Achieving Ultra Dependable VLSI

CREST-DVLSI - Fundamental Technologies for Dependable VLSI Systems -

Shuichi Sakai The University of Tokyo

CREST-DVLSI

What is Dependability ?

Ring Model of Dependability

- Where should dependability be <u>defined</u>?
 - Δ (~100% design) * (~100% hardware) * (~100% software)

user interface

software

architecture

test

verification

CREST-DVLSI

- O only on user interface
- What should we do for dependability?

1.provide dependability in each layer !

- 2.optimize among layers
 - complement each other
 - remove duplication
 - cost optimization
- IEC61508 / ISO26262
 - •functional safety (dependability)
 - •deterministic / probablistic

2012/6/8, 9

New Design Balance

Formal Verification vs Simulations

- Fujita's Research
- -> large scale verificaiton
- Wakabayashi's Research
 - -> output to the real world!

Worst Case Design vs Best Effort Design

- Sakai-Goshima's Research
 Best Effort Design!
- Kise's Research
- Fault Tolerant Many Core

Best Effort Design and Run Time Recovery

- Complexity / Variation
 - gigantic design cost
- Best Effort Design
 - design in nominal case
- Run Time Recovery
 - Faults, detect them all !
 - recover by architecture / software
- Ensuring User Level Dependability
 - prevent errors
 - preserve time constraints

Questions

- 1. Are the followings true?
 - VLSI design miss / sotware bug = deterministic
 - soft error, hard error = probablistic
- 2. Software is a product of best effort \cdots
 - why not design?
 - why not circuits?
- 3. Who cares the design balance among layers?
 - horizontal distribution of works
 - packaged design of architecture and software
- 4. What is the most important thing?
 - industry
 - university
 - users (society)