
Copyright c⃝The Institute of Electronics,
Information and Communication Engineers

SCIS 2013 The 30th Symposium on
Cryptography and Information Security

kyoto, Japan, Jan. 22 - 25, 2013
The Institute of Electronics,

Information and Communication Engineers

The Implementation of Fuzzy Extractor is Not Hard to Do
: An Approach Using PUF Data

Hyunho Kang ∗ Yohei Hori ∗ Toshihiro Katashita ∗ Manabu Hagiwara ∗

Abstract— The extraction of a stable signal from noisy data is very useful in applications that aim
to combine it with a cryptographic key. An approach based on an error correcting code was proposed
by Dodis et al., which is known as a fuzzy extractor. Physical unclonable functions (PUFs) generate
device-specific data streams, although PUFs are noisy functions. In this paper, we describe a method
for preparing a PUF key during fuzzy extractor implementation. The experimental results showed that
all possible combinations of input message length and the number of correctable errors were tested for
a BCH code with codeword length N, which was the length of the PUF responses.

Keywords: Arbiter PUF, Fuzzy Extractor, Physical Unclonable Function (PUF)

1 Introduction

The fuzzy extractor scheme defined in [1] can derive
reliable bit strings from noisy data and it is a very use-
ful approach for applications that aim to combine it
with a cryptographic key. Physical unclonable func-
tions (PUFs) generate device-specific data streams by
using manufacturing variations of each LSI. High secu-
rity authentication is possible during secret key gener-
ation using PUFs, if a system requires the best extrac-
tion scheme.

Experimental studies of fuzzy extractors [2][3][4] have
received considerable attention since this approach was
proposed by Dodis et al., 2004. However, it appears to
be difficult to implement initially. Thus, a test and
an illustration of how to produce a key may facilitate
a better understanding of a practical fuzzy extractor.
We report the results of some implementation examples
using PUF data and we present a detailed implementa-
tion diagram. We hope that this paper will help users
to understand the implementation of this scheme.

The remainder of this paper is organized as follows.
Section 2 presents the implementation approach and a
detailed diagram. The experimental results and con-
clusions are provided in Sections 3 and 4, respectively.

2 Implementation approach

The key result provided by Dodis et al. [1] demon-
strated that fuzzy extractors can be built from secure
sketches using strong randomness extractors, as shown
in Fig. 1. During the generation procedure, SS is ap-
plied to noisy data w and a random input message r
is used to obtain s, while a strong extractor Ext with

∗ Research Institute for Secure Systems (RISEC), National Insti-
tute of Advanced Industrial Science and Technology (AIST),
1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan ({h-
kang, hori.y, t-katashita, hagiwara.hagiwara}@aist.go.jp)

SS

Ext

P: helper data

x

s

R

r

w

x

Rec Ext R

x

s

w’

w

x

Generation procedure Reproduction procedure

Figure 1: Typical scheme for a fuzzy extractor.

randomness of x to w is used to obtain almost uniform
randomness R. The pair (x, s) is stored as helper data,
P. During the reproduction procedure, the helper data
is used to regenerate the output R from new noisy data
w′ based on Rec(w′,s) and Ext(w,x).
During the implementation of this scheme, there are

two important considerations, i.e., a combination of
information reconciliation and privacy amplification.
The information reconciliation step guarantees the elim-
ination of noise from the measured noisy data. Pri-
vacy amplification guarantees the uniform distribution
of the derived key bits. A BCH code and SHA-256 hash
function were used to address these two basic require-
ments.
In this paper, I examine the fuzzy extractor perfor-

mance of our Arbiter PUF by presenting results for all
possible combinations of the message length and the
number of correctable errors for a BCH code with a
fixed codeword length (i.e., 127, 255, and 511).
Figure 2 shows the implementation diagram for Fuzzy

extractors using the BCH code and hash function (N
= 127). This diagram helps us to understand how the
system operates.

1

Generation procedure Reproduction procedure

RNG1
BCH

enc

PUF

r: 127bits

K bits

(ex.50bits)

w: 127bits

s: 127bits

SHA

256
R

R: 256bits

SS

x: 127bits
RNG2

s, x

Ext

P

SHA

256

Ext

PUF

s, x

w’: 127bits

s: 127bits

BCH

dec r’: 127bits

BCH

enc r: 127bits

w: 127bits

Rec

R
R: 256bits

K bits

(ex.50bits)

x: 127bits

(helper data)

Figure 2: Implementation diagram for our fuzzy extractor (N = 127).

