) = Y _ log p(Xiut, o). (10)
i=1

Note that taking log simplifies the calculation as we will see because the product turns to a sum. At the parameter values

(i, 6) which maximize the log likelihood, the derivative of the log likelihood with respect to u and o should be zero:

0=21 L, 0) z:al Xi| i, o) d
= —10 ,0) = — 10 ilw,0), an
5 gL 5y g Pl

i=1

0= Llog Luo) = 3 “log plXil.) (11)
= —Io ,0) = —1o i\w, o),
% g L(U g g P
where
9 9 1 ,  (r—p)? xX—
@logp(xm,o) = @ <—2log 2n0” — 257 =2 and
d (1 (=’ 1 a=w
_1 s _ __1 2 2—7 = — — _ . 12
do 0g plxlu. o) 80( 2 aChadd 202 o + o3 (12)

Thus, we have

- 1 Xi—p)y
0= ——+— 13
Zx S+ (13)
By solving the equations for £i and &, we obtain

o1 BERPAY
é —nZ(X, ). (14)

Note that & is biased, that is, not correct on average. It is widely known that
n

1
A2 A2
Ounbiased = n—1 Z(X' - /'L) (15)
i=1

works as an unbiased estimator of o [8]. The difference between the two estimators is the normalization factors, n and
n — 1. We discuss the optimality of the maximum likelihood estimator in the large limit of n in the next section.
However, for finite n, no theorem guarantees the optimality of the maximum likelihood estimator. Note that the ratio of
the above two estimators gets negligible in the large n limit:

oon—1
lim
n—oo n

— 1, (16)
suggesting that the maximum likelihood estimator for o can be optimal only asymptotically (that is, in the large n limit).

3. Optimality of Maximum Likelihood Estimation

In the last chapter we introduced the maximum likelihood estimator as a natural way for parameter estimation.
However, we did not discuss the performance of the maximum likelihood estimator there. Here we briefly review three
good properties of the maximum likelihood estimation [8, 28] which are summarized in Table 2. Although these theorems
assume certain regularity conditions, here we only mention that the conditions are mild and satisfied in most cases.

Table 2. Theorems for maximum likelihood estimation.

Theorem Sketch of Proof

consistency (asymptotic correctness) positivity of Kullback—Leibler divergence
asymptotic normality: 6 ~ N(8, % I central limit theorem for delta method
efficiency (minimum variance) Cauchy—-Schwarz inequality

3.1 Consistency (asymptotic correctness)

The first property is that in the large limit of the number of observation n, the estimate 8 goes to the true value 6. This
property is essential for an estimator. As there is a counterexample for finite n as we saw in the last example, here we
discuss the consistency in the large n limit.
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Instead of the maximization of the log-likelihood, let us consider the maximization of the log-likelihood subtracted
by a constant without loss of generality:
1 A
—log L(6) — constant
n
1 & N
= - log p(Xilf) — | p(xI6)log p(x|6)dx
i=1

" n
—— [ pio)tog ptxdras — [ ey tog piaionds

p(x16)
0)1
/ p(x16) log l0)
—D(p(x|0)|| p(x16))
<0, (17)

where the arrow means the limit of large number of observations n and the summation was replaced by the integral with
p(x|0) as a weight there: %ZL fX;) — f p(x)f(x)dx. Here we use the fact that the Kullback—Leibler divergence

p1(x)
p2(x)

D(p1(0)|p2(x)) = /m(X) log (18)

takes the minimum value 0 only when p(x) = p,(x). Therefore the maximum of the log-likelihood is obtained only at
6=0.

3.2 Asymptotic normality: § ~ (8, I

The second property is that the maximum likelihood estimate é(X 1,X5,...,X,) is normal-distributed when X’s are
random samples from p(x|§). For clarity, imagine that 6 is obtained for EACH realization of a set of observations
X1,Xa,...,X,. Thus, say, if a set of n observations of X is sampled repeatedly 100 times, 100 estimates §’s are obtained.
The theorem says that the distribution of § is a normal distribution. The variance of the normal distribution or the
estimation error is actually minimum among all possible estimators as we will see in the third theorem. This second
theorem can be used, for example, when statistical tests are performed on 6 by assuming the normal shape. In addition,
in information geometry, this theorem guarantees that only the covariance or orthogonality matters for the distribution
of 6.

Here we only prove for the case when 6 is one dimensional or a scalar for educational purposes, although it is easy to
extend the proof to general cases.

