Radiological Protection Countermeasures after TEPCO Fukushima NPP Accident

—Who should play the role of risk communication—

Yasuhito Sasaki, M.D., Ph.D. Japan Radioisotope Association

26th, Nov. 2011 at 11:30-11:50 Lecture Hall, Science Council of Japan, Tokyo

Contents

- 1. International Framework of Radiological Protection and Management
- 2. The 2007 Recommendation of the International Commission on Radiological Protection (ICRP)
- 3. Responses to Release of Radioactive
 Substances
 Reference: Quantities and Units used for
 Radiological Protection

Applications of Radiation and Radioisotopes

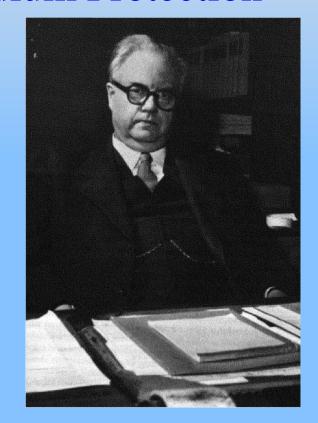
- Radiation Medicine
 Diagnosis (discovery of X ray, 1895),
 Therapy (discovery of Radium, 1898)
 Nuclear Medicine (discovery of radioactivity, 1896)
- Research in Life Sciences
- Industrial Use
- Application in Agriculture and Fishery

Radiation is a double-edged sword

1895 E.Grubbe describes x-ray dermatitis

W. Fuchs publishes advice for protection of hands

Golden rules of radiation protection: Time, Distance Shielding


Protection of Workers (Professional Exposures)

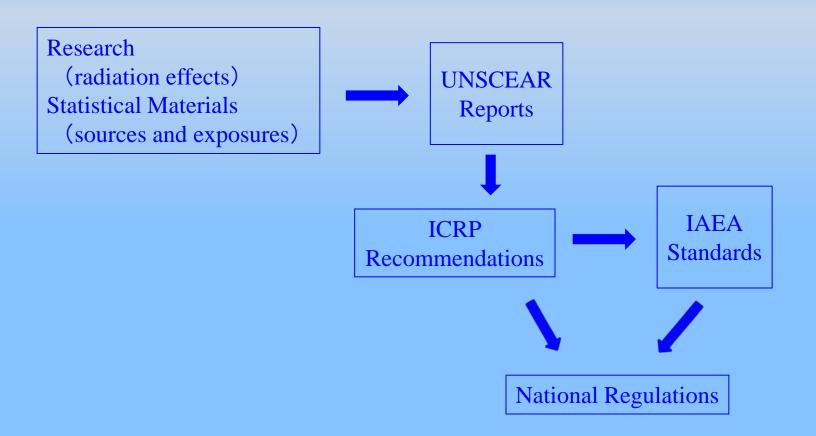
1928 The Birth of ICRP (IXRPC)

At the 2nd International Congress of Radiology (ICR)
The International X ray and Radium Protection

Committee was established

Chairman: Rolf Sievert

Copyright© JRIA Yasuhito Sasa


However, Things Changed

Accelerators, Reactors, Fallout from nuclear weapon testing
Managements of Radiation Exposures of the General Public
UNSCEAR (United Nations Scientific Committee on
Effects of Atomic Radiation) established in 1955
IAEA was established in 1957
IXRPC was renamed as XCRP in 1950


Excess leukemia and later solid cancers observed in A-bomb survivors

Stochastic Effects (cancer and hereditary effects) was recognized

International Framework of Radiological Protection and Regulation

Two Types of Radiological Effects Dose-Effect Relation

Changes of Radiological Protection Standards

Past		Present
Protection of workers in medicine	All workers	All exposures
protection of human	assume environments are protected	protection of environments (non-human biota)
avoid deterministic effects	recognize stochastic effects	avoid deterministic effects, minimize stochastic effects
practical advices	dose limitation	optimization constraints and reference levels

Recent Recommendations of ICRP (translation by JRIA)

- Publ. 103 The 2007 Recommendations of the International Commission on Radiological Protection
- Publ. 109 Application of the Commission's Recommendations to the People in the Emergency Exposure Situation
- Publ. 111 Application of the Commission's Recommendations to the Protection of People Living in Long-term Contaminated Areas after a Nuclear Accident or a Radiation Emergency
- Publ. 96 Protecting People against Radiation Exposure in the Event of a Radiological Attack

System of RP of Humans based on the 2007 ICRP Recommendations

3 Types of Exposure Situations

Planned

Emergency

Existing

Exposure Situations

3 Categories of Exposures

Occupational Exposures

Public Exposures

Medical Exposures of Patients

(ICRP Publ.103)

Principles of Radiological Protection

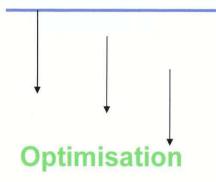
- Justification
- Optimization
 as low as reasonably achievable (ALARA)
- Individual Dose limit
 Dose Limit does not apply to medical exposure of patients

Recommended dose limits in planned exposure situations

Type of Limit	Occupational	Public		
Effective dose	20mSv per year, averaged over defined periods of 5 years	ImSv in a vear		
Annual equivalent dose in:				
Lens of the eye	150mSv	15mSv		
Skin	500mSv	50mSv		
Hands and feet	500mSv	_		

The dose constraints and reference levels used in the Commission's system of protection

Type of situation	Occupational exposure	Public exposure	Medical exposure
Planned exposure	Dose limit Dose constraint	Dose limit Dose constraint	Diagnostic reference level (Dose constraint)
Emergency exposure	Reference level	Reference level	N.A.
Existing exposure	N.A. *	Reference level	N.A.


