JST/CREST Open Systems Dependability Symposium 2010

Open Systems Dependability

December 16, 2010

Mario Tokoro
Research Supervisor
JST/CREST Dependable Embedded OS for Practical Use
(Sony Computer Science Laboratories, Inc.)

IST B F RIS

Background

* Demands for the dependability of huge and complex
software systems

— which include black box software such as legacy codes and
off-the-shelf components

— which are connected to networks that may cause security and
integrity problems

* Demands for coping with environmental and
requirement changes in operation

— functions, user interfaces, performance, etc
— networks and services on networks

* Necessity of Continuous Operations
* Consciousness to performance/cost over lifecycle
* Increased accountability to service/system providers

December 16, 2010 Mario Tokoro

Software Engineering
A Brief Historical Review

structured
programming . open source
project software
management

1972 E.W.Dijkstra
1997 ~

system of syste
engineering

1981 ~

object-orienteo
object-oriented analysis & design
. 2004 ~
1967 SIMULA 1991 Rampaugh’s OMT tra-large-scale
1982 Smalltalk-80 1995 Jacobs system

1995 Java 1997 UML/2004 UML2.0 2006 ~
oftware proce
improvement
1989 CMM
2000 CMMI
December 16, 2010 Mario Tokoro
Dependability
A Brief Historical Review
. Architecture Architecture &
Dependable Computing Verification
MAPE Loop
/ # Elemental q >
Technology /
Elemental Technology Elemental Technology
Reliability (computers) R_AS/RASIS Autonomic
(online systems) (networked services)
Functional Safety Architecture &
Verification
/ q Software Processes
Elemental Technology Elemental Technology
Safety (parts & devices) Functional Safety

(computer controlled system)
December 16, 2010 Mario Tokoro

Dependability —

Dependability and Security
by IFIP WG10.4 (2004)

—— Availability —
— Reliability
— Safety

Confidentiality [Security

— Integrity |

—— Maintainability

December 16, 2010 Mario Tokoro

Standards and Guides

e Standards

IEC 61508: Functional Safety

IEC 60300-1: Dependability Management

IEC 60300-2: Dependability Program Elements and Tasks
ISO/IEC 1207: Software Life Cycle Processes

ISO/IEC 15288: System Life Cycle Processes

etc.

* QGuides

CMMII: Capability Maturity Model Integration

DO-178B: Software Considerations in Airborne Systems and
Equipment Certification

MISRA-C: Guidelines for the Use of the C Language in Vehicle Based
Software

IEC 61713: Software Dependability through the Software Life-Cycle
Processes — Application Guide

IEC 62347: Guidance on System Dependability Specifications
etc.

December 16, 2010 Mario Tokoro

Are We OK with Existing Ones? or
Do We Need a New Approach?

* Previous approaches to huge and complex software systems
were based on the Closed Systems Hypothesis
— asystem can be composed of complete components

— we suppose we can know the whole system and the behaviors of the
whole system

* However, the hypothesis cannot hold, due to
— the incompleteness of specifications and implementations

— the uncertainty of environment and requirement changes to systems
in operation

* We need a new approach based on the notion of Open
Systems.

December 16, 2010 Mario Tokoro

Closed Systems vs. Open Systems

Closed Systems Open Systems

* The boundary of the system is definable. * The boundary of the system changes over time.

* Interaction with the outer world is limited, * Interaction with the outer world and the system
and the system functions are fixed. functions change over time.

* The subsystems or components of the system ¢ The subsystems or components of the system
are fixed and their relationship does not and their relationship change over time.

change over time.

December 16, 2010 Mario Tokoro

Comparison of Closed and Open Systems

Closed Systems Open Systems
Mhe boundary of the system is \ KThe boundary of the system \
definable. changes over time.

* Interaction with the outer world is * Interaction with the outer world
limited, and the system functions and the system functions change
are fixed. over time.