When the number of observation # is large and the estimate @ is close to the true value 6, the definitional equation of
6 can be Taylor-expanded by (6 — ) to the first order:

d .
0=—1log L
7018 0)

" d R
=§ —log p(X;|0
2 a9 og p(X;|6)

Zn: L og p(Xi16) + 6 e)i: <, (X;10) + 0((0 — 6)*)
= — 10 i — — 10 i p—
2 "8 2 g o8P

n 2

_ ; % log p(X;16) + (6 — &)n / p(xlf) % log p(x|)dx + O((0 — 6)°)

=> % log p(X;16) — (6 — O)nl + O((0 — §)), (19)
i=1

where the Fisher information is defined as

d 2
1= /p(x|9)<@logp(x|0)) dx

d2
=— / p(xlé’)ﬁlog p(x|0)dx, (20)

where partial integral was used to derive another form of the definition. Note that although a sum was replaced by an

integral in (19), the difference was assumed to be O(é — 0) and negligible. Therefore, we have

b= > d log p(X;|0) + negligible t 1)
—0=— — 10 i negligibie terms.
nl 2 46 gp glig
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The righthand side turns out to be normal-distributed, A(0,277") by the central limit theorem for 13" ¥; with
Y, = % log p(X;|0). The central limit guarantees that the mean of a sufficiently large number of independent random
variables will be (approximately) normally distributed [8, 10]. Note that the mean is zero because of the consistency of
the estimation, or, by using

d
1=0. (22)

_ d d d
i [ p<x|e>(@ log p(x|9>)dx = [ gy peions = [ peiorax =5

do

The variance is derived as

12V dl X9—12 Gdl 9201—121—1 23
(ﬂ)” ar[% og p( |)]_<ﬂ) ”/P(X| )(@ og p(x| )) X—(a)” _ﬁ' (23)

Thus, 6~ N(Q,%I"). Note that the variance decreases with increasing n. This result can also be represented as
ﬁ(é — ) ~ N(0,I7") in the large n limit. The Fisher information I denotes the precision of the estimation because its
inverse is the variance of the estimation error.

Two technical notes: (1) I is called Fisher information or Fisher information matrix for multiple dimensional cases. It
is essentially the inner product defined on a space of functions with p(x|f) as a weight:

d d
Iy = <E log p(x|6), - log p(xl0>>
i J

d d
= / p(x|0)(d_9,- log P(XI0)> (d_ej log p(x |0)> dx. (24)

I~! means the inverse matrix of 1. (2) The “Taylor expansion” used above is called delta method and a very basic
technique in statistics. Many important results for the large limit of the number of observations are “asymptotically”
derived by using the delta method [8, 28].

3.3 Efficiency (minimum variance)

The third property is that the maximum likelihood estimator has the minimum mean variance of estimation error
among any other estimator which are unbiased (correct on average).
This is derived by the Cauchy—Schwarz inequality

_ (Covif.g)?

Var[f] > Varle] (25)

with
f=0(x,x2,...,x%,) (ANY estimator of 6 with Ex[f] = 6) (26)

and

d
g = 5 logL(xIf) (27)
where

L(x|0) = p(x1|0)p(x216) - - - p(x6). (28)

For simplicity, let us consider the one dimensional case where 6 is a scalar for educational purposes. Then we have
A d
Cov[f, gl = /L(x|9)(9 —0) 7 log L(x|0)dxdx; - - - dx,

4 1(x|6)
L(x|6)

= / L(x|0)(0 — ) dxydxy - - - dx,

A d
= /(0 —0) T L(x|0)dxdx, - - - dx,,

dé—0) o
=— / 70 L(x|0)dx\dx; - - - dx, (partial integral)

= / L(x|0)dxdx; - - - dx;, (é does not depend on 6)

= / p(x1|0)dx / p(x2|0)dxy - - - / P(xn|0)dx,
=1, (29)

and
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Var[g

d
L(x]0) 7 log L(x|9)> dxidxs - - - dx,,

2
d
L(x|0) QZIOg p(x,|9)) dxydxs - - - dx,

b (
-
f L(x6) (Z log p(x,|9))2dx1dx2 - dx,
- fun(S
-] 5

&l

n n d
LeO| D o logp(x,|9)) (Zdelogp(xﬂw)dxldxz--~dxn

J=1

d
< log p(x,|9)> + Z(— log p(x,|9)> <% log p(xj|9)>:|dxlde Cedy,
i#j

d d
= / p<x1|9>-~-p<xn|9>[z<%logp<xl|e>) +Z(—logp(xw))(—logp(x,|9))}dx1dxz~~-dxn

i=1 i#]

