

Session 5, Measuring Innovation: "Measurement of IPR Protection Effect on International Technology Transfer:

Evidence from Japanese Firm-level Data

Banri Ito JSPS Research Fellow

> 14 March, 2008 GIES Session 5

Outline

- 1. Purpose and motives
- 2. Related studies
- 3. Hypotheses
- 4. Measurement
- 5. Empirical study
- 6. Conclusion

1. Purpose and motives

Purpose:

Émpirically test the effect of stronger IPR on increasing international intra-firm and arm's length technology transfer using a sufficient size of firm data.

Motives:

Increasing international technology transaction.
Stronger IPR encourage not only innovation but also technology transaction.

Conflict between north and south in the WTO/TRIPS context. Global stronger IPR increase rent from developing countries to developed countries in short term (McCalman, 2001). What about cross-border technology transfer that will be benefit to developing countries economy?

Important issue to encourage global innovation.

Theoretical studies show that global innovation speed depend on whether global IPR protection spur technology transfer from north to south (Helpman, 1993; Lai, 1998; Grass and Saggi, 2002; Grossman and Lai, 2005).

2. Related studies

Economic impact of technology transfer

 Technology transfer affect positively economic growth in host country.

(e.g. Basant and Fikkert, 1996; Braga and Wilmore, 1991; Branstetter and Chen, 2006; Belderbos et al., 2008)

IPR vs Technology transfer

Branstetter et al. (2006), Wakasugi and Ito (2008)

- Technology payments from foreign affiliate to headquarters in home country as a measurement of intra-firm technology transfer.
- Foreign IPR protection increase intra-firm technology transfer by multinational firms.

2. Related studies (cont.)

Nagaoka (2008)

- 1,458 licensing transaction by 217 Japanese firm in 1999FY.
- Stronger IPR protection shift transaction from intra-firm to arm's-length.

Contribution of this paper

- Extend earlier studies using a large size of data.
- Find out relative effect of IPR on intra-firm and arm's-length technology transfer.
- Provide policy implications for the WTO/TRIPS context and global innovations.

3. Hypotheses (cont.)

Strengthening of IPR protection,,,

- 1. promotes *intra-firm technology transfer* by increasing advantage of knowledge property ownership of multinationals in the host country.
- raise a contractivity of licensing, and promotes arm's-length technology transfer through a technology market.

4. Measurement (1)

1. Measurement of IPR protection

Two methods: institutional index and survey index

Institutional index

"Index of Patent Right" (Ginarte and Park, 1997; Park and Wagh, 2002)

<u>Advantage:</u>

 "Objectivity" based on whether the IPR system of each country fulfills the institutional side.

Disadvantage:

- Covers only patent right.
- Updated every 5 years until 2000.
- The possible gap between actual enforcement and legal provisions (Ito et al. 2007).

4. Measurement (2)

Survey index (World Economic Forum)

"Protection of Intellectual Property Rights" index

- based on annual questionnaire of the IPR protection to more than 10,000 firms.
- Construct the index as an average score for each country.

<u>Advantage:</u>

- Annually available.
- Covers all intellectual property rights.
- Index showing real enforcement of IPR.

<u>Disadvantage:</u>

- "Subjective" index. Do the firms really know the country?
- Difficult to compare serially because of changes in a population surveyed.

4. Measurement (3)

2. Measurement of technology transfer

We have 3 technology transaction data in Japan

- (1) "Basic Survey of Japanese Business Structure and Activities" (firm-level data >50 employee)
- Technology payments and receipts data
- Disaggregated over property rights (patent, designs, a utility model right, copyright, software and other)
- Aggregated values for domestic and abroad.
- (2) "Survey of Overseas Business Activities" (foreign Japanese affiliate firm-level data: invested capital of 10% or more)
- Royalty payments from foreign affiliate to headquarter.

4. Measurement (4)

(3) "Survey of Research Development"

Definition;

"exchange of technology with abroad in relation to or in the form of patents, know-how and technical guidance"

<u>Advantage</u>

- The total amount for every destinations is available.
- items to affiliates firms (more than 50% investment share) is available from 2001.

This data unable us to examine how a destination-specific factor (e.g. IPR) affect intra-firm(>50%) and arm's-length (<=50%) technology transfer.

5. Empirical study (1) *Trends in technology exports*

Table 1: over destinations

- The total amount is increasing by 1.6 times in five years.
- The distribution over countries is heavily skewed (U.S, 45%).
- Arms-length export ratio changes greatly with destinations.
- >Country attributes (e.g. market size, IPR etc.) may have affected the decision of intra-firm and arm's-length.

5. Empirical study (2) *Trends in technology exports*

Table 2: over industries

- Transport machinery responsible for more than half.
- Industry with higher patentability has a higher arm's-length ratio (e.g. Pharmaceutical, Chemical).

>>Industry-specific factor should be controlled.

5. Empirical study (4) Figure 2: IPR vs technology exports

5. Empirical study (5)

Empirical Methodology

Assume that the volume of technology exports is determined by exporting firm attributes F_{it}, and receiving country attributes, H_{jt}.

