
Dependability and Verification

Systems Software Verification Team
Hajime Fujita, Toshiyuki Maeda,

Motohiko Matsuda, Shuichi Oikawa

Entire goal of DEOS project

• Design and implement
systems software mechanisms to achieve

Open Systems Dependability

Goal of our team

• Support dependability of
the mechanisms
for Open Systems Dependability

– If they contain bugs, everything will be lost

• "Introducing new code" = "introducing new bugs"

3

Our approach

• Ensure safety of
the mechanisms for Open Systems Dependability
by using program verification technologies

What is program verification?

• Prove that programs have certain properties
 by analyzing the programs

• E.g., Java and JVM bytecode type checks

– They prove memory safety of programs

5

Advantage of program verification

• We can detect
problems that may occur at runtime
without executing them
– by verifying properties that represent the problems

– For example, we can prevent the following problems
• Illegal memory access, buffer overflow,

malfunction with unexpected inputs,
virus intrusion, API misuse, etc.

6

Limitation of program verification

• "Unknown" problems cannot be verified
– Program verification verifies known properties

– Remember that Open Systems Dependability

is an ability to continuously manage
unpredictable failures (Open Systems Failures)

– What can program verification do
for Open Systems Dependability?

7

Our approach to supporting
Open Systems Dependability

• Utilizing two verification approaches
in a complementary way
– Type checking & model checking

• Boost up stable and continuous modification of programs

in response to Open Systems Failures

pp

Comparison of 2 verification tools
Type checker Model Checker

Target
safety
property

Basic safety
(e.g., memory
safety, etc.)

Advanced safety
(e.g., consistency of
locks, correct API
usage, etc.)

Target
program

C source code
Binary executable

C source code

Spec.
description

(almost)Unnecessary

Necessary
(Describing properties to be
verified as specification, etc.)

Verification
time

short

long
9

Our approach: utilizing two verification
approaches in a complementary way
• Type checking

& model checking

Type Checker

Developer

Unpredictable
failures

Model
Checker

Software

Our approach: utilizing two verification
approaches in a complementary way
• Type checking

& model checking

Type Checker

Developer

Unpredictable
failures

Model
Checker

Software Spec. lllllllll
Checke

Specifications that
describe the
unpredictable errors
(or their causes)

Our approach: utilizing two verification
approaches in a complementary way
• Type checking

& model checking

Type Checker

Developer

Provide firm ground
for software modification/improvement
by verifying basic properties

Support response to
unpredictable failures
by verifying properties
specified by developers

Unpredictable
failures

ss

Model
Checker

Software Spec.

Development cycle

Verifications in the DEOS process:
Imaginary scenario
• An automatic ticket gate goes wrong
– End users noticed that they couldn't pass through the gate

• Then, station staff/engineers try to grasp the situation
– Automatic doors don't work?
– Contactless card readers don't work?
– etc…

• If the situation is within the scope of D-Case of the gate,

it should tell what to do in the situation

• Otherwise…

Verifications in the DEOS process:
Imaginary scenario
• The situation is not covered by D-Case of the gate,

that is,
– it is an unexpected situation, and
– it cannot be recovered/avoided

by runtime dependability mechanisms

• Then, the developers of the gate
try to infer factors that cause the situation
– They can utilize the D-Case diagram of the gate

and logs gathered by monitoring mechanisms

• If the inferred causes are software-related issues, then…

Verifications in the DEOS process:
Imaginary scenario
• The developers express the causes as specifications

and describe (or revise) the specifications
in a specification language

• Then, the developers try to fix programs
used in the gate according to the specifications
– During program modification,

type checking can prevent the developers
from introducing subtle bugs (e.g., segmentation faults)

f i t d i

Verifications in the DEOS process:
Imaginary scenario

• After fixing the programs,
the developers can utilize model checking
in order to check whether
the inferred causes are really solved

– If not, fix the programs again

Verifications in the DEOS process:
Imaginary scenario

• If the inferred causes are surely solved,
the developers conduct several tests
and performance benchmarks
– in order to make sure that the situation never occurs

• If the situation still occurs, repeat the process
from inferring the factors that cause the situation

• Finally, the D-Case diagram is updated

in order to reflect the experiences obtained
through the development process

Application to systems software mechanisms
 for Open Systems Dependability
• Design and implement

an OS kernel API (P-Bus)
for kernel extensions
(P-Components)

• Formally define
specifications for P-Bus
using our specification
description language
(CSCL) Linux Kernel

P-Bus

RI2N FTCS

P-Components

Formal
spec.

of P-Bus
in CSCL

Overview of P-Bus, P-Components,
and program verification

P-Bus Program
verification

P-Components

Provide API spec.

Verify that API is
correctly used

according to spec.
Use API

Provide API
(Provide spec.

as a hint)

19

Case study: checking RI2N P-Component

• RI2N P-Component
– Multi-link Ethernet

for high-bandwidth and fault-tolerant network
– About 3000 lines of code
• Slight modification of source code is required
• It took up to half an hour to perform model checking

20

How many bugs did we find?

• 3 bugs
– 2 with our model checker
• Missing lock release
• Accessing uninitialized timers

– 1 with our type checker
• Accessing unallocated memory

• They could not be found

by a certain commercial static analysis tool

Conclusion

• Goal of Systems Software Verification team is
to support dependability of DEOS mechanisms
for Open Systems Dependability

• In the DEOS process,
two verification approaches are utilized
in a complementary way
in order to tackle Open Systems Failures
– Type checking and model checking