= Zl / p(x,-|e>(%1ogp<xi|e>)zdx,- 3 / / p(x,w)p(x]le) 5 log p(x,w) 5 log ply19)dxid;

= Zl / P(xi16) %1ogp<xi|9>>2dx,-+;( / p(xil6) logp<x,|e>dx,) ( / Pg16) — 1ogp<x,|9)dx,)
i= 17
n d 2

= ; / p(x,-|e><de log p(xiw)) dx; + Y _(0)(0) (30)
n d 2

= ; / p(x,-|9><[mlogp<xi|e>> dx;

i
d 2
=n/p(x|0)<%logp(x|9)> dx

=nl. 31)
Then, by the Cauchy—Schwarz inequality, we have

.1
Var[6] > ZI_I' (32)

According to this Cramer—Rao theorem, the variance of ANY unbiased estimator is at least (n/ )~!. Meamwhile, the
maximum likelihood estimator attains this lower bound (the equality holds!). Thus, the maximum likelihood estimator
is one of the best estimator among all the estimators.

Finally, note that for multidimensional cases of 8, I~' means the inverse of the Fisher information matrix. And the
inequality means the positive-(semi)definiteness of the matrix.

3.4 Example: Binomial distribution

The probability of having X heads out of » trials of coin tosses is given by the binomial distribution:

P(X = x|0) = (”)9X(1 — oy, (33)
X

where the parameter 6 denotes the probability of having a head in a single trial. The maximum likelihood estimator is
given by solving

— L loeL0)
a0 8

d
= —log p(X|0
70 og p(X16)

d n n—X
delog|:<X)9X(1 —0) ]

|:10g< ) + Xlogf+ (n — X)log(1 — 9)]
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— 9 Xlogo d( X)log(1 — 0)
= Og d@n Og

do
_X n—X (34)
0 1-6
Thus we have,
~ X
0=—. 35)
n

Naturally, the estimate 6 is the sample frequency of the head.
Next, let us consider how reliable this estimate is. By similar calculations as above, the Fisher information is given

by
" )
I=E_(@logp(X|9)> }

- (1]

=E| gy —gp (1 —OX 60 X)):|

E[(X — 6X — 6n + 6X)*]

~ (1 — 6
e E[(X — 6n)*]
1
= 0~ HIX - E[X])’]
= m Var[X]
- (36)
a1 -0’
where E[X] = 0n and Var[X] = n6(1 — 6) were used. Thus, the mean =+ the standard deviation can be written as
N X o1 -6
O+ ~I1=—+ ( ). (37
n n

In Fig. 3, the histogram of § for repeated realizations of X when n = 100 and 6 = 0.6 is plotted. That is,
(X1,X2,...,X10000) are independently sampled from the binomial distribution with » =100 and 6 = 0.6. Then
estilnates are 0; = ’% = ]’6—"0. Note that in this example, we have only one observation in each estimation. The histogram
of 6 was plotted in Fig. 3.

Another way to utilize the Fisher information I is to perform a statistical test. If a null hypothesis is 6 = 6, then, 8

should be distributed around 6y:
~ 1
6 ~ av(eo,l(eow). (38)
n

Note that the variance shrinks with the number of observations n, indicating that the more observations the more
reliable the estimate should be. For example, when the null hypothesis is 8y = 0.5, the (two-sigma) confidence interval

(almost p = 0.05) is given by
0.52
O £2,/16p) ' =05+2,/—— =0.5+0.1. 39
o £ 24/1(60) V Too (39)

If the true value is 6 = 0.6 as in Fig. 3, for half cases 6 exceeds 0.6 and, then, the null hypothesis is rejected.

3.5 Example: Gamma distribution with conventional coordinates

The gamma distribution is often used for the distribution of the inter-event time intervals [18-21] and other unimodal
distributions of positive variables (x > 0):

Ol’l
p(x|A, ) = m%—'e—“. (40)
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Fig. 2. Histogram of estimated 6. Although the true value is 6 = 0.6, there is a trial-by-trial estimation error as seen as the standard
deviation of the histogram (= 0.04911697). The theoretical prediction was /I(6 = 0.6)"! =, /% = 0.04898979.