* The subsystems or components of * The subsystems or components of
the system are fixed and their the system and their relationship
relationship does not change over change over time.

AN S

* The systems is observable from * An observer of a system is inherently a
outside of the system. part of the system, therefore we can

* Reductionism is applicable. only take the internal observer’s view.

* We can pursue “strong solution.” * Reductionism is not applicable.

* “Management” with best effort.

December 16, 2010 Mario Tokoro

A Huge and Complex Software System
is an Open System

* |t has potentiality of incidents due to

— the incompleteness of specifications and
implementations

— the uncertainty of environment and requirement
changes to systems in operation
* We need to secure dependability of a huge and
complex system over lifecycle in a practical way,
based on the perspective of Open Systems

December 16, 2010 Mario Tokoro

Can We Consider a Huge and Complex
Software System as a Closed System?

Yes, if we can assume:

e asystem does not change for a certain period of time
and

* the lifecycle of the system can be the accumulation of
these periods of time.

However, if we need the system continues to give services
while being modified, and possibly even in the case of
incidence, it is extremely difficult to separate the phase that

* the system is in normal operation
* the system is being fixed and
e the system is being modified.

December 16, 2010 Mario Tokoro

Open Systems Dependability: Definition

e Functions, structures, and boundaries of a huge and complex
software system change over time. Hence, incompleteness
and uncertainty are inherent to such a system, which may
result in failures in the future.

* Open Systems Dependability is the ability

1. to continuously prevent the said factors from causing failure,

2. to take appropriate and quick action when failures occur to
minimize damage,

3. tosafely and continuously provide the services expected by
users as much as possible, and

4. to maintain accountability for the system operations and
processes.

December 16, 2010 Mario Tokoro

How to Achieve Open Systems Dependability

Can it be achieved by
 elemental technology?

e architecture? or

e process and management?

December 16, 2010 Mario Tokoro

How to Achieve Open Systems Dependability

We think it can be achieved by
e process and management
* which is supported by architecture

* which is supported by elemental
technologies

System
Architecture

Process and
Elemental Management

Technology

Open Systems Dependability

December 16, 2010 Mario Tokoro

The DEOS Process (1)

Consists of two cycles:

* Failure Reacting Cycle Failure

. ; Preventlon
— Failure prevention

Responswe
Action

— Responsive action
. Analysis

— Cause analysis

* Requirements/Environment Change

Accommodation Cycle

— Design
. Design
— Implementation g
— Verification
_ Test [Test
December 16, 2010 Mario Tokoro

The DEOS Process (2)

Two most important issues are lacking:

* We need to achieve accountability in case
of incidence
* For this, we need to show evidence by

— process documents e.g. design,
implementation, verification, test, failure

prevention, responsive action, cause analysis,

and daily check and maintenance,
— Logs that record the behavior of the system

* Based on stakeholders’ agreement
through

— argumentation and documentation tools

December 16, 2010 Mario Tokoro

>
J<—

mplementation

Verlflcatlon

(

.

Accountability

\

J

%

(&

Evidence by
documents
and logs

i |}

Stakeholders’

agreement

The DEOS Process (3)

How to make Stakeholders’ Agreement?

Goal

e Stakeholders: Users,
Service/Product Providers,
Systems Providers,
Certifiers (Authorities), etc.

* D-Case:

— Modified version of
Assurance Case using Goal
Structured Notation

— Describes dependability
agreements supported by
evidence

Strategy

Sub-Goal

Strategy

December 16, 2010 Mario Tokoro

The DEOS Process (4)

D-Case

DEOS Process

———

Requirement/Environment
Change accommodating cycle
System change requests
‘ Stakeholders’

based on stakeholders’
agreement

AN

~ requirements/

System
environment
changes

D-Case
growth cycle

Implementation | Verification Test

Cause analysis

Responsive action

Failure reacting
Failure prevention Anomaly cycle
detection/
Unexpected failure
happen

