

CIS-12

Inflammatory monocytes infiltrating into allergen-exposed allergic skin acquire anti-inflammatory property through basophil-derived IL-4

Egawa Mayumi¹, Kaori Mukai¹, Soichiro Yoshikawa¹, Misako Iki¹, Naofumi Mukaida², Yohei Kawano¹, Yoshiyuki Minegishi^{1,3}, and Hajime Karasuyama^{1,3}

¹Department of Immune Regulation, ³JST, CREST, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo.

²Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa

Abstract

Monocytes and macrophages are important effectors and regulators of inflammation. Two distinct subsets of monocytes have been identified in mice, Ly-6C⁺CCR2⁺ inflammatory monocytes and Ly-6C⁻CCR2⁻ resident monocytes, that are generally thought to differentiate into M1 and M2 macrophages, respectively. Here we show that $Ccr2^{-/-}$ mice unexpectedly displayed an exacerbation rather than alleviation of IgE-mediated chronic allergic inflammation, in spite of the fact that the recruitment of inflammatory-type monocytes to skin lesions was abolished in $Ccr2^{-/-}$ mice. Adoptive transfer experiments revealed a previously unappreciated mode of monocyte-to-macrophage transition, in that inflammatory monocytes recruited to allergen-exposed skin acquire an M2-like phenotype and exert an anti-inflammatory function, in an IL-4 receptor-dependent manner, responding to IL-4 produced by allergen/IgE-stimulated basophils.