R code for Fig. 2

# postscript(”Fig2.eps”,width=3.3,height=3.7 horizontal=F,onefile=F,paper="special ”);

# par(oma=c(0,0,0,0), mar=c(5.4,4,1.5,0),cex=2/3,cex.main=1);

theta = rbinom(10000, 100, 0.6)/100;

sd(theta); # 0.04911697

hist(theta, xlab=expression(hat(theta)), main=expression(paste(” Histogram of”, hat(theta))));
# dev.off()

When X, Xy, - - -, X, are observed independently, the likelihood for each observation is given by

' e
Xi|d,a) = X e %,
pXild, ) ron e
o' e
Xo|d,a) = X, e %,
pXald, @) Ty e
o' -1 _—aX,
pX,|A, ) = F(/I)Xni e . 41
The likelihood L is defined by
L(4,a) = p(Xi|4,0)p(X2|A, ) - - - p(X,| A, ). (42)

At the parameter value (4, @) which maximize the log likelihood, the derivative of the log likelihood with respect to A
and o should be zero:

n

0 a1L(ﬂt) Zal (X1, @) d
=—1Io ,0) = — o i|4,a), and,
o1 & a1 &b

i=1

0 ) log L(A, @) Xn: 0 log p(Xil|4, @) (43)
= —10 , ) = — 10 ilt, ),
do g = 0o &r

where
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Fig. 3. ?((;‘)) — log x is a monotonic function.

R code for Fig. 3

# postscript(”Fig3.eps” ,width=3.3,height=3.7 horizontal=F,onefile=F,paper="special );
# par(oma=c(0,0,0,0), mar=c(5.4,4,1.5,0),cex=2/3,cex.main=1);

x=1:100/100; plot(x, digamma(x)-log(x), type="1");

# dev.off()

a /
Y] log p(x|A, @) = loga — F(/l)) +logx, and,
d A
—log p(x|d, ) = — — x. 44)
oo o
Thus,
1—*/(/1) n
0=nloga—n + logX;, and,
' ;
ni 1
0=—— X;. (45)
o

i=1

That is, the maximum likelihood estimates are obtained by solving the following equations numerically:

11:((;)) —logd = % ; log X; — log (% ;X,-), and,
A

% er'l:l Xi '

The first equation can be solved for A uniquely as the left hand side of the equation is the monotonic function of A as

shown in Fig. 3. Then, & is obtained from the second equation.
The following formulae help to compute the Fisher information matrix:

4=

(46)

E[X] = / px| A, a)xdx = 4 , 47)
0 o

Var[X] = f ~ (x|, @)(x — B[X])2dx = 12 (48)
0 o
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E[log(X)] = — 1 LI "
0g(X)] = —loga f )
E[Xlog(0)] = — “logar + -+ 2T g (50)
og = aogot « aTQ)’ and,
E[log(X) log(X)] = (log &)*> — 2(log ) ') n (1) .
ST #Tw Tt
The Fisher information matrix is given by
[ poit dlog p(xld, ) dlog plxld,a) |
01 al
= (1 SRR X)2
= oga T og
—El (1 _1“/(/1) 2+21 _F’(/l) N
= (oga F(ﬂ)) <0ga l"(/l)) og (log X)
W rar
T r@y
_ F”(/I)F(/l) _ F/(/l)z
B r()y>
. (r‘/(/l))/
—\rw
82
= Wlog )
= Trigamma(A), .
/p(xu,a) dlog p(x|A, ) dlog p(x|A, ) "
04 o
—E|(1 I N (A
= [<oga— I + log )(a_ )]
(o Y )
__ 1 N
o
and
fp(xll,a) dlog p(x|4, ) dlog p(x|1, a) 0
dor oo
A 2
= E|:<— —X) :|
a
= Var[X]
A
K (54)
That is
Tri 1) -1
1=< ﬂgamrlna( ) aa)' (55)

In Fig. 4, the maximum likelihood estimates (A, &) for repeated realizations of a set of 100X’s are plotted. That is,
(X1,X2,...,X100) are independently sampled from the gamma distributions with ¢ = 2 and 4 = 2 and the estimates
were computed. For each estimation, a point was plotted in (1, &)-plane. The estimation was repeated many times. The
covariance matrix estimated from the numerical simulation in Fig. 4 was

A (0.07218597 0.07252140)

= (56)
0.07252140 0.09499623

and its inverse was
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Fig. 4. Maximum likelihood estimation of A and « repeated many times for different realizations of 100X’s. Note the negative
correlations as predicted by the Fisher information matrix.

