2008/03/13 International Conference on Science and Technology for Sustainability "Global Innovation Ecosystem"

Urgent Need for "Sustainability Development"

Motoyuki Suzuki* Open University of Japan

*Special Programme Advisor, United Nations University

Change in Environment of R&D in Science and Technology

-Globalization and Role of Innovation-

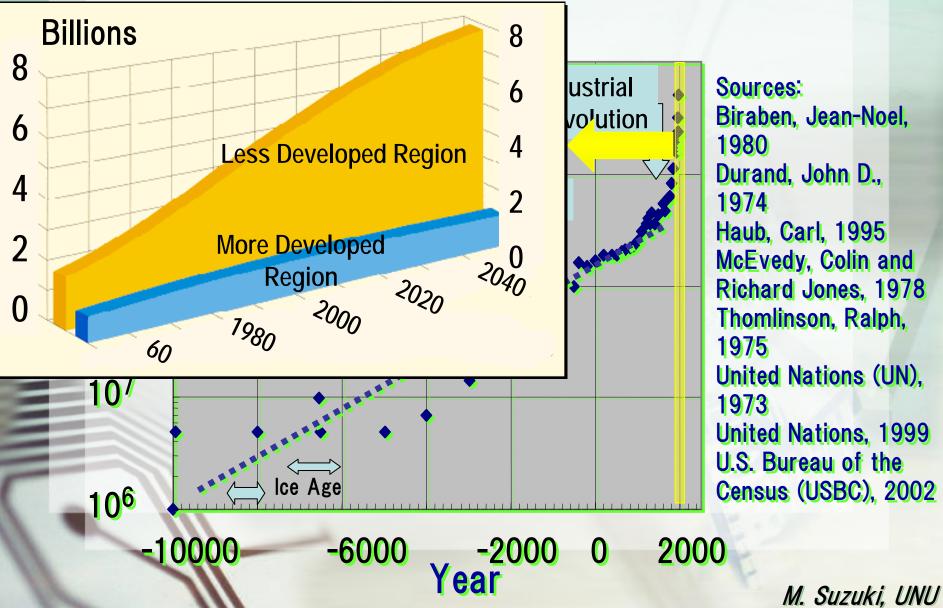
- Understanding of the Limited Capacities
 - Enlargement of science & technology and its outcomes
 - Population explosion and activation of human activities

Minimization of the Globe

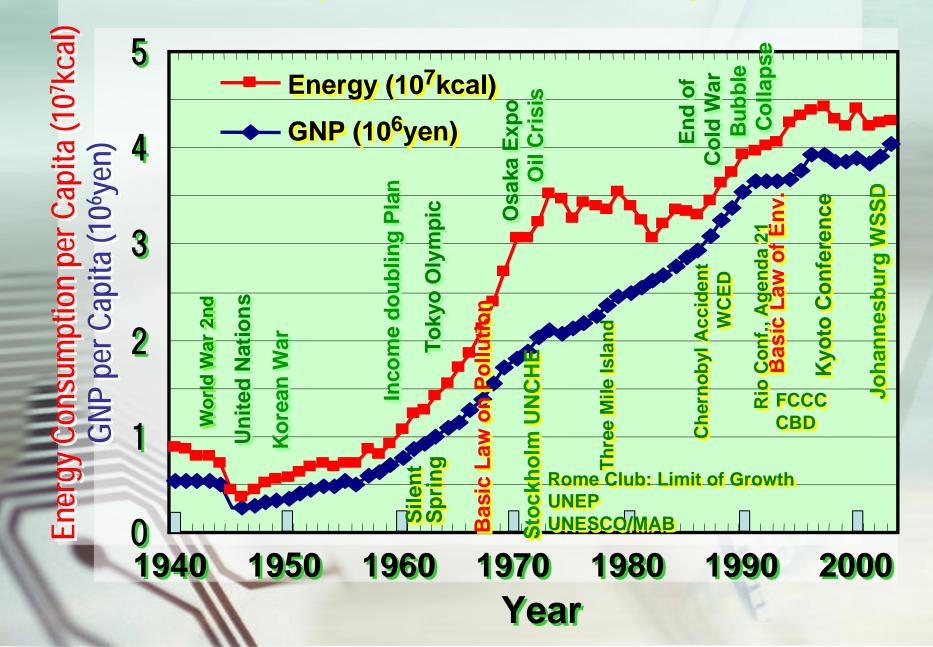
- Collapse of East-West dipole structure, Globalization of Market Economy
- Diminishing information distances due to the progress of ICT technologies
- Improved understandings of earth physical systems through climate change issues
- Paradigm shift is needed to cope with the limited capacities
- Science & Technology should contribute to finding a vision of sustainable human societies within finite capacities