 $TechExport_{ijt} = f(H_{jt}, F_{it})$

- Estimate two equations on intra-firm and arm'slength T.T using same set of explanatory variables and check how the IPR effect differ.
- To allow the correlation of error terms between two equations, the SUR (Seemingly Unrelated Regression) procedure is used.

5. Empirical study (6)

 $\ln(TechExport_{ijt}) = \alpha_0 + \beta_1 \ln(PIPR_{jt}) + \beta_2 \ln(GDPPC_{jt}) + \beta_3 \ln(MSIZE_{jt}) + \beta_4 \ln(DIST_{jt}) + \beta_5 \ln(FDI_{jt}) + \beta_6 (TRADE_{jt}) + \beta_7 (TAX_{jt}) + \beta_8 \ln(FSIZE_{it})$

+ $\beta_9 \ln(R \& D_{it}) + \beta_{10} (AFF_{it}) + \alpha_t + \varepsilon_{ijt}$

- TechExport : Intra-firm or arm's-length Technology exports amount from firm i to country j at time t
- PIPR: Index of IPR protection (WEF)
- GDPPC: GDP per capita (WDI)
- MSIZE: Population (WDI)
- DIST: Distance from Tokyo to a capital city in receiving country
- FDI : FDI openness (WEF)
- TRADE: Trade openness as a (exports+imports)/GDP (WDI)
- TAX: Corporate tax rate in receiving country (KPMG website)
- FSIZE: Total sales of exporting firm (Survey of R&D)
- R&D: Total R&D expenditures of exporting firm (Survey of R&D)
- AFF: Dummy taking 1 if the exporting firm has an affiliate firm in the receiving country, and 0 if no affiliate firm. (Toyo Keizai Survey)

5. Empirical study (7)

Data samples

- An observation is a pair of exporting firm and receiving country in manufacturing industries from 2001 to 2005.
- 12,142 pairs of 1,207 firms and 33 countries in five years are available to estimate.
- The export amount of this data covers 90% of the total exports in the whole sample.

5. Empirical study (8)

l	[1]		[2]		[3]	
Dependent variable: InTechExport	arm's-length	intra-firm	arm's-length	intra-firm	arm's-length	intra-firm
ln(FSIZE): Total sales	0.539	0.287	0.510	0.507	0.541	0.290
	[0.033]**	[0.035]**	[0.040]**	[0.042]**	[0.033]**	[0.035]**
ln(R&D): Total R&D	-0.012	-0.020	0.017	-0.242	-0.011	-0.019
expenditures	[0.022]	[0.023]	[0.032]	[0.034]**	[0.022]	[0.023]
AFF: Dummy for ownership of	-2.530	4.003	-2.524	3.959	-2.537	3.995
affliate firm in the country	[0.073]**	[0.077]**	[0.073]**	[0.077]**	[0.073]**	[0.077]**
In(PIPR): IPR protection	1.175	-0.339	1.272	-1.086	1.228	-0.276
	[0.198]**	[0.209]	[0.214]**	[0.225]**	[0.199]**	[0.210]
ln(PIPR* R&Dint): cross term			-0.102	0.789		
of IPR protection and R&D			[0.085]	[0.089]**		
ln(PIPR)* OECD: cross term					-0.324	-0.383
of IPR protection and OECD					[0.128]*	[0.135]**
ln(GDPPC): GDP per capita	0.368	0.070	0.370	0.051	0.547	0.281
	[0.055]**	[0.058]	[0.055]**	[0.058]	[0.090]**	[0.095]**
ln(MSIZE): Population size	0.371	0.439	0.370	0.447	0.331	0.392
	[0.041]**	[0.044]**	[0.041]**	[0.043]**	[0.044]**	[0.047]**
ln(DIST): Distance from Tokyo to	-0.685	0.59	-0.684	0.584	-0.754	0.508
the capital city	[0.061]**	[0.064]**	[0.061]**	[0.064]**	[0.067]**	[0.070]**
ln(FDI): FDI openness index	0.138	-0.682	0.137	-0.678	0.258	-0.540
	[0.265]	[0.279]*	[0.265]	[0.278]*	[0.269]	[0.283]
TRADE: Trade openess as a	-0.151	0.603	-0.151	0.608	-0.362	0.353
(exports+imports)/GDP	[0.070]*	[0.073]**	[0.070]*	[0.073]**	[0.109]**	[0.115]**
TAX: Corporate tax rate	3.012	-6.868	3.027	-6.982	3.467	-6.331
	[1.289]*	[1.360]**	[1.289]*	[1.355]**	[1.301]**	[1.372]**

6. Conclusion

<u>Main findings</u>

- Stronger IPR stimulates arm's-length T.T uniformly.
- The positive effect of IPR on intra-firm T.T is restricted to the firms with high R&D intensity.
- IPR effect on T.T concentrates in Non OECD countries rather than OECD countries.

Implications

- In TRIPS context, Stronger IPR may benefit developing countries through increasing arm's-length T.T.
- Global IPR protection spur T.T. As a result global innovation might be stimulated as suggested by theoretical analyses (e.g. Helpman, 1993; etc.).