R code for Fig. 4

# postscript(”Figd.eps” ,width=3.3,height=3.7 horizontal=F,onefile=F,paper="special );
# par(oma=c(0,0,0,0), mar=c(5.4,4,1.5,0),cex=2/3,cex.main=1);
lambda = (1:1000) * 0;
alpha = lambda;
for (i in 1:1000){
X = rgamma(100, 2, 2);
m = mean(X);
1 = mean(log(X));
fr = function(x){(l - log(m) + log(x) - digamma(x))**2};
lambda[i] = optimize(fr, interval=c(0,100))$minimum;
alpha[i]=Ilambda[i]/m:;
)i
plot(lambda,alpha,xlab=expression(hat(lambda)),ylab=expression(hat(alpha)));
lines(c(1,3.5),c(2,2),lty=3); lines(c(2,2),c(1,3.5),lty=3);
# dev.off()

Sigma = cov(cbind(lambda,alpha))
# 0.07218597 0.07252140

# 0.07252140 0.09499623
solve(Sigma)

# 59.44541 -45.38143

# -45.38143 45.17152

100 * trigamma(2)

# 64.49341

(57)

s _ 59.44541 —45.38143
—45.38143 4517152 )’

whose theoretical values are

64.49341 —50
1001 = ( ) (58)
—50 50
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There are small discrepancies between the numerical and theoretical values, probably, because the number of samples
(= 100) is not large enough.

3.6 Example: Gamma distribution with mixed coordinates

Let us transform the parameters as

u=—, and,

>R~

. (59)

K=

We will discuss how this transformation was found later in Sec. 4. The distriution with the new parameters is given
by

= (<) L et (60
Pl = (u) re” ¢ )

Then the maximum likelihood estimation is given by

(k) L 1L 1 &
I @ —logk = . ; log X; — log(; ZX,), and,

i=1
1 n
A= - Zx,-. (61)
i=1

Actually, the maximum likelihood estimator is invariant under parameter transformations in general and, thus, the
following relations hold for the maximum likelihood estimators of the gamma distribution:

oA
A =—, and,
a
k=A. (62)
Notice that
d 0 K
p(x|p, k) 7—log p(x|p, k) —log p(x|p, K)dx = —,
o o 2
0 0
P, 1) —log p(x|u, k) —log p(x|u, K)dx = 0, and,
ou oK
0 0 . 1
/p(xm, K) e» log p(x|u, k) P log p(x|p, K)dx = Trigamma(x) — —. (63)
K K K

That is, the Fisher information matrix is diagonal for ANY parameter values:

£ 0
I= (“ ) 1). (64)

0 Trigamma(x) —
The result that Var[i] = %% is natural, because u just scales the entire distribution uniformly and « is a regularity
parameter. In fact, the larger «, the similar X’s are. When « is large enough the distribution looks normal, and, in the
large limit of «, the distribution becomes almost a delta function. Thus, by estimating «, one can know how reliable the
estimate of w is: Var[fi] = %“72
The covariance matrix estimated from the numerical simulation in Fig. 5 was

& 0.0050553689  —0.0001849231 65)
— \ —0.0001849231  0.0721859667 )’
and its inverse was
- 1.97828040 0.00506788
s = , (66)
0.00506788 0.13854406
whose theoretical values are
2 0
1007 = 100 . 67)
0 0.1449341

There are small discrepancies between the numerical and theoretical values, probably, because the number of samples
(= 100) is not large enough.

Note that /i and k are independent from each other. Therefore, error bars can be plotted separately for 4 and k. That
is, a statistical test can be performed for each variable independently.
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Fig. 5. Maximum likelihood estimation of u and « repeated many times for different realizations of 100X’s. Note that there is no

correlation as predicted by the diagonal Fisher information matrix.

R code for Fig. 5

# postscript(”Fig5.eps”,width=3.3,height=3.7 horizontal=F,onefile=F,paper="special ”);
# par(oma=c(0,0,0,0), mar=c(5.4,4,1.5,0),cex=2/3,cex.main=1);
lambda = (1:1000) * 0;
alpha = lambda;
for (i in 1:1000){
X = rgamma(100, 2, 2);
m = mean(X);
1 = mean(log(X));
fr = function(x){(l - log(m) + log(x) - digamma(x))**2};
lambdali] = optimize(fr, interval=c(0,100))$minimum;
alpha[i]=lambdali]/m:;
1
mu = lambda/alpha;
kappa = lambda;
plot(mu,kappa,xlab=expression(hat(mu)),ylab=expression(hat(kappa)))
lines(c(0.5,1.5),c(2,2),1ty=3); lines(c(1,1),c(1,4),lty=3);
# dev.off()

Sigma = cov(cbind(mu,kappa))
# 0.0050553689 -0.0001849231
#-0.0001849231 0.0721859667
solve(Sigma)/100

# 1.97828040 0.00506788

# 0.00506788 0.13854406

3.7 Example: Log linear model with naive coordinates

Let X and Y be stochastic variables which are binary such as codes, spins, or neuronal activities [24]. The two

variables are not necessarily independent and, thus, can be correlated. There are four types of events:

X,Y)=(0,0),
X, Y)=(,1),
(X,Y) = (1,0), and,
X,Y) = (1,1).