3 Experimental results

The FPGA used in this experiment was a Xilinx
Virtex–5LX (xc5vlx30–ffg324), which operated on a
SASEBO–GII evaluation board [5][6]. All of the perfor-
mance results in this paper were generated using MAT-
LAB. For example, the BCH code implementation is
readily available in the Communications System Tool-
box in MATLAB.

3.1 Performance of the two PUFs tested

In this section, we discuss the performance of the two
Arbiter PUFs that we tested, before moving onto the
fuzzy extractor performance. Reliability and unique-
ness are commonly used to evaluate the performance
of PUFs. In this study, we selected challenge response
pair data for 100 test iterations using 500 IDs from each
tested Arbiter PUF (two different FPGAs were imple-
mented using the same circuit structure, as shown in
Fig. 3).

3.1.1 Reliability

A comparison of the SC Intra and DC Intra of PUF1
in Figure 4 shows that the HD of the PUF was divided
into two distinct classes, depending on the properties of

Arbiter PUF1 Arbiter PUF2

Figure 3: The two PUFs tested on the SASEBO-GII.

the challenge. The peaks of the two sets of histograms
were clearly separated, which indicated that there were
no errors in terms of the false acceptance rate and false
rejection rate.

3.1.2 Uniqueness

We tested the uniqueness of the two Arbiter PUFs
by finding all of the SC Intra and SC Inter HDs. As
shown in Figure 5, there were no identification errors
because there were no overlaps in the Intra and In-
ter SC distributions. To maintain stable security, it is
desirable to separate the two distributions adequately.
Thus, three types of response length were used to test
the performance variation.

3.2 Fuzzy extractor performance of our Ar-
biter PUFs

As mentioned earlier, all possible combinations were
used as parameters of the BCH code in each response
length to examine the fuzzy extractor performance of
our Arbiter PUFs.
Figure 6∼8 show the Hamming distance between two

extracted keys when the two tested PUFs were the
same, which demonstrates the dependency of the num-
ber of correctable errors on the testing index. Figure 6
shows that the response errors in all tests were cor-
rected from an index of 5. In Fig. 7 and 8, the errors
were corrected from indices of 10 and 17, respectively.
(Note: the test index of the enrolled PUF response

occurs first, as shown in Fig. 6∼8.)
Figure 9∼11 show the Hamming distance between

two extracted keys when two different PUFs were tested.
Figure 9 shows that the response errors in all tests were
corrected from an index of 17 because of the authen-
tication of different Arbiter PUFs. In Fig. 10 and 11,
the errors were corrected from indices of 33 and 56,
respectively.

2

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

Hamming distance

C
o

u
n

t
ra

te
Maximum HD of SC Intra: 11; minimum HD of DC Intra: 35

SC Intra

DC Intra

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

Hamming distance

C
o

u
n

t
ra

te

Maximum HD of SC Intra: 17; minimum HD of DC Intra: 72

SC Intra

DC Intra

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

Hamming distance

C
o

u
n

t
ra

te

Maximum HD of SC Intra: 28; minimum HD of DC Intra: 148

SC Intra

DC Intra

Reliability

(Response 127bits)

Reliability

(Response 255bits)

Reliability

(Response 511bits)

Figure 4: Reliability.

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

Hamming distance

C
o

u
n

t
ra

te

Maximum HD of SC Intra: 11; minimum HD of SC Inter: 12

SC Intra of PUF1

SC Intra of PUF2

SC Inter of two PUFs

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

Hamming distance

C
o

u
n

t
ra

te

Maximum HD of SC Intra: 17; minimum HD of SC Inter: 30

SC Intra of PUF1

SC Intra of PUF2

SC Inter of two PUFs

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

Hamming distance

C
o

u
n

t
ra

te

Maximum HD of SC Intra: 30; minimum HD of SC Inter: 64

SC Intra of PUF1

SC Intra of PUF2

SC Inter of two PUFs

Uniqueness

(Response 127bits)

Uniqueness

(Response 255bits)

Uniqueness

(Response 511bits)

Figure 5: Uniqueness.

Enrolled PUF Authenticated PUF =

Index of Table 1

Figure 6: Hamming distance between two extracted keys (N=127).

3

Enrolled PUF Authenticated PUF =

Index of Table 2

Figure 7: Hamming distance between two extracted keys (N = 255).

Enrolled PUF Authenticated PUF =

Index of Table 3

Figure 8: Hamming distance between two extracted keys (N = 511).

4

Enrolled PUF Authenticated PUF ≠

Index of Table 1

Figure 9: Hamming distance between two extracted keys (N = 127).

Enrolled PUF Authenticated PUF ≠

Index of Table 2

Figure 10: Hamming distance between two extracted keys (N = 255).

