科学研究所実験活動のまとめ

1. タイトル セルラーゼ遺伝子発現と酵素活性

2. 背景・目的

3種類の生物由来のセルラーゼ遺伝子をプラスマドに組み込み、セルラーゼ遺伝子が発現できるか確認し、その酵素活性を調べた。さらに、セルロースの表面にとまるように働くセルロース結合ドメインを触媒（セルラーゼ）に付加することで、酵素活性に有効かどうか調べる。

3. 方法

使用するセルラーゼ遺伝子（備考: OD=触媒のみ、Full=結合ドメインをもつもの）

- CεID: 牛の胃の中のバクテリア（family 9）
- EgIA: 黒コウジカビ
- EG13-CD: 放線菌（結合ドメインなし）
- EG13-Full: 放線菌と結合ドメイン
- EG38-CD: 牛の胃の中のバクテリア（family 44）
- EG38-Full: 牛の胃の中のバクテリアと結合ドメイン

実験手順
① 大腸菌の形質転換
（組み換えプラスマド使用）
② 大腸菌の前培養→本培養
③ 大腸菌から酵素を回収
④ セルロースと酵素を反応
⑤ 酵素反応後の還元糖を吸光度で測定

4. 結果

ベクターとしてプラスマドを用い、大腸菌を形質転換させてセルラーゼ遺伝子を発現させ、酵素を回収することができた。次に、回収したセルラーゼを用いてセルロースを分解し、可溶性分子として遊離された還元糖を分光光度計を用いて、比色定量した。その結果を以下のようにまとめた。

- CεIDの酵素反応が一番高かった。
- EgIAは50℃でも高く、4℃でもある程度増加率が高かった。
- 結合ドメインがあると酵素活性が高くなった。
- EG38とCεIDは温度が高いと酵素活性が高かった。

5. 考察

CεID、EgIA、EG38と同じセルラーゼでも由来が違うと、温度の違いから酵素活性に影響が出ることが分かった。また、大腸菌内ででの発現量の違いも生物の種類によって違いが出ると予想される。セルラーゼをもつ生物の生息環境を考えながら、高い酵素活性の条件を考える必要がある。

6. 結論

遺伝子発現によりできたセルラーゼの活性は温度の影響が確認できた。このことは、組み換え体を利用した作成したセルラーゼの特徴が、使用した生物を取り巻く環境に影響されているのではないかということが考えられる。同じウシが由来でも、セルラーゼ遺伝子の種類（family）が異なるのが原因ではないかと考えられる。各生物由来の酵素の特徴について、さらに調べ、一番活性が高くなる酵素および条件、効率のよい酵素生産についてさらに研究をすすめたい。

7. 謝辞

東北大学教授梅津 光央先生には「遺伝子組み換えの仕組み」をご講義頂き、さらに、助教中澤 光先生には、遺伝子組み換え体を提供頂き、高校ではできない実験を行うことができ、深く感謝申し上げます。

8. 参考文献等

スクエア 最新図説生物（第一学習社）

9. 成果発表実績

宮城総合図書館発表講演、サイエンスキャッスル2016 関東大会出場