Then, the statistical model can be specified by Py, Po1, Pio, and Py = 1 — Pgg — Py — Py and written as

(68)
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P(X = x,Y = y|Poo, Po1, P1o) = Poo(1 — x)(1 — y) + Po1(1 — x)y + P1ox(1 — y) + P1ixy.

Then,
dlogP(x,y) (1—-x)(1—y)—xy 1l—x—y
P P(x,y) - P(xy)
dlogPOey) (1 —x)y—xy y—2xy and
0Py, P(x,y) P(x,y) ’
dlog P(x,y) _ x(1 —y) —xy ~x—2xy
P - P(x,y) - P(x,y) '

The maximum likelihood estimator should satisfy
0= 1121310gP(X,,Y) _Z - i_PE)(())bS)_P(lole)
n4= dPgo P(XI,Y) Py Py

0 Z dlog P(X;.Y) _ 1 Z —2X,Y; P(”’”) P

n& dPo; ~ P(X.,Y:)  Po Py

1 <L dlogP(X, Y 1 —2X;Y,
y Toelty_ Len X

, and,

(obs) (obs)
1 P

3P10 - n

PX;, Y Pio Py

s

i=1

where p{’” denotes the observed frequency. That is
1300 — P(ohs)

Py = P(Obs) , and,
P1() = P(l%bs).

Thus, the naive parameters are estimated naturally based on frequencies.

By using
X = X, and,
Y2 =v,
the Fisher information matrix is obtained as
[dlog P(X,Y) dlog P(X, Y)] M1 X Y XY 1 1
E =E|=|-E|=|—-E|=|+2E|—
L 0P P | | P2 P2 P2 p? Py Py
[log P(X,Y) dlog P, Y)] _ L TXY] _ 1
L 9Poo Py | LP2] Py’
E_alogP(X, Y) dlog P(X,Y)] . E_XY 1
| 9Py Py | LP] Py’
[9log P(X,Y) dlog P(X,Y)] B4 1 1
p[dlog PO Y dlog PALY)] _ L FY)_ 1 1
L 0Po oPyr | | P2 Poi  Pyy
[dlog P(X,Y) dlog P(X,Y)] X 1 1
E og P( ) dlog P( ) :E_2]=—+— and,
L 9Py oPyy | | P Py Pn
E_BlogP(X, Y) dlog P(X,Y)] _ E_XY 1
9Py Py | LPr] P
That is,
1 1 1 1
Pw TPT P P
1 1 1 1
I'=1 # PateE P
1 1 1 1
P Pi Po T Pn

Note that the Fisher information matrix is not (block) diagonal.

3.8 Example: Log linear model with y-coordinates
For the log linear model, instead of (Pyg, Po1, P10), one can use
n1 = Prob{X = 1} = E[X] = Pyp + P11 = 1 — Poo — Po1,
ny = Prob{Y = 1} = E[Y] = Py; + P11 = 1 — Pgo — P19, and,
N2 = E[XY] = Py = 1 — Poo — Po1 — Pho,
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(70)

(71)

(72)

(73)

(74)

(75)

(76)
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as new coordinates or parameters. Note that there are only three degree of freedom for parameters and the parameter
transformation from (Pyg, Po1, P1o) to (91, 12, n12) is one-to-one:

Py =1—n1 —n2+ 112,

Por = m2 —n12, and,
Pio=m — . (7
Then, the statistical model can be written as
PX = x,Y = y[n1,n2,m2) = Poo(1 = 0)(1 — ) + Por1(1 — x)y + P1ox(1 — y) + Prixy
= =n —m+n2)d -1 —y)+ (2 — ni2)(1 —x)y
+ (1 — m2)x(l — y) + nioxy. (78)
The maximum likelihood estimator is obtained by the invariance as
=P P
ﬁZ — P(()o]bs) + P(lolbs), and,
o = Py (79)
By using
dlogP(x,y) —1+2x+y—2xy
am P(x,y) |
dlog P(x,y) —1+4+x+2y—2xy
= and,
ona P(x,y)
dlog P(x, 1 —2x—2y+4x
gP(.y) _ YAy 80)
2 P(x,y)
the Fisher information matrix is obtained as
[dlog P(X,Y) dlog P(X,Y)T] (1] Y] 1 1
g[AlogPOCY) dlog POCY] _ P 1) Ty _ 1 1
L Om an; i | P? | P2 Py Pio
[dlog P(X,Y) dlog P(X,Y)T] 17 X 1 1
p[dlogPOCY) dlog POCY)] _ L F1Y PX] 11
L Om o | P? | | P2 Py Por
[9log P(X,Y) dlog P(X,Y)T] (17 X Y XY 1
p[2logPOCY) dlog POLY)] _ M1 L FX] PV orxr] 1
L 3771 37]2 ] _Pz_ _P2_ P2 P2 PO()
[dlog P(X,Y) dlog P(X,Y)T] 17 Y 1 1
g 2log (X,Y) dlog P(X,Y) ~ 5[ +E[_2]=____
L Om 2 | P~ | P Poy  Pro
[0log P(X,Y) dlog P(X,Y)] 1] X 1 1
p[2l0sPX.1) dlog P DT _ T 1 +E[_2]:____ and.
L Om mn | P~ | P Poy  Por
[0log P(X,Y) dlog P(X,Y)] 17 1 1 1 1
p[2losP&. 1 dlogPat ] _fL) 1L 11 h
o2 o2 L P Py  Por P P
That is,
1 1 1 1 1
[ Puo ~Pw " Pu
I 1 I 1 1
I'= P P T P ~Pu " Po (82)
1 1 1 1 1 1 1 1
TPw Pu P Pu P TPy TPy tP;
The Fisher information matrix is not (block) diagonal, again.
3.9 Example: Log linear model with #-coordinates
Consider another coordinate system:

PX =x,Y = y|0) = exp{0ix + 02y + O3xy — W(O)}, (83)
where W(0) = log(1 + €% + % + /1 7%:46:) = —log Py, is a normalization factor. The name “log linear model”
originates from this form. 6’s can be explicitly writen by the naive coordinates P;;.

P
0, = log ﬁ,
Poo
Po;
0, =log—, and,

Py
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By using,

PP
93:10gﬂ.
Po1P1o
alogP_X BIII_X P1o+ Pu1)
00 0 10 1),
dlog P v o Y (Pro 4 Py1) d
=Y——=Y-— , and,
%0, 0, 10 11
dlog P v
= XY — — = XY — Py,
063 063

and E[X] = Py + Py, etc., the Fisher information matrix is obtained as

(P11 + P1o)(Poo + Por)
I=1| Py —Pu+Po)Pi+ P

Py — (Py1 + Por)(Pi1 + Pio)  Pii(Poo + Por)
(P11 + Po1)(Poo + P1o) P11(Poo + P1o)

P11(Poo + Por) P11(Poo + P1o) Py(1—Pny)
The Fisher information matrix is not (block) diagonal.
3.10 Counter example: Uniform distribution
Let us consider the uniform distribution [8]:
pxit) = -,
0

where

0<X<0.
When X}, X5,...,X, are sampled from p(x|f), the maximum likelihood estimator Y is

Y = max{X,X>,...,X,}.

The Cramer—Rao theorem says

1 [ ( 3 )2} 6
Var[6] > —E| | —logpx|0)) | =—,
n 00 n

for any unbiased estimator .
Because the density function of Y is

n—1

ny

FO18) ==

and

0 n
mn=£ﬁ@@=ﬁja

let us use an unbiased estimator

instead of Y itself. Then,

92
- nn+2)°

Apparently, this VIOLATES the Cramer—Rao inequality.

1 2
)@W%HW)

n
2
=<n+1> ( n 92_(
n n+2

n
n+1

)
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(89)
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Actually, in the derivation of the Cramer—Rao inequality, the exchangeability of derivative and integral were
assumed and used. That is, when a parameter specifies the region of integral, the Cramer—Rao inequality does not
necessarily holds.

3.11 Appendix. Invariance of maximum likelihood estimation under parameter transformation

Another merit of the maximum likelihood estimation is that the result does not depend on the coordinates or
parameter sets used.
For example, the parameters of the gamma distribution can be transformed from (&, 4) to (, k). When

A
u=— and
o
k=24 (95)

are satisfied, the two distribution p(x|a, 1) and p(x|u, k) have exactly the same function form p(x).

As the maximum likelihood estimation tries to estimate the form of the density function p(x) from observations, the
estimates using different parameter sets give the same result. That is, the following “invariance” holds for the
estimators:

o= and

&~ Q| oy

. (96)

Thus the result is independent from parameter sets. Although there are choices for parametrization, the reality or the
function form of the distribution is invariant. This allows us to change parameters or coordinates and play around. In
this way, the maximum likelihood estimation is compatible with the information geometry, where parameters are
transformed so that the Fisher matrix for the new parameter set is diagonal.

