

Center for Research and Development Strategy

Technological level evaluation in ICT - Korean Viewpoint -

Ph.D. ILGU CHO Strategic Coordination Team Leader Korea Evaluation Institute of Industrial Technology

> **长空**前 韓國産業技術評價管理院

Contents

2. Technological level survey in ICT

3. Technological competitiveness analysis in ICT

4. Overall result in 2010

* TLE : Technological Level Evaluation

1. Introduction of TLE

Qualitative & Quantitative Mutual Complementary Method

* TLE : Technological level evaluation

1. Introduction of TLE

Goal

- To allocate R&D resource efficiently
- Reference to government, agency and committee when they performs next year project planning & selection

Survey/Analysis contents

	Tech. level survey in ICT	Tech. competitiveness analysis in ICT							
Target	o Information & communications technology (14 main tech. category)								
Countries	o South Korea, USA, Europe, Japan, and China								
Data	o Second round expert Delphi survey - 1 st : 7,824 replied, 2 nd : 2,289 replied	o Patent applications- Recent ten years(2000.01.01 ~ 2010.08.31)							
Evaluation item	o Relative technological level and gap o Relative importance of individual technology	o Patent Activity Index, Patent Intensity Index, Patent Market-power Index, Patent Strength Index, Patent Strike Index							
Period	o July, 2010 ~ November, 2010	o August, 2010 ~ November, 2010							
Etc.	o Web-based survey through IT-CAP (IT Capability Analysis Program) System	o Patent DB : WIPS DB(search.wips.co.kr)							

2. Technological level survey in ICT

2-1. Definition/Survey items

Definition "Technological capability" is defined as the ability developing new technology, "Technological level" is used when we want to compare one with other technological capabilities relatively.

• Survey items

S.I.	Sub-S.I.	Operational Definition	scale					
Technol	Importance	 Degree of relative importance of a target technology about upper-level technology 	100					
ogical Importa nce	Urgency	 How soon this technology should be developed ※ Within one year, Within 1~2 year, Within 2~3 year, etc. 	year					
	Impact	 Degree of influence of this technology to other technologies 	5					
	Relative level	2010, 2012, 2015 target countries' relative technological level(Top level : 100%)						
Tech. level	Relative Gap	2010, 2012, 2015 target countries' relative technological gap(Top level : : 0)						
	Top level Country/ Company	 Country/Company holding top level technological capability 	-					

2-2. Survey target

• Target Tech. category

category
1 Semiconductor
② Display
③ LED & Optical
④ Home-network/Information Appliances
⑤ Digital TV/Broadcasting
6 Radio/Broadcast/Satellite
⑦ Mobile communications
⑧ Broad Convergence Network(BcN)
Software(SW)
10 Next-generation computing
(1) Security
12 Robotics
13 RFID/USN
() IT convergence

2-3. Evaluation Model

2-4. Process

3. Technological competitiveness analysis in ICT

3-1. Outline

Goal

- Competition-level understanding of major competitors(countries) through patent information analysis of key technologies in ICT sector
- Building Patent Data Base of Republic of Korea, the United States, Japan, Europe, China in ICT sector

Contents

- Analysis Target Country : Republic of Korea, the United States, Japan, Europe, China
- Analyzed period : 10 years(2000.01.01 ~ 2010.08.31)
- Analyzed information : Patent Activity Index, Patent Intensity Index, Patent Market-power Index, Patent Strength Index, Patent Strike Index
- Patent DB : WIPS DB(search.wips.co.kr)

3-2. Survey target

• Target Tech. category

category
1 Semiconductor
② Display
③ LED & Optical
④ Home-network/Information Appliances
⑤ Digital TV/Broadcasting
⑥ Radio/Broadcast/Satellite
⑦ Mobile communications
⑧ Broadband Convergence Network(BcN)
Software(SW)
Next-generation computing
(II) Security
12 Robot
(B) RFID/USN
IT convergence

3-3. Evaluation model

Patent Competitiveness evaluation Model - AIMS +

(Patent Activity Intensity, Market-power & Strength + strike Index)