Epochs of Human History

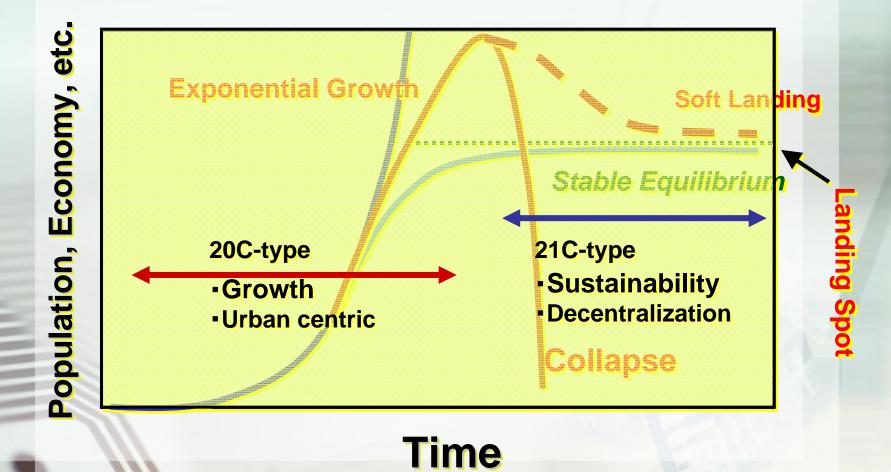
- Evolution of Man
 5 million yrs. bp, Great Lift Valley
 - East Africa (Ethiopia)
 - Upright walking, tools, languages, use of fire (0.7 to 1.3mill yrs. bp)
- Evolution of Agriculture 8-10 thousand yrs. bp, Younger Dryas
 - Palestine, Mesopotamia, Nile Delta, Southeast Asia, China, etc.
 - Adoption of agriculture, stock-breeding, rice-farming, earthware, settlement


3.5-4 thousand yrs. bp

Start of Cities


- 4 Civilizations (Egypt, Sumer, Huang River, Indus River)

- Irrigation, Industrialized Agriculture, Excess wealth, Division of labor, City walls)
- Outbreak of Sciences 17C Little Ice Age
 - Only in Europe
 - Descartes, Bacon, Newton, Boyle, Lavoisier, etc.
 - Mechanistic view of nature, Industrial Revolution (late 18C)
- **Current Problems**
 - Gigantic human activities, Finiteness of our environmental capacities


Population Trends on the Earth

Past Development Patterns of Japan, 1940-

Typical Patterns of Growth

Suzuki, UNU

Typical Components in Paradigm Shift

Growth Paradigm \Rightarrow

- Industry/Production Manufacturing \Rightarrow Mass production \Rightarrow Labor productivity \Rightarrow
- Economy Material Flow Eco. ⇒
- Environment **End-of-pipe** \Rightarrow Science & Technology **Linear Model** \Rightarrow Policy Decision **Differential** \Rightarrow \Rightarrow
 - Projection

Sustainability Paradigm

Service/Maintenance **On-demand**, appropriate **Resources productivity**

Stock centered, Service Eco.