K=

4. Exponential Family and Parameter Orthogonalization

For the exponential family,

px16) = exp| Y- Oikix) — W@, ©7)

a parameter transform which diagonalize the Fisher information matrix exists [5, 6]. Thus, for practical applications, it

is worth testing if the probabilistic model one considers belongs to this family. The exponential family includes normal,

gamma, beta, binomial, Poisson, and negative binomial distributions and shares many nice statistical properties [8].
New coordinates (or parameters) n’s can be defined as

0
ni = E[k(X)] = ) (o). (98)
Because it can be easily proved that
d d
El —1 X10) —1 X =&, 99
[% og p(X| )Bn,- og p( |77)] j 99)

it is a good idea to use mixed coordinates such as (6;, ;) or (1, 6,) instead of 6-coordinates (6,6,) or n-coordinates
(11, m2).

4.1 Example: Gamma distribution

Consider the gamma distribution with the conventional coordinates:
bl

Lay= %
px|A, o “T”

=exp{(1 — Dlogx — ax —log'(1) + A log a}. (100)

A—1 —ax

This belongs to the exponential family because one can take
0 =1—-1,
ki(x) = logx,
6, = —a, and,
ky(x) = x. (101)
Then, n’s are defined by
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_awe)  awe T

= = log «, d,
= "5, T e
WO v A
7= 50, YR (102)

Thus, the mixture coordinates (6; + 1,1,) = (1, u) = («, u) give a diagonal Fisher information matrix. Note that the
matrix is diagonal at any point of the coordinates (u,«). That is, the Fisher information matrix was globally
diagonalized by the parameter transformation.

5. Mixture Family and Parameter Orthogonalization

For the mixture family,

P = 3 mai + (1= 3 i) a0, (103)

a parameter transform which diagonalize the Fisher information matrix exists [5, 6]. Thus, for practical applications,
it is worth testing if the probabilistic model one considers belongs to this family. Note that a mixture family appears
in a doubly stochastic process where a (hidden) index i is chosen with probability n; and then x is generated by
qi(x).

New coordinates (or parameters) 0’s can be defined as

0
61 = 3800 = [ @1t = o log ps (104
where ¢(n) is the negative entropy
¢(n) = Ellog p(X, n)]. (105)
Because it can be easily proved that
d d
E| —1 X,0)—1 X, =4y, 106
[aei og p(X,0) o og p( n)} i (106)

it is a good idea to use mixed coordinates such as (6, n,) or (11, 6,) instead of a 6-coordinates (6, 6,) or n-coordinates
(11, m2).
5.1 Example: Log linear model

Consider the log linear model with the 1 coordinates:
PX =xY =y =>0-m—n+n)l—-x)1—y)+mxl —y) +ny(d —x) +ni@x+y—3xy). (107

This belongs to the mixture family because one can take
no=1—=mn—mn+no,
qo(x,y) = (1 = x)(1 — ),

nt = ni,
q1(x,y) = x(1 —y),
n2 = N2,

g2(x,y) = y(1 — x),
n3 = —ni2, and,
g3(x,y) = x+y — 3xy. (108)
Then, 65 is defined by

P1oPo

03 = E[(¢3(X,Y) — qo(X, Y))log P(X, Y)] = log . (109)
PooPyy
Thus, the mixture coordinates (711, n»2,03) give a (block-)diagonal Fisher information matrix. Again,
m = Pio + P11,
n2 = Po1 + P11, and,
P1oPor
0z = log PoPry’ (110)

The Fisher information matrix is given by
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1 1y 1 1 1 1 1y 1 1
| Go TG, o e~ Gy TG T8, O
1 1 Ly 1 1 1 1y 1 1
! <PL+,%+PL+PL> P o TG TR G tR)GgtE) O ain
00 10 01 11 O 0 1

Note that the Fisher information matrix is block diagonal.

6. Remarks

In this paper, we mostly focused on the local metrics of the information geometry. One thing which is very
important, but we did not discuss is Pythagoras theorem for Kullback—Leibler divergence. The Pythagoras theorem
provides another benefit of information geometry from a more global viewpoint [4, 5, 12-14, 16, 22].

Here we did not discuss model selection [1,7,27]. But it is important to choose the statistical model which fits the
data best among different parametric statistical models. It can be performed by using the Akaike information criteria in
combination with the maximum likelihood estimation.
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