Software Dependability:

Current Approaches and Research Gaps

Karama Kanoun

LAAS-CNRS

International DEOS Workshop, 16-17 December 2010 - Tokyo, Japan

Why Software Dependability Assessment?

i User / customer = Developer / Supplier

« Confidence in the product ¢ During production
« Acceptable failure rate = Reduce # faults (zero defect)

w Optimize development

w= Increase operational dependability
¢ During operation

= Maintenance planning
e Long term

= Improve software dependability

of next generations

Software Dependability - Karama Kanoun - LAAS-CNRS

Approaches to Software Dependability Assessment

i Assessment based on software characteristics

e Language, complexity metrics, application domain, ...

i Assessment based on measurements

* Observation of the software behavior

i Assessment based on controlled experiments

¢ Ad hoc vs standardized — benchmarking

1 Assessment of the production process

e Maturity models

Outline of the Presentation

iz Assessment based on software characteristics

e Language, complexity metrics, application domain, ...

i Assessment based on measurements

* Observation of the software behavior

i Assessment based on controlled experiments

¢ Ad hoc vs standardized — benchmarking

i Assessment of the production process

e Maturity models

Software Dependability - Karama Kanoun - LAAS-CNRS

Software Dependability Assessment — Difficulties

1= Non-repetitive process
= No relationship between failures and corrections

== Continuous evolution of usage profile
¢ According to the development phase
* Within a given phase
1= OQverselling of early reliability “growth” models

== Judgement on quality of the software developers

== What is software dependability?
= Number of faults, fault density, complexity?

w MTTF, failure intensity, failure rate?

Dependability Measures?

Dynamic measures:
characterizing
occurrence of failures
and corrections

Static measures >

Complexity metrics

Number of faults
Fault density

Usage profile Failure intensity

& Failure rate
Envi t MTTF
nvironmen Restart time
Recovery time

Availability

Software Dependability - Karama Kanoun - LAAS-CNRS

Number of Faults vs MTTF

Percentage of faults and corresponding MTTF (published by IBM)

MTTF<1.58 y

= |
MTTF (years)
5000 |[1580 500 158 50 15.8 5 1.58
Product

1 34,2 28,8 17,8 10,3 5,0 2,1 1,2 0,7
2 34,3 28,0 18,2 9,7 4,5 3,2 1,5 0,7
3 33,7 28,5 18,0 8,7 6,5 2,8 1,4 0,4
4 34,2 28,5 18,7 11,9 4,4 2,0 0,3 0,1
5 34,2 28,5 18,4 9,4 44 2,9 1,4 0,7
6 32,0 28,2 20,1 11,5 5,0 2,1 0,8 0,3
7 34,0 28,5 18,5 9,9 4,5 2,7 1,4 0,6
8 31,9 27,1 18,4 11,1 6,5 2,7 1,4 1,1
9 31,2 27,6 20,4 12,8 5,6 1,9 0,5 0,0

=
1.58y <MTTF<5y

Assessment Based on Measurements

Data Collection

\

Times to failures /
failures
Failure impact

Data Processing

» Descriptive statistics
* Trend analysis

» Modelling/prediction

* Non-stationary
processes

» Stochastic models

* Model validation

- J

A4

Outputs

» Correlations

* MTTR

* Availability

» Failure modes

» Trend evolution

e MTTF / failure rate

Software Dependability - Karama Kanoun - LAAS-CNRS

Why Trend Analysis?

Corrections
i+1,4]
Vi+1,3
\ +1,2

V,

i+1,1

Failure intensity

Corrections
. 3 / ' Vik

Changes (usage profile,
H environment, specifications,...)

< |-

Example: Electronic Switching System

Failure intensity
systems
25 T 40 |
Validation | Operation w0]
20 + 20 |
| 4
/\/\ / '\ "
15 ' y
/ \/ \ 1 15 19 23 29 31
10

1 3 5 7 9 11 13 156 17 19 21 23 25 27 29 31 months

Software Dependability - Karama Kanoun - LAAS-CNRS

Electronic Switching System (Cont.)

Cumulative number of failures

220 +—

200
180
160
140
120

80
60
40
20

Validation 1 Operation —

/_//

/

I

yd

100 +— Observed/.
1

e
4

/o

1 3 65 7 9 11 13 16 17 19 21 23 25 27 29 31 months

Cumulative number of failures

220
200
180
160
140
120
100
80
60
40
20

Observed # failures [20-32] = 33

Electronic Switching System (Cont.)

= maintenance planning

— Hyperexponential model application

é /_
[//
1

i
= !
+— Observed// :

1
i
1 Retrodictive assessment *I Predictive assessment ~
<+—, >
1
1
1

/4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 months

Predicted # failures [21-32] = 37

Software Dependability - Karama Kanoun - LAAS-CNRS

Electronic Switching System (Cont.)

Failure intensity and failure rate in operation
(for an average system)

Component Residual failure rate

Telephony 1.210-6/h

be Defense 1.410-5/h
Interface 2.910-°/h

5] Management 8.510-%/h
Sum 5.310-5/h

15 | Observed

Estimated by Hyperexponential model

Residual
0 Tt :Mﬁ failure rate:

17 19 21 23 25 27 29 3 5.710°/h

Other Example: Operating System in Operation

Data = Time to Failure during operation

, 0
Trend evolution 1,5

= stable dependability

0

J AV U
05 Z'MM'A}’I 61|81 101 Wiwﬁﬁ\ # failures
E

-1,5
-2

300000

Mean 250000

Time to Failure 200000

150000

100000 # failures
1 21 41 61 81 101 121 141 161 181

Software Dependability - Karama Kanoun - LAAS-CNRS

Early Validation

Validity of Results

End of Validation

Operation

= Trend analysis
— development
follow-up

——Assessment

= Trend analysis
+
= Assessment

« operational profile
+ enough data?