Index Indicator		Weight (by AHP)	Details			
Patent Activity Index (PAI)	# of patent applications	0.368	• Identifying the national R&D activities state based on the number of patent applications issued by the patent office.			
Patent Intensity Index (PII)	# of patent applications (Relatively)	0.202	 Relative proportion about a technology among the comparative technologies Represents the concentration of innovative activities for the technology sector 			
Patent Market-power Index (PMI)	# of average patent family	0.145	• Patent family represents the market power because the country apply patents abroad when they have commercial interests or competing for overseas			
Patent Strength Index (PSI)	# of triadic patent	0.153	• Filed in EPO (European Patent Office), JPO (Japan Patent Office) and USPTO (U.S. Patent and Trademark Office) patent applications at the same time			
Patent sTrike Index (PS _t I)	# of patent citation	0.132	 Identifying how the patent is being used in the future patent based on US patent citation information 			

* THIS MODEL WAS DEVELOPED BY KEIT, AND APPLIED FOR THE DOMESTIC PATENT AT AUGUST 2010.

* AHP : Analytic Hierarchy Process (Thomas L. Saaty, 70s)

3-4. Process

4. Overall Result in 2010

- 1) Result of Technological level survey
- 2) Result of Technological competitiveness analysis

ENTIRE RESULT OF ICT

(1) COUNTRIES HOLDING WORLD TOP LEVEL

- •The highest technological level of all states In ICT sector is the United States. •The Second highest is Japan.
- X Among 14 tech. field in ICT, US is holding top level in 12 and Japan is holding top level in two field.

	Tech. field	# of field holding world top level
US	Semiconductor, Home-network/Information Appliances Digital TV/Broadcasting, Radio/Broadcast/Satellite Mobile communications, BcN, SW, Next-generation computing, Security, Robot, RFID/USN, IT convergence	12 (85.7%)
Japan	Display, LED & Optical	2 (14.3%)

ENTIRE RESULT OF ICT

(2) RELATIVE LEVEL AND GAP

	Level(%)	Gap(year)	120 100 - 100.0 94.0 93.0
KR	86.0	2.4	80 - 75.7
US	100.0	0.0	60 - Level(%) 40 - Gap(year)
JP	94.0	1.4	20 - 2.4
Ch	75.7	3.3	
EU	93.0	1.5	안국 미국 결존 중국 휴립

RESULT OF 14 TECH. FIELD IN ICT

(1) RELATIVE TECH. LEVEL

	KR		US		JP		EU		СН	
14 tech. field	'10	′15e	′10	′15e	'10	'15e	′10	′15e	′10	′15e
1 Semiconductor	87.9	96.6	100	100	96.9	99.2	91.6	95.2	73.9	85.9
② Display	88.7	97.7	93.7	96.5	100	100	88.8	94.2	74.3	89.2
③ LED & Optical	86.1	96.5	97.8	99.2	100	100	93.5	97.3	75.8	89.6
Home-network/Information Appliances	86.5	96.7	100	100	93.0	98.3	93.8	98.8	75.5	90.2
(5) Digital TV/Broadcasting	88.5	97.7	100	100	93.9	98	95.3	98.5	77.3	90.1
Radio/Broadcast/Satellite	81.4	94.0	100	100	90.9	97.5	93.5	98.3	76.1	90.3
⑦ Mobile communications	86.5	95.9	100	100	90.4	96.6	93.5	97.8	76.5	90.2
(8) BcN	85.9	96.0	100	100	89.8	96.9	91.8	97.6	78.2	93.0
(9) SW	80.6	93.2	100	100	86.2	94.8	89.8	96.9	72.8	86.9
10 Next-generation computing	81.1	95.2	100	100	87.5	96.5	87.5	96.1	71.5	87.1
① Security	85.2	95.5	100	100	88.4	95.5	90.8	97.2	74.1	86.3
12 Robot	84.7	94.7	100	100	96.7	99.3	94.5	98.3	74.6	86.7
③ RFID/USN	85.8	96.4	100	100	88.9	97.0	92.0	97.8	73.9	89.2
(4) IT convergence	85.1	95.7	100	100	94.1	98	96.1	98.8	73.4	86.3

RESULT OF 14 TECH. FIELD IN ICT

(1) RELATIVE TECH. GAP (YEAR)