- **Upstream, system revision**
- **Demand pull, social needs**

Integral/holistic **Back-casting**

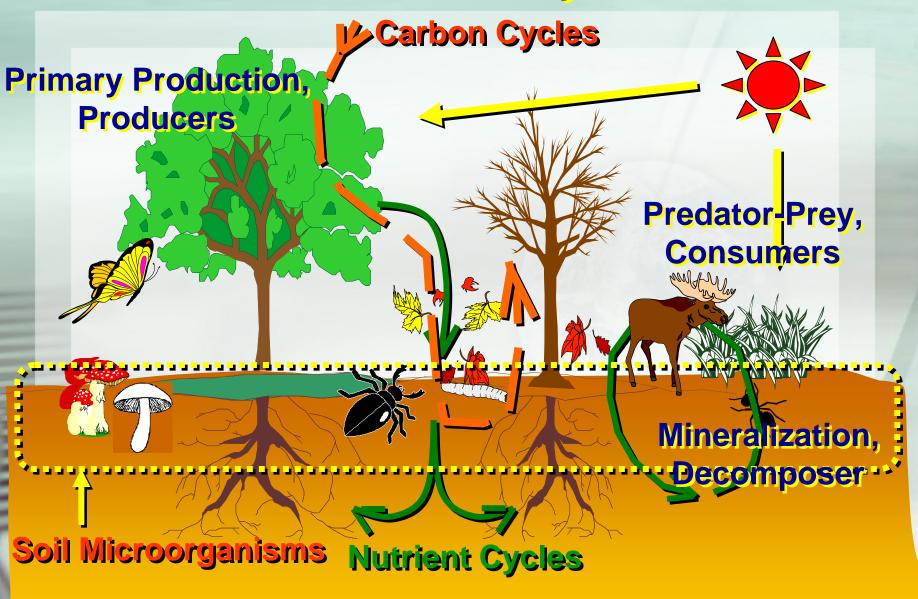
M. Suzuki, UNU

Landing Spot: where and how

- Limits of resources/environmental capacities
 - Allowable amount of material resources utilization?
 - Allowable amount of energy utilization?
 - Allowable amount of environmental load?
- Establishment of Vision on "Sustainable Human Activities"
 - Vision-pull (back-casting) policy making needed.
 - What is "Dematerialization"?
 - What is "Low Carbon Society"?
 - What type of Economy Mechanism can carry "Sustainability"?

M. Suzuki, UNU

An Example of R&D Targets of Japan


Climate Emergency

 Heiligendam G8 agreement: Reduce carbon emission from human activities on the earth 50% by 2050.

 Total emission at present, 7.2 billion tonC must be reduced by half by 2050 when population may be 9.2 billion on the earth.

 Systematic R&D schedule for reducing carbon emission from 2.5(current) to 0.4 ton/capita/year by 2050

Natural Ecosystem at a Glance

M. Suzuki, UNU

What is "Ecosystem"?

- A functional unit consisting of all the living organisms (plants, animals, and microbes) in a given area, and all the non-living physical and chemical factors of their environment, linked together through nutrient cycling and energy flow.
 - Living organisms are continually engaged in a set of relationships with every other element constituting the environment in which they exist.

Natural Ecosystem

- Driving Force of a Functional System: Energy
 - Photosynthesis driven by solar energy (UV)
 - Energy conversion through Food Web
 - Structure of ecosystem, material flows
 - Radiation of thermal energy toward cosmic space
- Material Cycles in a Functional System: Carbon balance, Nutrient cycles
 - Primary producers/consumers/decomposers
- Components: Variety of Living Things and Inorganic Environment
 - Five Kingdoms

Five Kingdoms of Life

Kingdom Animalia

- 32 divisions, 1,000,000 species
- Multicellular animals, without cell walls and without photosynthetic pigments, forming diploid blastula.

Kingdom Plantae

- 9 divisions, 250,000 species
- Haplo-diploid life cycles, mostly autotrophic, retaining embryo within female sex organ on parent plant.

Kingdom Fungi

- 5 divisions, 100,000 species
- Haploid and dikaryotic (binucleate) cells, multicellular, generally heterotrophic, without cilia and eukaryotic (9 + 2) flagella (undulipodia).

Kingdom Protista

- 27 divisions, 250,000 species
- Unicellular protozoans and unicellular & multicellular (macroscopic) algae with 9 + 2 cilia and flagella (called undulipodia).

Kingdom Monera

- 16 divisions, 10,000 species
- Unicellular and colonial--including the true bacteria (eubacteria) and cyanobacteria (blue-green algae).

Behavior of Living Species

- Structure of ecosystems are spontaneously determined through interactions among component species
- Predator-prey relations
- Symbiosis and Competition
- Symbiosis among various species
 - Mutualism (+,+)
 - Commensalism (+,0)
 - Amensalism (-,0)
 - Antagonism, parasitism, predation

(+,-)

Importance of Biodiversity

"Innovation ecosystem"?

- System components such as living things?
 - State, organization, group, researcher, citizens
 - What are interactions among components? Symbiosis and competition

• Driving force such as Energy?

- Money, pressure, or will?
- Money may be the only one conserved.
- Material Flows?
 - Information, intellectual properties
 - Hard to consider continuity of information etc.
- Spontaneous structurization?
 - Pursuit of Company-profit, national profit or personal profit.
 - Hard to convert an Ego-system to an Eco-system