= Limits: 10-3/h -10-4/h

= Trend analysis

+
= Assessment
High relevance

Examples:

E10-B (Alcatel ESS):
1400 systems, 3 years
A=510%/h

A =107/h

Nuclear I1&C systems:
8000 systems, 4 years
A: 3107/h — 107/h
Ao =410%/h

Research Gaps

1= Applicability to safety critical systems

e During development

== Applicability to new classes of systems

« Service oriented systems

» Adaptive and dynamic software systems = on-line assessment

= |Industry implication

 Confidentiality = real-life data

« Cost (perceptible overhead, invisible immediate benefits)

1w Case of Off-The-Shelf software components?

= Accumulation of experience = software process improvement

= assessment of the software process

Software Dependability - Karama Kanoun - LAAS-CNRS

Off-The-Shelf software components —

Dependability Benchmarking

= No information available from software development

1= Evaluation based on controlled experimentation

'Y \

Ad hoc Q0‘5’e Standard

R\
e v

\‘6‘ . .
S Dependability benchmarking

Evaluation of dependability measures / features
in a non-ambiguous way — comparison \%‘o\e

! ee\‘\\‘ié°e
Properties Ll

Reproducibility, repeatability, portability, representativeness, acceptable cost

Benchmarks of Operating Systems

Computer System Operating System

N
Which OS for my
computer
system?

w= Limited knowledge: functional description
= Limited accessibility and observability

= Black-box approach = robustness benchmark

Software Dependability - Karama Kanoun - LAAS-CNRS

Robustness Benchmarks

\ Application

& OS Outcomes

Device

Operating system drivers

Faults = corrupted system calls

OS Response Time to Faults in the Application

700

600 -
500

us 700

600

500
' 400
' 300
- 200
Inbhubhk~

2.4.5

400
300
200
100

0

Windows Linux

NT 4 2000 XP NT4 2000 2003 2.2.26
Server Server Server

2.4.26 2.6.6

. Without corruption

. In the presence of corrupted system calls

20

Software Dependability - Karama Kanoun - LAAS-CNRS

Mean Restart Time

Windows Linux
120 | seconds 120 seconds
80 80
N I I) I I
NT4 2000 XP NT4 2000 2003 2.2.26 245 2.4.26 26.6

Server Server Server

. Without corruption

. In the presence of corrupted system calls

21

Detailed Restart Time

Windows XP Linux 2.2.26
250 _seconds)
250 1 seconds check disk

200 200 &< —
150 1 150]
100 4 100 -

ey -rerMM.% - =
50 . ; . Fexp g , : . ' eXp

0 100 200 300 400 0 50 100 150 200

22

Software Dependability - Karama Kanoun - LAAS-CNRS

More on Windows family

Impact of application state after failure

Restart time / \
(seconds)

23

Benchmark Characteristics and Limitations

= A benchmark should not replace software test and validation

1=z Non-intrusiveness = robustness benchmarks

(faults injected outside the benchmark target)
= Make use of available inputs and outputs — impact on measures
= Balance between cost and degree of confidence

= # dependability benchmark measures >

performance benchmark measures

24

Software Dependability - Karama Kanoun - LAAS-CNRS

Maturity of Dependability Benchmarks

i Dependability benchmarks = Performance benchmarks

e Infancy e Mature domain

* |solated work » Cooperative work

* Not explicitly addressed ¢ Integrated to system development
* Acceptability? Accepted by all actors for

competitive system comparison

“Ad hoc” benchmarks “Competition” benchmarks

-~

P
Maturity

v @

25

Software Process Improvement (SPI)

Data Collection 4 I
[Measurements]
Data Processing | —» Measures
[Controlled experiments]
Objectives
of the analysis
J

Data related to
similar projects
Feedback to software Y

development process

S—

Capitalize experience

26

Software Dependability - Karama Kanoun - LAAS-CNRS

Examples of Benefits from SPI Programs

w AT&T(quality program):
Customer reported problems divided by 10
Maintenance program divided by 10
System test interval divided by 2
New product introduction interval divided by 3

= |IBM (defect prevention approach):
Fault density divided by 2 with an increase of 0.5 % of the product resources

= Motorola (Arlington Heights), mix of methods:
Fault density reduction = 50% within 3.5 years

= Raytheon (Electronic Systems), CMM:
Rework cost divided by 2 after two years of experience
Productivity increase = 190%

Product quality: multiplied by 4
27

\ — — without process
improvement
approaches

with process
improvement
approaches

~—
——

Cost of scrap / rework

»

Dependability

Process improvement = Dependability improvement & cost reduction!

28

Software Dependability - Karama Kanoun - LAAS-CNRS

20
A &
\
‘6\60\ o8
o), &N
(«g@ 4 ‘\6
W 0\\\“6
e
e‘e\\(&\)
<
<

29

Software Dependability:

Current Approaches and Research Gaps

Karama Kanoun

LAAS-CNRS

International DEOS Workshop, 16-17 December 2010 - Tokyo, Japan
30

Software Dependability - Karama Kanoun - LAAS-CNRS