Achievement of
accountability

Normal

operation
Viario lokoro

D-Case Top Structure

Sustainability of

) Goal
Services

Consider the DEOS
process

Strategy

Requirement/Environment
Change accommodating cycle

Failure Sub-Goal
reacting cycle

Consider the stages of
Requirement/Environment
Change accommodating cycle

Consider the stages of Strategy
Failure reacting cycle

System change requests) , Achievement
based on stakeholders’ Design/Implementation
agreement /Verification/Test

Achievement

of Failure Responsive Cause of

accountability

prevention action analysis accountability

December 16, 2010 Mario Tokoro

D-Case Bottom Structure

Sub-Goal

Evidence

Sub-Goal

OO0 O OO s

Supporting
l l / / [I/ / I l/ / DD documents
and logs

December 16, 2010 Mario Tokoro

Realizing Open Systems Dependability

System Architecture

Framework Tools

@ Design tools
- D -Case Editor
- Policy Scripter
@ Verification tools
- Type Checker
+ Model Checker
@ Test tools
- DS -Bench
- D Cloud

@ Preventability
- System and Application Monitoring
+ Anomaly and Predictive Detection
* Security Attack Protection
@ Manageability
- lIsolation . Migration .~ Reconfiguration
@ Improvability
« Lifecycle Management
@ Accountability
* Evidence Management and Logging
« Policy and D-Case Management

(@ Monitoring and Analyzer \

+ Monitor & Logging
-
« Incident Analysis

o~

- Failure Prediction - ~ (] D'f’ase
+ Evidence Registration ® Verification and Evaluation @ Policy
- Benchmarking @ Evidence

- Cause Analysis

: Processes
+ Metrics

[

+ Fault Injection @ Failure Reacting Cycle
@ Requirement/Environment

Change Accommodating Phase

@ Constraint and Control \

+ Isolation

(® Record A

+ Migration + System Recorder

- Reconfiguration/Undo - Record Box
- Quota
. Security - e J
- Software Anti -aging

Evaluation Criteria
International Standards
Guidelines

@ Management
e « Policy Management

~— . D-Case Management

Elemental Technology .

=
December 16, 2010 Mario Tokoro

System Architecture: DEOS Framework/Tools

D-Case Aoplicat
Editor/Viewer pplications
OpenFTA Middleware
Viewer L
SR - Application
3 | lllllll IIIIIII J L J L '*:—Containers
Type : :
Checker D-Application Manager
Model § :
Checker D-Logger D-Analyzer D-Case Walker D-Effector
DS-Bench :
| | D-System I :
D-Cloud 3 Monitor D-Box oS oS E
; = ; System
” i | llllll - J U J '-------‘—l‘i—ContainerS
o | ;
2 | | D-Visor ;
Monit | ART-Linux
onitor | System D-Case :
& Analyzer 1 ; @ D-Case :
: Monitor ® Polic . L !
- &Security | @ £ o Virtualization |
3 PR &Multi-0S i Framework

December 16, 2010 Mario Tokoro

DEOS Framework/Tools and DEOS Process

D-Logger || D-Analyzer || D-Effector

1

1

1

1

i

1

D-System . D-Case D-Case T Model DS-Bench '

Syse D-Visor D-Box < ; SR SEENE |

Monitor Walker Editor Checker D-Cloud !

