Development of Dependable Network-on-Chip Platform

Tomohiro Yoneda (*National Institute of Informatics*)
Masashi Imai (*Hirosaki University*)
Takahiro Hanyu (*Tohoku University*)
Hiroshi Saito (*University of Aizu*)
Kenji Kise (*Tokyo Institute of Technology*)
Recent cars are equipped with many ECUs
 - Conventional ECU configuration

- CAN, FlexRay, etc.
Recent cars are equipped with many ECUs

- Centralized ECU approach
Recent cars are equipped with many ECUs

- Centralized ECU approach

Any ECU can access any sensors/actuators

ECUs efficiently used by balancing loads
Tasks continuously executed even if some ECUs become faulty
(i.e., faulty ECU does not result in malfunction of its specific functions)
Backgrounds

♦ Centralized ECU approach
 - NoC (Network-on-Chip) based
 - Some European projects
 - Multi-Chip NoC based [Yoneda, et al. PRDC2012]
 - Multiple NoCs are connected via off-chip links
 - On-chip networks seamlessly extended to multi-chip networks
 - Advantages
 - Cost-effective: small NoC chips are cheap, and various sizes of configuration are possible (without developing different sizes of NoCs)
 - Chip-level redundancy: tolerate a chip fault
Backgrounds

- Centralized ECU approach
 - NoC (Network-on-Chip) based
 - Some European projects
 - Recomp: Reduced certification costs for trusted multi-core platforms. http://atc.ugr.es/recomp/
 - Race: Robust and reliant automotive computing environment for future ecars. http://projekt-race.de/
 - Multi-Chip NoC based [Yoneda, et al. PRDC2012]
 - Multiple NoCs are connected via off-chip links
 - On-chip networks seamlessly extended to multi-chip networks
 - Advantages
 - Cost-effective: small NoC chips are cheap, and various sizes of configuration are possible (without developing different sizes of NoCs)
 - Chip-level redundancy: tolerate a chip fault
Our Project

- Hardware platform
 - Multi-Chip NoC
 - Dependable, adaptive, deadlock-free routing
 - Efficient inter-chip communication technology
 - Evaluation board

- Task execution
 - Pair & Swap
 - SmartCore

- Task allocation
 - Redundant allocation, redundant scheduling
Our Project

♦ Automotive Application
- Integrated attitude control system for a four-wheel drive car
 - Torque, brake, and steering control of 4 wheels performed by ECUs
- Highly cooperative process needed by each ECU
 - Integrated Control ECU
 - 2 Electric Power Steering Control ECUs
 - Brake Control ECU
 - Battery Management ECU
Our Project

- Automotive Application
 - Integrated attitude control for four-wheel drive car
 - Torque, brake, and steering control performed by ECUs
 - Highly cooperative process
 - Integrated Control ECU
 - 2 Electric Power Steering Control ECUs
 - Brake Control ECU
 - Battery Management ECU
Our Project

♦ Characteristics of this application
 ▪ Stopping control is very dangerous
 ● Higher availability is required
Experimental system

Base chip × 4

HILS (Hardware In the Loop Simulation) system

Base chip

Routers

H.W. accelerator

V850E CPU core

V850E CPU cores

FPGA

External IO

D/A・A/D・etc

PC

Engine

Detectability

Vehicle Dynamics

Emission
Ongoing work

- **Evaluation kit**
 - NoC implementation
 - 4 Multi-Chip ASICs
 - Vertex7(XC7VLX690T)
 - HILS interface
 - Pseudo HIL-plant models (executable on PC)
 - Redundant task allocation tool
 - Input: (Simplex) Simulink model for application
 - Output: Executable codes for redundant cores