5

Enrolled PUF Authenticated PUF ≠

Index of Table 3

Figure 11: Hamming distance between two extracted keys (N = 511).

4 Conclusion

The main aim of this study was to investigate the
fuzzy extractor performance of our Arbiter PUF. This
test may be helpful to facilitate the understanding of
fuzzy extractor implementation.

Acknowledgments

This work was funded in part by the Core Research
for Evolutional Science & Technology (CREST) pro-
gram of the Japan Science and Technology Agency
(JST).

References

[1] Y. Dodis, R. Ostrovsky, L. Reyzin, A Smith, “Fuzzy
Extractors: How to Generate Strong Keys from
Biometrics and Other Noisy Data,”(A preliminary
version of this paper appeared in Eurocrypt 2004.)
SIAM J. Comput., 38(1), pp. 97–139, 2008.

[2] P. Bulens, F.-X. Standaert, J.-J. Quisquater, “How
to strongly link data and its medium: the paper
case,” IET Inf. Secur., Vol. 4, Iss. 3, pp. 125–136,
2010.

[3] Ya. N. Imamverdiev, L. V. Sukhostat, “A Method
for Cryptographic Key Generation from Finger-
prints,” Automatic Control and Computer Sci-
ences, Vol. 46, No. 2, pp. 66–75, 2012.

[4] V. van der Leest, E. van der Sluis, G-J, Schrijen, P.
Tuyls, H. Handschuh, “Efficient Implementation of
True Random Number Generator Based on SRAM
PUFs,” Cryptography and Security: From Theory

to Applications, LNCS6805, Springer, pp. 300–318,
2012.

[5] A. Satoh, T. Katashita, H. Sakane, “Secure imple-
mentation of cryptographic modules–Development
of a standard evaluation environment for side chan-
nel attacks–,” Synthesiology-English edition, Vol. 3,
No. 1, pp. 86–95, 2010.

[6] The download site of Side-channel At-
tack Standard Evaluation BOard support
file in AIST (National Institute of Ad-
vanced Industrial Science and Technology),
http://www.risec.aist.go.jp/project/sasebo/.

Table 1: Number of correctable errors in the BCH code,
for N = 127

index N K t index N K t
1 127 120 1 10 127 57 11
2 127 113 2 11 127 50 13
3 127 106 3 12 127 43 14
4 127 99 4 13 127 36 15
5 127 92 5 14 127 29 21
6 127 85 6 15 127 22 23
7 127 78 7 16 127 15 27
8 127 71 9 17 127 8 31
9 127 64 10

6

Table 2: Number of correctable errors in the BCH code,
for N = 255

index N K t index N K t
1 255 247 1 18 255 115 21
2 255 239 2 19 255 107 22
3 255 231 3 20 255 99 23
4 255 223 4 21 255 91 25
5 255 215 5 22 255 87 26
6 255 207 6 23 255 79 27
7 255 199 7 24 255 71 29
8 255 191 8 25 255 63 30
9 255 187 9 26 255 55 31
10 255 179 10 27 255 47 42
11 255 171 11 28 255 45 43
12 255 163 12 29 255 37 45
13 255 155 13 30 255 29 47
14 255 147 14 31 255 21 55
15 255 139 15 32 255 13 59
16 255 131 18 33 255 9 63
17 255 123 19

Table 3: Number of correctable errors in the BCH code,
for N = 511
index N K t index N K t
1 511 502 1 30 511 241 36
2 511 493 2 31 511 238 37
3 511 484 3 32 511 229 38
4 511 475 4 33 511 220 39
5 511 466 5 34 511 211 41
6 511 457 6 35 511 202 42
7 511 448 7 36 511 193 43
8 511 439 8 37 511 184 45
9 511 430 9 38 511 175 46
10 511 421 10 39 511 166 47
11 511 412 11 40 511 157 51
12 511 403 12 41 511 148 53
13 511 394 13 42 511 139 54
14 511 385 14 43 511 130 55
15 511 376 15 44 511 121 58
16 511 367 17 45 511 112 59
17 511 358 18 46 511 103 61
18 511 349 19 47 511 94 62
19 511 340 20 48 511 85 63
20 511 331 21 49 511 76 85
21 511 322 22 50 511 67 87
22 511 313 23 51 511 58 91
23 511 304 25 52 511 49 93
24 511 295 26 53 511 40 95
25 511 286 27 54 511 31 109
26 511 277 28 55 511 28 111
27 511 268 29 56 511 19 119
28 511 259 30 57 511 10 127
29 511 250 31

7

