Logging and Failure Analysis
for Open System Dependability

Midori Sugaya
Yokohama National University
doly@ynu.ac.jp

December 16, 2010

@

Team Members

Yokohama National University
= Midori Sugaya

= Kimio Kuramitsu

= Shinpei Nakata

= AIST (National Institute of Advanced Industrial Science and
Technology)

= Yoichi Ishiwata
= Satoshi Kagami
= Dependable OS R&D Center
= Hiroki Takamura
= Keio University
= Satoshi lwata

@)

Background

= Today’s advanced embedded systems (e.g. Robot) are
composed of various components

= When a failure occurs,

= various factors at stake in the system (hardware,
software, applications, environments, etc..)

= difficult to identify the root cause of the failure and
accidents, especially happen in the operation phase

= In many cases, logs are not stored as evidence
= That is why difficult to always analyze the root cause

g &

Disaster site Nursing care Security

(4)

Challenges and Requirements

* Challenges : Deliver accountability and visibility by log
analysis and feedback to continuous improvements (DEOS
process) for open systems dependability

.
record’

ired 08! "\ dwe T
. eq\,\\\’_e//(_,,) A <no —
WE?ES_LM[:;/\“\» Wwhat \dﬂdﬁi\fo«%"‘/
- /"_‘_/ t(_(/_«—"‘/‘(_
(Requirements N\

= Log obtaining techniques to apply as an evidence for failure
= Log analysis techniques to determine the failure

= Integrating and management techniques of logs to store
\ the knowledge of the failure for continuous improvements)

5
ad' _—
e overnet

. h i .
o’ ud s =“Togs are sources for evidence

®)

Evidence in DEOS Process

= Evidence is bases of an argument that support a claim of a
stakeholder

= Supported by documentations and logs

D-Case

= In System lifecycle

= Development Phase

= Testing (DS-Bench), verification results, specifications, process of
the development, documents that support the guidelines,
responsive action

= Operation Phase

= Log (record), it demonstrates a system provides a service that was
agreed by the stakeholders. Cause analysis results, proactive
avoidance results

Evidence

Verification ____DS-bench

N

(6)

Proposal

= Accountable Logging
= Allowing third parties to inspect the correctness of
system behaviors claimed by stakeholders
= Make an agreement upon the correct behavior of a
system among the stakeholders
= From multiple Layer by accountable logging, we collect
the logs and analysis for the boundary problem.
= User program, kernel, network, compilation
information

= We stored the required logs and expected useful log
in the future

s Evidence Evaluation

= Logs are potentially available in variety of
management, root cause analysis, and feedbacks to
continuous improvements

@)

Accountable Logging D-Case
7 inspected log \\ N /C m% /

‘ O12:00 O 13:00

.12:12 “ 012'11 O 1 :11
'I Q Evidence for Operational
Incorrect) Correct Phase
Behavior / Behavior P
Analyzer {f @) Correct
(Inspector) NO-7/ S Behavior
T Inspection I
model 1
12:00 O 13:00 I
Qe oo l
.12-12 S 13.12 I
+ v
Record
Behavior
) W—
8)
Online Logging and Analysis System
Requirements Requirements
- Performance (Low overhead) - Stakeholder Agreement
- - Communication on Dependability
- Real-time support D-Case
- Adaptive for change / ﬁ /
Accountable Logging))
» Evidence Evaluation
LogModel
Real-time | ToahC
applications’ [oad Stream Evidence Engine oot Lause
) o Analysis
F-I |- D-Analyzer D-Analyzer ~ D-Analyzer

P - D-Analyzer

|

Resource Reservation o

Real-time System shared D-fops — l' -)\
(ART-Linux) 1Y General Purpose OS | logs or rfetmmj

_(~

[Coreo] [Core 1]

©)

Online Logging and Analysis System Components

= Accountable Logging
= D-Logger
= Record the focusing events which agreed on by the D-Case.
s D-Analyzer (Multi-Layer)
= Error detection and failure analyzer is worked on the analysis
core. It provides various techniques to find error and failures
and their dependencies.
= Stream Evidence Engine (SEE)

= A traceable log analysis framework that includes a domain
specific language for evidence analysis, and a streaming
evidence analysis engine.

m Basement System
= Multi-Core based, Multi-OS Architecture

= Separate log analysis core to reduce the target system
overhead and will not disturb real-time performance for the
system.

(10)

Evaluation:
Support Root Cause Analysis based on D-Case

= We support root cause identification by the logging and
log analysis
= Root cause identification needs

a structural understanding,
solving of the problem.
D-Case will give a claim for the

behavior of the system

= Online-visualize method for showing problem structure whose

annotation is followed as FT (FTA). It would reflect log-analysis results
on FT. we call this online evolving FT as FT online.

= [t provide visualizing method of our analysis results for human.
= Human needs to understand “the problem structure”

Online support for Root Cause Analysis on Robot System
Experience

(1

= We will provide online fault tree for showing problem

structure for supporting detecting and debugging
= Itif analyzer found error in the system, it shows warnings
= D-Case will provide the recovery action and policy in the tree

Root Cause Analysis

—_
Network
ol
=
Online
Loggin — S E-
NR erver
RT T
| Coreo | Coret 1‘.;:.?
s2-Box

Accountable Logging and
Feedback

Result Storage DB : Result of analyzers would be
stored

What is the Root Cause of Anomaly Behavior?

(12)

= Demonstration

Normal Behavior

Anomaly Behavior

!
¥
4

(13)

Demo System Configuration

= Basic System Architecture

= ART-Linux (Provides hard real-time support for Linux)

= AOS (Our proposed Accountable Logging and Analyzing System)
= Application

= Servo Controller (Real-time Task)

= Robot Camera : Detecting obstacle by image histogram analysis, It
looked for around (Non Real-time Task)

@L Robot Camera

===

—

——

Priority
4

Servo | [

Robot
Camera || []

(14)

Please guess the root cause?

