

Dependability Case and Metrics for Open Systems Lifecycle

Yutaka Matsuno
Information Technology Center
The University of Tokyo
matsu@cc.u-tokyo.ac.jp

December 16, 2010

Today's Contents

- D-Case: Dependability modeling language
- D-Case writing example on Reception Robot
- D-Case Tools
- Integration with D-fops: DEOS framework architecture
- D-Case's challenges to Open Systems Dependability

IST

(2)

D-Case/Metrics Team Members

- University of Tokyo
 - Yutaka Matsuno
- Keio University
 - Jin Nakazawa
- AIST
 - Makoto Takeyama
 - Toshinori Takai
 - Takeo Matsuzaki
 - Kenji Taguchi

- Fuji Xerox
 - Atsushi Ito
 - Hajime Ueno
- DEOS Center
 - Hiroki Takamura
- Thanks to D-fops team and DEOS Center

(4)

Open Systems Dependability (1/3)

- Dependability is the system's property for sustaining services even in the existence of risks
 - Discussed as composite of Availability, Safety,
 Reliability, ... (Jean-Claude Laprie et al)
- Open Systems: systems whose functions, structure, boundaries are changing by time to time
- DEOS project is discussing what is dependability from its root, and aims to establish "Open Systems Dependability"

Open Systems Dependability (2/3)

- In Open System, everything is uncertain. All stakeholders have only limited information
 - All stakeholders must communicate each other and agree on dependability of the system
 - System must provide evidence for the agreement

(6)

Open Systems Dependability (3/3)

- D-Case: Dependability Modeling Language for mutual dependability agreement among stakeholders
- D-fops and DEOS components: provide evidence for the agreement

Context:C_1

D-Case: Dependability Modeling Language

Goal:G_1 Goal: Current D-Case Risk Analysis Proposition to be Results: System X is free documents are possible faults are from possible faults **Argued** fault A and fault B tree structured and mostly the same as Goal Context: Strategy: Strategy:S_1 Structuring Rationale for decomposing **Environmental** a goal. Here we consider Notation (GSN) Argue over each information such possible fault cases for fault A and B for as risk analysis separately Safety Cases Goal:G 2 Goal:G 3 System X is free System X is free from fault A from fault B Monitoring: Monitor:M_1 Evidence:E_1 **Evidence** Evidence: by monitoring objects which Runtime Monitoring FTA Analysis Result in operational finally support phase divided goals

Dependability Metrics

- Dependability should be evaluated by how well stakeholders argue dependability of the system
- D-Case can be used to show Dependability coverage
- Weighting Goals by e.g.,Risk Analysis is future work

Diamond indicates
we can not argue further
(no evidence) at that time

(8)

Safety Case

- "Case" is one of words in courts
- Recognized after serious incidents in UK
 - E.g., Piper Alpha North Sea Oil (167 dead, 1988)
- Not only following a procedure, but arguing why the procedure makes the system safe, based on evidence
- Widely required for regulation in UK, and now worldwide
 - ISO 26262: Functional Safety for Automobile
- We participate ISO and OMG system assurance meeting and visit York, Newcastle, ..., and City University London

(10)

D-Case

- We base our study on safety cases. We found goal oriented, evidence-based arguments are essential in open environment
- We aim D-Case to be a dependability modeling language,
 co-developed with D-fops and DEOS components
- By D-Case, we aim to describe the strategy to decide how to branch from a node, and the construction, or the condition of the branch, which are described as DEOS process

Writing Example: Reception Robot

- Let's consider Reception Robot in a company
 - Robot has Camera
 - Recognize visitor, approach and identify visitor by face recognition function

(12)

D-Case Process

Unexpected approaching to visitor → Safety

Visitor must wait. 10 seconds waiting may cause some loss; maximum

1 minute wait

 → Availability (we consider Availability) Consider a model (robot, camera, control system) and argue over each sub-components

Argue over development, testing, operational,... phases of the robot system

Argument should be logical, rational, ...

Stakeholder agreement for Reception Robot

- Prepare a spare robot, and implement Fail-Over mechanism. By Fail-Over, in most cases, visitor only needs to wait 10 seconds when a failure occur. In worst case (both robots are unavailable), visitor must wait 5 minute.
- The agreement is made by D-Case whose top goal is "Robot recovers from failures within acceptable time"

(14)

D-Case for Reception Robot: Top Level

D-Case for Reception Robot: Fail Over Argument

(16)

D-Case for Reception Robot: Fail Over Argument when Camera Fails

D-Case Tools: D-Case Editor

(18)

D-Case Tools: D-Case Editor with Redmine

D-Case Tools: D-Case Viewer

- Will be connected to D-Case DB
- To be used in operational phase for referring D-Case

(20)

Integration with D-fops: A Demo System of Reception Robot

Demo will be shown in tomorrow's workshop

DEOS Process

(22)

D-Case's Challenges to Open Systems Dependability

- Precisely describing combination of arguments over process and system
- D-Case maintaining and updating during whole Open Systems Lifecycle
- Modeling Agreement among stakeholders
- Modeling Dependability relation among open systems
- Evaluating Dependability: Dependability Metrics

Summary

- D-Case: Dependability modeling language
- D-Case writing example
- D-Case Tools
- Integration with D-fops (more detail in Yokote san's talk)
- D-Case's challenges to Open Systems Dependability