^{*} Exposures resulting from long-term remediation operations or from protracted employment in affected areas should be treated as part of planned occupational exposure, even though the source of radiation is "existing".

Optimisation and Source-related Restrictions

Planned exposure situations

Dose limit

Dose constraint

Existing and emergency exposure situations

Optimisation

3 Bands to be used for Optimisation of protection

mSv acute or annual dose	Example
Greater than 20 to 100	Reference level set for the highest planned residual dose from a radiological emergency
Greater than 1 to 20	Constraints set for occupational exposure in planned situation Reference level set for the residual dose from existing exposure situation
1 or less	Constraints set for public exposure in planned situation

Response to Emergency Exposure Situation

Aims of protection: Avoidance of severe deterministic effects

Initial response: Reference levels for workers in rescue and early response actions

Reference levels for members of the public Choose appropriate reference level within the band of 20-100 mSv

recovery phase \implies existing exposure situation Choose appropriate reference level within the band of 1-20 mSv

Managements of Aftermath of Radioactive Contamination

- Measurements of level of contamination: evacuation, off-limit, decontamination
- Estimation of level of human exposures
- Estimation of health effects caused by the exposures
- Rapid and rational plan and implementation of countermeasures
- Transdisciplinary cooperation and stake holder involvements

Establishment of Modern Science

Coinage of "scientist" by W. Hewell in 1843

"---ist" is a person dedicated to a specific narrow area like pianist vs musician

Changes of Knowledge Producing Modes

Mode 1.

Mode 2.

Curiosity driven research

Mission oriented R&D

Closed circle of specialists

Interaction between specialists and citizens

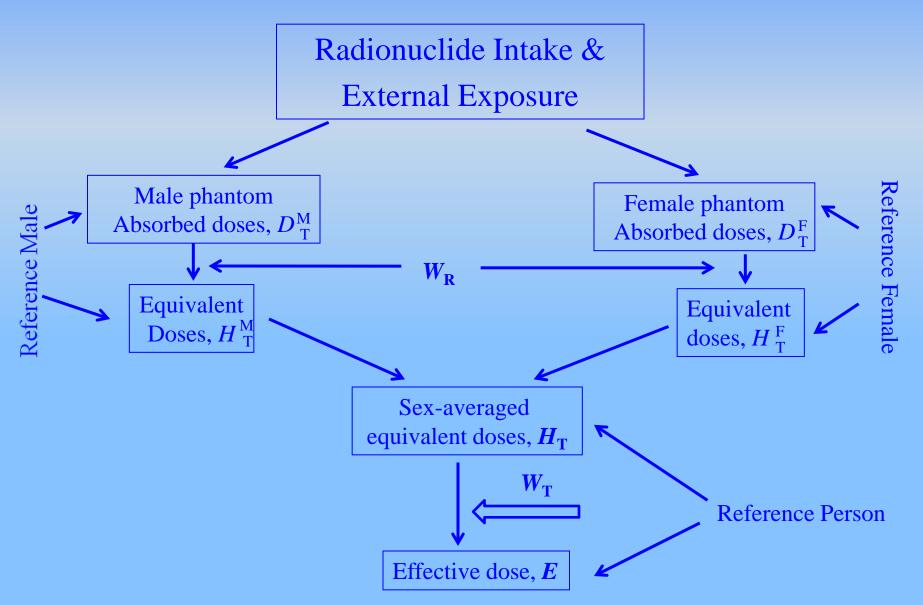
Disciplinary

Transdisciplinary

Peer review

Stake holder involvement

Various Trials


- Proposals to mass media how to communicate with members of the public in regard to radiation and its health effects, especially low dose radiation effects and its protection.
- Lectures for mass media: frame work of radiological protection in ICRP recommendations
- Panel discussions open to the general public
- Outreach through HP
- Mini-meeting and chatting at nursery schools located in slightly contaminated areas such as Kashiwa and Nagareyama cities.

Speciality + Transparency = Trust

Interpreter • Communicator \Longrightarrow Comprehension

Reference materials

Sex averaging to obtain the effective dose

Equivalent dose

$$H_{\mathrm{T,R}} = \sum_{\mathrm{R}} \mathbf{w}_{\mathrm{R}} \cdot D_{\mathrm{T,R}}$$

unit:Sv

Effective dose

$$E = \sum_{\mathbf{T}} w_{\mathbf{T}} \cdot H_{\mathbf{T}} = \sum_{\mathbf{T}} w_{\mathbf{T}} \sum_{\mathbf{R}} w_{\mathbf{R}} \cdot D_{\mathbf{T}}$$

unit:Sv

Recommended tissue weighting factors

Tissue	$W_{ m T}$	$\sum W_{\mathrm{T}}$
Bone-marrow (red), Colon, Lung Stomach, Breast, Remainder tissues*	0.12	0.72
Gonads	0.08	0.08
Bladder, Oesophagus, Liver, Thyroid	0.04	0.16
Bone surface, Brain, Salivary glands, Skin	0.01	0.04
	Total	1.00

^{*} Remainder tissues: Adrenals, Extrathoracic (ET) region, Gall bladder, Heart, Kidneys, Lymphatic nodes, Muscle, Oral mucosa, Pancreas, Prostate (3), Small intestine, Spleen, Thymus, Uterus/cervix (2)

Use of Effective Dose

- Should be used for prospective panning for radiological protection
- Should not be used for retrospective risk assessment of specific individuals who were exposed to radiation
- Should not be used for epidemiological studies