- ~§7
These are the possible

answers

Comm®ment

@,
APl Miss o Specification (API) art_enter, Use different API (usleep) for
art_wait, art_exit forreal-time sleep instead of art_wait

task
Priority Real-time Scheduling Support, Developer did not understand the
Inversion Priority Inversion should be priority will not inherit during task
solved by Priority Inheritance. blocked. There is no commitment.

That cause the priority inversion

Feasibility Real-time feasibility should be Scheduling Feasibility design miss

achieved by Rate Monotonic (utilization is exceeded above the
Algorithm feasibility study)
Memory program should be A application have memory leak
Leak implemented without any bug (forgot free())
expecting bugs

(15)

Root Cause Analysis from Log

s The execution time of the API function call was measured
by collecting a time stamp just after calling API

= In order to avoid the influence on the result of other running tasks,
preemption was avoided during the measurements

= Each possibility is analyzed from log, them judged its
correct or not

29163513 1266851139.523961097 lock 89| 2 00000485 1 1

29163514 1266851139.523960955 [free 89| 2 80002485 1 1 [Resu]t

29163515 1266851139.523961131 lock 93 2 00000485 1 1]

29163516 1266851139.523964964 [lock 93 2 80002485 1 1 'E Ok TRUE/FALSE
8 ﬁv_u_/

)

Analyzer

1 1
time Function calls

Responsible Map

Specify a component
that is cause of failure

and responsible stake@gﬁe

(16)

Stream Evidence Engine

* A management system that deals transparently with logs

* Provides programming framework for analysis
- Analyzer is used to perform failure analysis, and can be handled
transparently
* Developer of analyzer simply adds an interface to SEE, and
achieve the desired functionality easily

r

1

1

'SEE DSL Analyzer Analyzer
1 yzZ yz
1

1

1

1

1

1

1

1

1

1

1

1

1

1

Analyzer [[Analyzer
l Log stream

___.] __________ logstream _

Converter
]

@D-Box WVVEVY Online monitor D-BoX @

I

(a7

Accountable Konoha

s Model Generation form Annotation in Source Code

= Automated Logging with Language Virtual Machine
= Model generation to create the commitment for D-Case

Source Code + Annotation

model generation ety
void configure() { = ==
@Goal Configuration; - e ==
{ . 3 R
@Goal ServerConfigration; r_-i-_-_-_/-:-_-_:::---: = --- =
, compile : = \ y " v\ : R --- e
} —) ! | Compiled bytecode) ; m X 1 1 1 1
o o ke N e S param .
void main() { n—===—-----— ------] Commitment
configure();
@Goal UserOperation; \'/ \'V
o
{ — — N
y Runtime inspectors ~ f===== > / S
} 7 Logs Storage | or \Netvyork /
Konoha Virtual Machine €

N

(18)

Model-Based Anomaly Detection

= Anomalistic behaviors have patterns
= DoS attacks, fork attacks, infinite loops, ...
= Resource usages are shown the symptom of them
= There are some symptom before failure happen
= We will tend not to be aware of the symptom
= Modeling approach to find anomaly symptom
= Automatically create model of normal behavior of system

= If an anomaly model has appeared, the detector will send an alert
to administrator. It would be the trigger of the further
investigation.

Model the usual behaviors Monitor Statistical Datzia

Process
Resource Usage

(19)

Control Charts

= They monitor characteristic values that characterize the quality
of target

= In our technique: processing time

m They raise an alarm if the measured values statistically deviate
from standard values

= To do this, they compare
= A statistic of current characteristic values

= Baselines calculated from the data measured in a
controlled environment

Warning

Upper Control Limit

Center Line

Lower Control Limit

Median of
Processing time

Lot Number

(20)

Learning-based Anomaly Detection
with HMM Modeling of Resource Information

= Model-based Approach

= AKkernel level loggers: Monitor each task and collect the resource
usage of them. The variable variable periods precisely used: Ayaka
[Sugaya, 2009]

= Developed Item

= Auser mode analyzer: Create models with machine learning (HMM)
to find anomaly (security, and failure)

Statistical Data

Process [

Process Dﬁl Process Other host CPU, Memory, Network (Aj)

m———————A - ——--Pracess Group_ == . 7!} v

{ i Vectorin

I | 9

1
1

E Analysis Module : Control-daemon : “'

i =n ! i

i Analysis System i Clusterlng

1 1

1 1

| | Timer | Network prbc i v

| LTTng) Memory 1 HMM Model Learning

i Accounting !

| System CPU buffer i v

E Resource Monitoring System H ; }
’ Runtime; Model Evaluation

I CPU I Memory I Network

- Training/Detecting Ph@ @

(21
Future work: Improvement Cycles

Development Phase
DS-Bench
—
Add fault Fault Add anomaly Fault
- - To FL Removal To AL Prevention)
Evidence collection Evidence collection Fault
=> Root cause = Root cause

Online analysis analysis
log analysis T ~====77°7

Prevention

failure

correct
Operational Phase

(22)
Conclusion

= We present a logging and analysis architecture and

management framework for future advanced embedded
system such as robotics

Demonstration shows the difficulties to find the root cause
from anomaly behavior

= Our system and tools effectively found the root cause at this case,
but the actual system is more complex and difficult to find the root
cause

In the future, we will provide a framework to store,
integrate and management of the knowledge from logs as
evidence

= We need to develop feedback path from viewer and system

= Also for open system environments, improvement cycles between
development and operation phases