	KR		US		JP		EU		СН	
14 tech. field	'10	'15e	'10	′15e	'10	'15e	'10	'15e	′10	′15e
 Semiconductor 	1~2	1~2	0	0	1~2	1~2	1~2	1~2	3~5	2~3
② Display	1~2	1~2	1~2	1~2	0	0	1~2	1~2	3~5	2~3
③ LED & Optical	1~2	1~2	0~1	0~1	0	0	1~2	1~2	2~3	1~2
Home-network/Information Appliances	2~3	1~2	0	0	1~2	1~2	1~2	1~2	3~5	2~3
(5) Digital TV/Broadcasting	1~2	1~2	0	0	1~2	1~2	1~2	1~2	3~5	2~3
Radio/Broadcast/Satellite	3~5	2~3	0	0	2~3	1~2	2~3	1~2	3~5	2~3
⑦ Mobile communications	2~3	1~2	0	0	2~3	1~2	1~2	1~2	3~5	2~3
(8) BcN	2~3	1~2	0	0	2~3	1~2	1~2	1~2	3~5	1~2
(9) SW	3~5	1~2	0	0	2~3	1~2	2~3	1~2	3~5	2~3
10 Next-generation computing	3~5	1~2	0	0	2~3	1~2	2~3	1~2	3~5	2~3
(1) Security	2~3	1~2	0	0	2~3	1~2	2~3	1~2	3~5	2~3
12 Robot	2~3	1~2	0	0	1~2	1~2	1~2	1~2	3~5	2~3
(1) RFID/USN	2~3	1~2	0	0	2~3	1~2	1~2	1~2	3~5	2~3
() IT convergence	2~3	1~2	0	0	1~2	1~2	1~2	1~2	3~5	2~3

Relative technological competitiveness of ICT based on Patent information

US(100%) > JP(74%) > KR(55%) > CH(47%) >EU(42%)

	Evaluation items	KR	US	JP	EU	СН
	PAI	0.22	0.30	0.26	0.05	0.16
	PII	0.20	0.20	0.20	0.20	0.20
Entire ICT	PMI	0.14	0.34	0.20	0.16	0.15
	PSI	0.14	0.34	0.20	0.16	0.15
	PS _t I	0.08	0.45	0.26	0.19	0.03
	AIMS+ Score	17.39%	31.38%	23.28%	13.28%	14.67%
	Equivalent to 100	55.42%	100.00%	74.18%	42.32%	46.7 4%

Result of 14 tech. field in ICT

	KR	US	JP	EU	CH
Overall ICT	55.42%	100.00%	74.18%	42.32%	46.74%
1 Semiconductor	67.2%	100.0%	82.3%	52.7%	42.0%
② Display	60.2%	84.0%	100.0%	38.8%	47.9%
③ LED & Optical	54.1%	100.0%	91.7%	54.1%	65.5%
Home-network/Information Appliances	66.6%	100.0%	48.8%	53.6%	50.9%
⑤ Digital TV/Broadcasting	60.0%	100.0%	51.4%	41.6%	52.0%
6 Radio/Broadcast/Satellite	65.8%	100.0%	62.8%	62.4%	44.8%
⑦ Mobile communications	94.0%	100.0%	58.3%	78.9%	56.5%
⑧ BcN	54.8%	100.0%	52.1%	73.5%	71.6%
(9) SW	25.3%	100.0%	54.5%	34.5%	36.2%
Next-generation computing	29.2%	100.0%	61.3%	44.5%	45.9%
1) Security	59.3%	100.0%	65.1%	62.3%	44.6%
12 Robot	60.8%	84.5%	100.0%	58.9%	45.6%
13 RFID/USN	88.3%	95.0%	100.0%	61.6%	58.9%
(14) IT convergence	51.7%	100.0%	38.4%	39.8%	55.1%

Result of 14 tech. field in ICT

- Implication

- ▶ (US) ranked No. 1 in 11 tech. fields including semiconductor, DTV, LED, and etc.
- (KOREA) was ranked 2nd in 4 tech. fields including mobile communications networks, Home-network/information Appliances, DTV, Radio/broadcasting/satellite. And SW, next-generation computing, two areas recorded the lowest
- ► (JAPAN) 3 tech. fields including display, IT Convergence, and the robots were ranked 1st.

And ranked 2nd highest in semiconductor, display, and LED adjacent to the world's highest.

- ▶ (CHINA) ranked 2nd in IT Convergence, ranked 3rd in BcN and SW. China's technological competitiveness in patent is growing rapidly.
- (EU) patent-based technological competitiveness in ICT is lowest among five countries.

Thank you

Ilgu Cho(趙一九), KEIT E-mail : Cho19@keit.re.kr