1

) .)) 1

Anomefly detection Quick . Evidence Evidence by Unit test Ewdenct.e by :
Analysis Responsiveness management Integration test |

__

DEOS Framework &Tools
DEOS Process

D-Case
growth cycle

Design | Implementation | Verification Test

Requirement/Environment
Change accommodating cycle

System change requests
based on stakeholders’

m ﬂ agreement
Stakeholders”

~ requirements/

System
changes

Responsive action . A
Failure reacting cycle

detection/ |
Unexpected failure AChlevemef\F of
happe accountability

Normal
MakioTokers — operation

Elemental Technologies

* Virtual Machines
— give the mechanism of isolation
— monitor for security, failure prevention, and logging
* Policy Script/Fault Scenario
— script languages
— responsive action, cause analysis
* Program Verification
— model-based verification
— type-based verification
* Program Test and Benchmarking (DS-Bench/D-Cloud)
— correctness and performance test
— fault insertion test
* And many others

December 16, 2010 Mario Tokoro

Standardization Activities

e Standardization of the DEOS Process

— based on the notion of Open Systems Dependability
— detailed specification of the DEOS Process
* Activities in
— ISO/IEC JTC1/SC7/WG7 (Software and system engineering-
Lifecycle management)
— ISO/IEC 15026 for assurance case
— Proposal of D-Case to OMG industrial standards

December 16, 2010 Mario Tokoro

DEOS Project

Dependable OS for Embedded Systems Aiming at Practical Applications

* A project under Japan Science and Technology Agency (JST)
* Roughly S50M in total over 7 years started in 2006
* 5teams selected in 2006 and 4 teams in 2008

* To develop Dependable Embedded OS based on the notion of
Open Systems Dependability

* R&D Center (DEOSC) was established in 2007 for supporting
development, integrating technologies developed by the
teams, and promoting the use.

e DEOS Consortium is planned to be established in 2011 to
promote and distribute the DEOS Process and Systems.

December 16, 2010 Mario Tokoro

DEOS Project Organization

rea Management Advise%

Research Supervisor

Deputy Research Supervisor

Area Adviser]

A Consortium N
1 \
I 1
1 4 / \ \ 1
: DEOS R&D Center Research Team :
| 1
: ® System Architecture ® Public Relations :
| ® Framework ® Information \
1 ® Reference System Exchange 1
1y, ® Management Process ® Publication N
: ! ® Development Environment| & Advertisemen \ :
| : ©® Demonstration System ® Results : 1
1 ©® Maintenance Dissemination !
[] 1
[k / : 1
[1!
vl 1 !
1 W
) - i
| nt'| Standardization |
|
A i
. 1
\\ - External Community _-
Development
Resources
December 16, 2010 Mario Tokoro
DEOS Project Schedule
Fiscal Year [Fy2006 |Fr2007 |Fv2008 [Fv2009 [Fv2010 [Fy201i [Fy2012 [Fy2013 [Fy 2014
AD. 2006 2007 |2008 {2009 2010~ 2011 2012 [2013 2014 |
Phase 'Phase 1 Phase 2 R fPhgse_S : EPh_ase 4
Area Activities | | : |
FY 2006 Team Activities | | | I J
FY 2006 Team Evaluation I A,".: option | ‘nt Brrim ‘ Final
FY 2008 Team Activities | [[|
FY 2008 Team Evaluation IS0 ~ i

Core Team Activities

LT
BREW T

A_ﬁnal |

Subcore Team Activities

Consortium Activities
User (System Provider) Evaluation
Open Community Activities

Development ltems | |

‘System Architecture

Framework
Reference System

Management Process

‘Standards and Guidelines

Elemental Technologies

Development Environment

Demo System for Interim Evaluation

December 16, 2010

Mario Tokoro

Summary

A huge and complex system inherently has
incident factors due to incompleteness and
uncertainty

* We proposed a new approach called Open
Systems Dependability

* Open Systems Dependability is achieved by the
DEOS Process, supported by the architecture
and elemental technologies

e Development of the DEOS Process and the OS
will be released through DEOS Consortium

December 16, 2010 Mario Tokoro

Thank you

JST/DEOS Project
http://www.jst.go.jp/kisoken/crest/en/category/area04-4.html

JST/DEOS Center
http://www.dependable-os.net/index-e.html

Sony Computer Science Laboratories, Inc.
http://www.sonycsl.co.jp

December 16, 2010 Mario Tokoro

