Prof. Sakai's Team

- Formal Design Verifier: FLEC
 - Mathematically and automatically proves the correctness of logical designs
 - On a commercialization path with NEC and others
 - Has been applied to floating point cores utilized in various SoC for high-precision signal and financial computing
 - Regardless of bit-width (high-precision computing needs large numbers of bits), FLEC finishes within one second with 100% verification coverage whereas other EDA vendor tools take more than one year with only 1% verification coverage
- Timing-Fault-Tolerant Circuit/Architecture against Random Variation
 - Two-Phase Latch & Dynamic Timing Fault Detection enable Operation based on not Worst but Typical Case by Dynamically Balancing the Effective Delays among Stages
 - Max Freq is determined by Limit of Detection (2 cycles) \Rightarrow <u>Twice of Existing Schemes</u>
 - Architecture is Verified by Applying to an Out-of-Order Superscalar Processor
- Highly-Dependable FPGA : Highly-Dependable Use inc. Aerospace
 - Hard-Wired Triple Voters
 - User-Logic Reconfiguration Control Unit
 - Enables <u>Self-Recovery from Any Fault on a Chip</u>
- Dependable and high performance many-core architecture
 - Development of on-chip multifunction routers supporting ultra dependability
 - <u>Development and verification of 180 FPGA prototyping system</u> (on market soon)
 - With realistic configurations, our HW system emulating a many-core processor is 129x faster than the SW simulator
 - <u>Development and evaluations of our task mapping method and the dependable mechanism</u> for a many-nodes system